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On the Emergence of Whole-Body Strategies From
Humanoid Robot Push-Recovery Learning

Diego Ferigo , Raffaello Camoriano , Paolo Maria Viceconte , Daniele Calandriello, Silvio Traversaro ,
Lorenzo Rosasco, and Daniele Pucci

Abstract—Balancing and push-recovery are essential capabili-
ties enabling humanoid robots to solve complex locomotion tasks. In
this context, classical control systems tend to be based on simplified
physical models and hard-coded strategies. Although successful
in specific scenarios, this approach requires demanding tuning
of parameters and switching logic between specifically-designed
controllers for handling more general perturbations. We apply
model-free Deep Reinforcement Learning for training a general
and robust humanoid push-recovery policy in a simulation envi-
ronment. Our method targets high-dimensional whole-body hu-
manoid control and is validated on the iCub humanoid. Reward
components incorporating expert knowledge on humanoid control
enable fast learning of several robust behaviors by the same policy,
spanning the entire body. We validate our method with extensive
quantitative analyses in simulation, including out-of-sample tasks
which demonstrate policy robustness and generalization, both key
requirements towards real-world robot deployment.
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I. INTRODUCTION

B IPEDS are those creatures that make use of two legs for
moving while maintaining static or dynamic equilibrium.

Balancing is a key prerequisite for any kind of locomotion bipeds
may achieve. Human evolution determined highly robust bipedal
locomotion, providing enhanced environmental adaptability and
fitness with respect to other species. Humanoid robots are actu-
ated mechanisms sharing many structural similarities with the
human body. In a world largely crafted by and for humans, they
also need to balance for effective operation. The challenges
posed by bipedal dynamics are manifold. Bipeds, compared
to other morphologies, are inherently unstable. Control actions
need to account for a narrow support surface and a sparse mass
distribution. Nonetheless, bipedal balancing and locomotion
successfully established themselves in nature. Therefore, it is
reasonable to expect comparable proprioceptive signals to be
sufficient for the emergence of similar motor capabilities.

A great variety of methods aiming to solve similar sequential
decision-making problems has recently been proposed. Deep
Reinforcement Learning (DRL) is among the most promis-
ing [1]. Complex locomotion behaviors can be synthesized by
policies trained on sequential interactions with the environ-
ment [2]. However, this approach poses fundamental challenges
when applied to robotics [3]. In particular, collecting the amount
of example trajectories required by most state-of-the-art model-
free DRL algorithms is unfeasible for current robots [4]. A
common solution consists in resorting to synthetic data based
on rigid-body dynamics, addressing the mismatch introduced by
the sim-to-real gap in a subsequent stage [5], [6]. Nonetheless,
learned behaviors often display unnatural characteristics, such
as asymmetric gaits, abrupt motions of the body and limbs, or
even unrealistic motions exploiting imperfections and glitches
in the physical simulator of choice. These issues significantly
limit generalization and transferability to real-world robots.

State-of-the-art methods for bipedal robot control [7] are
rooted in control theory and optimal control. Control architec-
tures are often organized as hierarchies composed of trajectory
optimization [8], simplified model control, and whole-body
quadratic programming [9], [10]. While such approaches have
achieved considerable results both on simulated and real hu-
manoid robots, they:

1) Rely on an accurate description of the robot dynamics;
2) Require hand-crafted features for online execution [11];
3) Present challenges when simultaneously facing different

tasks.
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As concerns push recovery, switching between different
strategies (e.g., ankle, hip, stepping, and momentum) is not
trivial.

Compared to previous results [12], this work offers the fol-
lowing main contributions:
� Demonstration of the emergence of robust momentum-

based whole-body push-recovery strategies in addition to
ankle, hip, and stepping ones;

� Design of reward components to guide learning towards
steady-state balancing, with transient push-recovery strate-
gies;

� Definition of a state space – inspired by floating-base
dynamics – encoding sufficient information for solving the
task with no prior knowledge about the desired trajectories.

II. RELATED WORK

A. Control-Theoretic Approaches

Humanoid locomotion control has traditionally been tackled
by resorting to simplified models. In particular, the 3D Linear
Inverted Pendulum (LIP) model is among the most widely
employed ones [13]. Its simplified dynamics proved effective
and efficient for trajectory generation in walking, balancing, and
push-recovery methods. In the presence of limited perturbations,
in-place recovery strategies regulating the Center of Pressure
(CoP) [14] or the centroidal angular momentum [15] can be
sufficient for recovery. These include ankle, hip, and foot-tilting
strategies [16], [17]. An alternative method, modulating the
Center of Mass (CoM) height was recently proposed [18].
Stronger perturbations require the support surface to be en-
larged or shifted to ensure that the CoP is kept enclosed in
it [16]. A natural way to achieve this is by means of stepping
strategies. To this end, push-recovery stepping controllers based
on Zero-Moment Point (ZMP) [19] trajectory generation have
been proposed [20], along with Model Predictive Control (MPC)
methods controlling the ZMP while rejecting strong external
disturbances [21]. Alternatively, footstep planning strategies
based on the Capture Point (CP) [22], [23] have been employed
for position-controlled [24], [25] and torque-controlled [9] hu-
manoids. Control-theoretic methods significantly improved the
state-of-the-art push-recovery performances of humanoids. Still,
they present several limitations:

1) Controllers usually encode a single behavior. Being ro-
bust to a wide range of perturbations requires complex
controller switching;

2) Robot- and task-specific tuning of the controllers and
switching system is a costly trial-and-error procedure;

3) Simplified models and hard-coded strategies often con-
strain the attainable behaviors;

4) MPC-based methods are computationally expensive, hin-
dering real-time deployment.

B. Deep Reinforcement Learning Approaches

In recent years, DRL has been successfully applied to synthe-
size computationally efficient controllers for complex robotic
tasks in a data-driven way, both in simulation and in the real
world. Quadrupeds have drawn considerable attention in DRL
locomotion research, also due to their relatively lower dimen-
sionality and greater stability with respect to bipeds. Policies
trained in simulation have been transferred to real robots via
accurate system identification and domain randomization [26],

[27], while the data-efficient Soft Actor-Critic algorithm has
been shown to learn robust gait policies from few real-quadruped
trials [28]. Remarkably, DRL can also train walking policies
for non-humanoid bipedal robots [29], including real-world
deployment without dynamics randomization [30].

Other works focus on learning locomotion policies for hu-
manoids. This setting is more challenging, due to the complex
and redundant body structure. The potential of DRL in this
domain was first demonstrated on walking tasks in simula-
tion [31]. Other methods improve the human-likeness of the
behaviors by introducing motion imitation [32], [33]. Still, these
methods are more targeted towards benchmarking model-free
DRL for continuous control and realistic animation of simplified
characters rather than applicability to real humanoid robots.

More recent work has been devoted to training push-
recovery [12] and walking [34] controllers for accurate hu-
manoid robot models using principles from robot control and
transferable observation and reward designs. The latter ap-
proaches, although demonstrating diverse effective behaviors
emerging from a single policy, control only the lower body
joints. DRL-based methods for whole-body humanoid control
remain an open problem and have the potential for learning high-
dimensional locomotion policies, further improving humanoid
capabilities to recover from external perturbations.

III. BACKGROUND

A. Notation
� W and B denote the world (inertial) frame and the base

frame of the robot; R and L denote the frames of the right
and left feet.

� Given two frames A and B, A[B] denotes a new frame
with the origin of A and the orientation of B.

� G := G[W ] denotes the frame with origin on the robot’s
CoM and orientation of the world frame.

� n denotes the robot’s Degree of Freedom (DoF).
� ApB ∈ R3 denotes the coordinates of point B in frame A.

Superscripts, e.g. Apxy
B , extract specific coordinates.

� Given two frames A and B and a point C, the matrix
ARB ∈ SO(3) is such that ApC = ARB

BpC + ApB .
� Given ARB , the triplet A(ψ, ρ, φ)B denotes the Euler an-

gles of the z-x-y sequence of intrinsic rotations.
� Given w,u ∈ R3, we define w∧ =W ∈ R3×3 as the

skew-symmetric matrix such that w∧u = w × u, and
W∨ = w its inverse.

� Given ApB and three frames A, B and C, the velocity of
the point B w.r.t. the origin of frame A, expressed in frame
C, is CvA,B = CRA

AṗB .
� Given three frames A, B and C, the angular velocity of

frameB w.r.t. frame A, expressed in frame C is CωA,B =
CRA(

AṘB
AR�

B)
∨.

� CvA,B = (CvA,B ,
CωA,B) denotes the 6D velocity of

frame B w.r.t. A expressed in frame C.
� s, ṡ ∈ Rn denote the joint positions and velocities.
� q = (WpB ,

WRB , s) ∈ R3 × SO(3)× Rn denotes the
configuration of the floating-base robot.

� ν = (BvW,B , ṡ) ∈ R6+n denotes the system velocity,
where the base is represented as body-fixed velocity [15].

�

AfF = (Af ,Am)F ∈ R6 denotes the 6D force acting on
frame F expressed in frame A.
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In the above definitions, the world frame W is implicitly
assumed when A is omitted.

B. Reinforcement Learning (RL)

We formulate balancing and push recovery as a discrete-time
Reinforcement Learning (RL) problem modelled as an infinite
Markov Decision Process (MDP) with a discounted expected
return [35], [36]. In this setting, an agent interacts with an
environment following a control policy. At each time step t,
the agent collects data from the environment in the form of a
state xt. The control policy π(at|xt) selects an action at whose
application results in a new state xt+1 and a scalar reward rt =
r(xt,at,xt+1) encoding the immediate value of the experienced
transition towards solving the target task. The interaction gen-
erates several trajectories τ = {(x0,a0, r0), (x1,a1, r1), . . .}.
The agent’s goal is to learn a policy π maximizing its expected
return J(π) = Eτ∼π[

∑T
t=0 γ

trt] over all possible trajectories τ
induced by the policy, where T is the trajectory length and γ the
discount factor.

C. Policy Gradient (PG) Methods

A popular class of algorithms addressing expected return
maximization for continuous-control tasks is provided by
model-free PG methods [37]. Given a parameterized policy
πθ(at|xt), PG methods perform direct gradient-based optimiza-
tion of θ over the scalar performance measure :

LPG(θ) = Êt

[
log(πθ(at|xt))Ât

]

where Êt denotes the empirical mean over a finite batch of
trajectories. The advantage function Ât = Rt − V̂ (xt) evalu-
ates the advantage of taking action at at state xt, defined as
the difference between the actual return Rt =

∑T−k
k=0 γ

krt+k

collected from xt in the sampled trajectory and the current
estimate of the value function V̂ (xt). Using on-policy sam-
ples only, at each iteration of the optimization the gradient
of the expected return is estimated by differentiating LPG(θ)
and used to update θ. Among the available PG algorithms,
we employ Proximal Policy Optimization (PPO) [31], which
tackles the instability characterizing the training process in
presence of large policy updates by maximizing the objec-
tive LCLIP (θ) = Êt min( πθ(at,xt)

πθold
(at,xt)

Ât, clip( πθ(at,xt)
πθold

(at,xt)
, 1−

ε, 1 + ε)Ât)whereθold are the pre-update policy parameters and
ε the hyperparameter used to clip the policy update. Maximiz-
ing LCLIP (θ) maintains new policies close to old ones while
optimizing the objective.

IV. ENVIRONMENT

The environment is structured as a continuous control task
with early termination conditions. Its dynamics runs in the Igni-
tion Gazebo simulator embedded into the gym-ignition frame-
work [38], compatible with OpenAI Gym [39]. The enabled
physics engine is DART [40]. We selected iDynTree [14] for
calculating rigid-body dynamics quantities, using an accurate
model of the robot’s kinematics and dynamics represented in

the following form [15]:

M(q)ν̇ + h(q,ν) = Bτ +

nc∑
k=1

J�
k fk

whereM(q) is the mass matrix,h(q,ν) the Coriolis and gravity
term, B a selector matrix, τ the joint torques, nc the number of
contacts, Jk and fk respectively the Jacobian and the 6D force
of the k-th contact.

The environment receives actions and provides observations
and rewards at 25 Hz. The physics and the low-level PIDs run at
1000 Hz. During training, some properties of the environment
are randomized (see Sec. IV-D).

A. Action

The separation between agent and environment is defined by
the action selection. In our nested structure, the policy generates
an action a ∈ R23 composed of the reference velocities for
a large subset of the robot joints (controlled joints), which
are then integrated and fed to the corresponding PID position
controllers. The controlled joints belong to the legs, torso, and
arms. Hands, wrists, and neck, which arguably play a minor role
in balancing, are locked in their natural positions. The policy
computes target joint velocities bounded in [−180180] deg/s
at 25 Hz. Commanding joint velocities rather than joint posi-
tions prevents target joint positions from being too distant from
each other in consecutive steps. Especially at training onset,
this would lead to jumpy references that cannot be tracked
by the PID controllers, affecting the discovery of the relation
between xt and xt+1. The integration process, instead, en-
ables to use a policy that generates discontinuous actions while
maintaining continuous PID inputs with no need for additional
filters.

B. State

The state of the MDP contains information about the robot’s
kinematics and dynamics, since no perception is involved. It
is defined as the tuple x := 〈q,ν, fL, fR〉 ∈ X . The observa-
tion, computed from the state x, is defined as the tuple o :=
〈os,oṡ,oh,oR,oc,of ,oF ,ov〉 ∈ O, where O := R62.

The observation consists of the following terms: os are the
controlled joints angles in radians, normalized with the hard
limits defined in the model description; oṡ are the velocities
of the controlled joints, normalized in [−π, π] rad/s; oh is the
height of the base frame, normalized in [0, 0.78] m; oR is a tuple
containing the roll and pitch angles of the base frame w.r.t. the
world frame, normalized in [−2π, 2π] rad; oc is a tuple defining
whether the feet are in contact with the ground; of is a tuple
containing the vertical forces applied to the local CoP of the
feet, normalized in [0, 3, 3, 0] N, i.e. the nominal weight force
of the robot; oF is a tuple containing the positions of the feet
w.r.t. the base frame, normalized in [0, 0.78] m; ov is the linear
velocity of the CoM expressed in G, normalized in [0, 3] m/s.
The exact definition of all the observation terms is reported in
Table I.

Although the agent is trained in simulation, we design it
for real-time execution on actual robots. We carefully select
state components that can be either measured or estimated on-
board [14]. To promote policy transfer, we avoid measurements
from noisy sensors and values that cannot be estimated with
sufficient accuracy. In fact, any significant mismatch between
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TABLE I
OBSERVATION COMPONENTS

simulated and real data would hinder transfer, increasing the re-
liance on policy robustness. We select minimal state components
encoding the environment dynamics without affecting learning
performance.

C. Reward

The reward is a weighted sum of terms that can be catego-
rized as regularizers, steady-state, and transient. Regularizers
are terms often used in optimal control for the minimization of
control action and joint torques. Steady-state components help
to obtain the balancing behavior in the absence of external per-
turbations, and are active only in Double Support (DS). Finally,
the transient components favor the emergence of push-recovery
whole-body strategies.

The total reward is composed of a weighted sum of scalar
components

∑
i ωiri, where ri is the reward term and wi its

weight. In order to provide a similar scale for each of them,
and therefore improving the interpretability of the total reward,
we process the real and vector components with a Radial Basis
Function (RBF) kernel [41] with a dimension given by a cutoff
parameter calculated from the desired sensitivity. Appendix A
provides a more detailed description of the kernel. Table II
includes the weights of each reward component and the kernel
parameters, if active.

Regularizers. Joint torques rτ . Torques applied by the PID
controllers are penalized. The environment runs at 25 Hz and
the low-level controllers at 1000 Hz. Therefore, for each of
the 23 joints, 40 torques are actuated between two consecutive
environment steps. We collect all these torques in a single
vector τ step ∈ R23·40 and average its elements. Joint velocities
rṡ. Our control scheme ensures that joint position references
are continuous. However, PPO explores the action space of
joint velocities following the active distributions. To promote
smoother trajectories, we penalize the norm of the latest action.
It can be seen as the minimization of the control effort.

Steady-state. Postural rs. Whole-body humanoid control
schemes apply different weights to various control objectives.
The postural is notably one of the most used [42], although it
is usually assigned a low priority. A postural reward term helps
to reach a target posture during balancing instead of relying
on local minima found by the learning process. This component
penalizes the mismatch between the sampled joint configuration
and the reference configuration shown in Figure 4(a). CoM
projection rG. Statically balanced robots, in order to maintain
stability, keep the CoM within the Support Polygon (SP), de-
fined as the Convex Hull (CH) of their contact points with the
ground. With the same aim, we introduce a Boolean component
rewarding the agent if its CoM ground projection is within the

Fig. 1. The proposed control system.

Fig. 2. Learning curves over 11 training runs.

Fig. 3. (a) Push-recovery success rates on the horizontal plane (forward push:
0 rd, µc = 1). (b) Results with µc = 0.2.

SP induced by the feet. For additional safety, we shrink the SP
by a 2.5 cm margin all along its perimeter. Horizontal CoM
velocity rxyv . We define a target horizontal velocity for the CoM
as a vector pointing from the CoM projection to the center of
the SP p̄xy

hull. In order to promote faster motions if the CoM
is relatively close to the ground, the magnitude of the target
is amplified by a factor w0 =

√
g/pz

G derived from the LIP
model [13], where g is the standard gravity. This component en-
courages the motion of the CoM projection towards the center of
the SP.

Transient. Feet in contact rc. The feet are encouraged to
stay on the ground. In order to promote steps and increase
movement freedom, we add a Boolean term marking whether
any foot is in contact with the ground. Links in contact rl. If
any link excluding feet is in contact with the ground, the episode
terminates with a negative reward of −10 for the terminal state.
Whole-body momentum rh. Our policy also controls joints
belonging to the torso and the arms. The momentum generated
by the upper body can, therefore, be exploited for balancing and
push recovery. This term minimizes the sum of the norms of
the linear and angular components of the robot’s total centroidal
momentum Gh [15]. Feet contact forces rf . This reward term
pushes the transient towards a steady-state pose in which the
vertical forces at feet’s CoP (fCoP

L , fCoP
R ) assume the value of

half of the robot’s weight, distributing it equally on the two feet.
Feet CoP rp. Beyond the force at the feet CoP, we also promote
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TABLE II
REWARD FUNCTION DETAILS. TERMS WITH A DEFINED CUTOFF ARE PROCESSED BY THE RBF KERNEL

Fig. 4. (a) The initial joint configuration s0. (b) Sequences showing ankle, step, and momentum push-recovery strategies. The robot is pushed by a sphere shot
from the left side of the image. Impact takes place in the second frame.

their positions to be located at the center of the corresponding
sole p̄xy

foot,hull. Vertical CoM velocity rzv . This reward compo-
nent discourages vertical motion of the CoM of the base link,
promoting instead the usage of the horizontal component. Feet
orientation ro. In early experiments, the policy was converging
towards feet tipping behaviors, i.e. the feet were not in full
contact with the ground. Since the terrain is flat by assumption,
we discourage tipping by promoting a feet orientation with the
soles parallel to the ground. If WRfoot = [r(x), r(y), r(z)] is
the rotation between the foot frame and the world, this term
promotes the alignment of its third column with the world
frame.

D. Other Specifications

Initial State Distribution. The initial state distribution ρ(x0) :
X → O defines the value of the observation in which the agent
begins each episode. Sampling the initial state from a distribution
with small variance, particularly regarding joint positions and
velocities, positively affects exploration without degrading the
learning performance. At the beginning of each episode, for
each joint j we sample its position sj,0 from N (μ = s0, σ =
10 deg), where s0 represents the fixed initial reference, and its
velocity ṡj,0 fromN (μ = 0, σ = 90 deg/s). As a result, the robot
may or may not start with the feet in contact with the ground,
which encourages the agent to learn how to land and deal with
impacts.

Exploration. In order to promote exploration beyond the ini-
tial state distribution and favor the emergence of push-recovery
strategies, we apply external perturbations in the form of a 3D

force to the base frame of the robot. The applied force vector has
a fixed magnitude of 200 N and is applied for 200 ms. Consider-
ing the weight of the iCub, approximately 33 kg, the normalized
impulse sums up to 1.21 Ns/Kg. We sample the direction of
the applied force from a uniform spherical distribution. The
frequency of the application is defined as average applications
per second, again sampling from a uniform distribution. We
apply a force on average every 5 simulated seconds.

Early Termination. The balancing and push-recovery ob-
jectives for a continuous-control task are characterized by an
infinite-horizon discounted MDP. During training, however,
episodes should stop as soon as the state reaches a subspace from
which either it is not possible to recover or it is uninteresting
to explore, following an early-termination criterion. The state
space interesting for our work is where the robot is – almost –
standing on its feet, therefore we terminate the episodes as soon
as it falls to the ground. We detect the falling condition when
any link but the feet touches the ground plane.

Domain Randomization. During the training process, at the
beginning of each new episode, the environment performs a
domain randomization step. The masses of the robot’s links are
sampled from a normal distribution N (μ = m0, σ = 0.2m0),
where m0 is the nominal mass of the link defined in the model
description. To avoid making assumptions on the material prop-
erties of the feet and the ground, we randomize the Coulomb
friction μc of the feet by sampling it from U(0.5, 3). Finally,
since the simulation does not include the real dynamics of the
actuators, to increase robustness we apply a delay to the position
references that are fed to the PID controllers, sampled from
U(0, 20) ms.
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TABLE III
PPO, POLICY, AND TRAINING PARAMETERS

V. AGENT

The agent receives the observation o from the environment
and returns the action a defining the reference velocities of the
controlled joints. The parameters of the agent are reported in
Table III and further explained below.

Learning Algorithm. We select PPO as candidate learning
algorithm, in the variant with both the classic gradient clipping
and the minimization of the KL divergence.

Policy and Value Function. The stochastic policy π(a|o)
selects which action to take given a state. The value function
V̂ (ot), instead, estimates the average return when starting from
the state ot and then following the policy for the next steps.
We represent both the policy and the value function with two
different neural networks composed of two fully connected
layers, with 512 and 128 units each, followed by a linear output
layer. The hidden units use a ReLU activation function. The
networks do not share any layer.

Distributed Setup. The chosen PPO algorithm scales grace-
fully to a setup where the batch samples are collected from
multiple workers in parallel. Our training setup is formed by
32 workers with an independent copy of the environment, and a
trainer. After collecting a batch of 10 000 on-policy transitions,
we train the neural networks with stochastic gradient descent.
The optimizer uses minibatches containing 512 samples and
performs 32 epochs per batch. The learning rate is λ = 0.0001.
Each trial is stopped once it reaches 20 M agent steps, roughly
equivalent to 7 days of experience on a real robot. Worker nodes
run only on CPU resources, while the trainer has access to
the GPU for accelerating the optimization process. We use the
RLlib [43] framework, OpenAI Gym, and distributed training.

VI. RESULTS

A. Training Performance

Fig. 2 reports the learning curves of the average reward
and episode duration over 11 independent agent training runs.
Average reward across trials exhibits consistent growth and low
variance (Fig. 2, left). We have also observed increasing values
for all individual reward elements during training. Episode du-
ration improves as well across trials and displays low variance
(see Fig. 2, right), approaching maximum episode length more
frequently as training progresses.

B. Emerging Behaviors

Controlling the upper body enables rich recovery behaviors
that involve the control of the total momentum of the kinematic

structure. We succeed in triggering such behaviors applying
external forces during policy training. To make force profiles
more realistic, instead of applying constant forces for a fixed
interval as during training, we throw high-speed objects to-
wards the balanced robot. Figure 4(b) shows two characteris-
tic sequences. A larger variety of push-recovery strategies are
displayed in the supplementary video: https://dic-iit.
github.io/emergence-push-recovery-icub/.

C. Deterministic Planar Forces

We evaluate the push-recovery performance from horizontal
forces. Forces are applied for 0.2 s after 3 s from the simulation
start, when the robot is stably standing still and front-facing. Suc-
cess is defined if the robot is still standing after 7 s. In Fig. 3(a),
success rates for forces pointing in 12 directions are reported.
Magnitudes increase from 50 N to 700 N at 25 N intervals.
5 repetitions are performed for each magnitude and direction,
randomizing the initial joints configuration by adding zero-mean
Gaussian noise (σ = 2 deg). Magnitudes within the training
range (0-200 N) are counteracted successfully. Remarkably, the
policy is also robust to out-of-sample forces in all directions in
(200-300 N), up to 400 N in some directions. Moreover, it suc-
cessfully recovers from pushes in the training range (0-200 N)
even with an out-of-sample test friction coefficient μc = 0.2
(Fig. 3(b)).

D. Random Spherical Forces on the Base Links

We evaluate policy robustness in challenging scenarios in-
volving sequences of random forces with different combinations
of magnitude and duration. Forces are applied to the base in a
random direction more frequently than during training, on aver-
age every 3 s. For each combination, 50 reproducible episodes
with different seed initialization and no domain randomization
are executed. Episodes terminate if the robot falls or after 60 s,
averaging 20 applications in a full episode. Our evaluation metric
is the number of consecutive forces endured by the robot. Fig. 5
reports aggregate results for each combination of magnitude
and duration. No matter their magnitude, forces lasting 0.1 s
are properly balanced. As expected, performances decrease with
growing magnitude and duration. Nevertheless, the agent is able
to withstand repeated applications of out-of-sample forces. For
instance, on average it withstands 9 consecutive 300 N 0.2 s
applications.

E. Random Spherical Forces on the Chest and Elbow Links

We also evaluate robustness of the learned policy to previously
unseen forces applied to other links. Fig. 5 shows the results
obtained on the chest and elbow links. As expected, forces
applied on links which are far from the CoM turn out to be
more challenging. Nevertheless, the policy is able to withstand
a good number of them and generalize with good performances.
For instance, it is on average able to recover from 10 consecutive
200 N 0.2 s forces on the elbow link, as opposed to an average of
17 for the base link. The average number of consecutive counter-
balanced forces with the same magnitude and duration decreases
to 5 for the chest link. Notice that the randomness of the interval
between two subsequent forces applications leads sometimes to
very challenging scenarios in which multiple forces are applied
in a very short time span.

https://dic-iit.github.io/emergence-push-recovery-icub/
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Fig. 5. Consecutive counterbalanced forces in random directions over 50 trials
for each combination of magnitude and duration. Forces are applied to the base,
chest, and elbow links for an increasing duration.

VII. DISCUSSION

Learning efficiency. The overall experience for a single policy
training lasts approximately 7 simulated days. As for other
continuous control tasks, model-free PG methods lack sample
efficiency. There is plenty of room for robot learning research to
bridge this efficiency gap. Indeed, floating-base robots such as
iCub can be modeled quite accurately with rigid body dynamics.
Most robots used in research are provided with a dynamic
model accurate enough to be exploited as a powerful prior.
The community has recently proposed interesting model-based
algorithms [44] with the potential to improve efficiency and
leverage decades of robotics research.

Low-level control. Low-level position control is widely
adopted in other similar works. PID controllers have the advan-
tage of being independent of each other and requiring single-
joint signals. However, besides being difficult to tune, they trade
off tracking accuracy with compliance. A stiff robot, in the
presence of high perturbations, is less robust because even if
the planner is whole-body, low-level control is not. Whole-body
and intrinsically more compliant low-level controllers could
be beneficial, although they often operate on the entire un-
deractuated floating-base system. Properly handling the base
references from the policy point of view is yet an uncharted
domain.

Natural behaviour and sim-to-real. The emerged push-
recovery strategies are not as natural as human ones. The policy
tends to promote small jumps to full steps, probably due to
two factors: the stiffness given by the low-level PIDs, and the
difficulty of accurate contact modeling. As concerns low-level
control, actuator dynamics plays a vital role. Our simulations
introduce variable delay but do not saturate joint torques. Their
minimization in the reward does not prevent occasional high
torque spikes synthesized by the PIDs. The integration of more

realistic actuator models will be explored in future work. Re-
garding contacts, modeling differences between physics engines
notably make policies hardly transferable to different engines
or the real world. The simulator we adopt, Ignition Gazebo,
will soon provide a transparent physics engine switch, enabling
randomization of the entire engine beyond the common physics
parameters.

VIII. CONCLUSION

We present a DRL-based control architecture capable of
learning whole-body balancing and push recovery for simulated
humanoids. We promote exploration by applying random forces
to the kinematic structure, leading to the emergence of a variety
of push-recovery behaviors. Compared to previous works, our
policy controls most of the robot’s joints, and we show that
this contributes to extending the space of recovery motions
to whole-body strategies. We have shown the results of our
architecture controlling 23 DoF of the iCub robot, and showing
that our policy can withstand repeated applications of strong
external pushes.

Our approach shows different types of limitations. The PID
controllers, while providing a simple low-level control, intro-
duce a stiffness that can prevent natural motion and introduce a
joint dynamics that differs from the real platform. The learning
efficiency of model-free algorithms is pretty low and requires
days of simulations for a complex behaviour to emerge. Finally,
relying only on state space exploration for finding the expected
behaviours requires a carefully designed reward function, that
might require a significant effort. These limitations could be
mitigated by introducing prior knowledge in the training scheme,
like the usage of model-based whole-body controllers for the
low-level and more accurate actuator modeling in simulation,
and model-based reinforcement learning. We plan to explore
some of these directions in future work with the aim to bring
our policies to the real robot.

APPENDIX A
RBF REWARD KERNEL

Radial basis function (RBF) kernels are widely employed
functions in machine learning, defined as

K(x,x∗) = exp
(−γ̃||x− x∗||2) ∈ [0, 1],

where γ̃ is the kernel bandwidth hyperparameter. The RBF
kernel measures similarities between input vectors. This can be
useful for defining scaled reward components. In particular, if
x is the current measurement and x∗ is the target, the kernel
provides a normalized estimate of their similarity. γ̃ can be
used to tune the bandwidth of the kernel, i.e. its sensitivity.
In particular, we use γ̃ to select the threshold from which the
kernel tails begin to grow. Introducing the pair (xc, ε), with
xc, ε ∈ R+ and |ε| � 1, we can parameterize γ̃ = − ln(ε)/x2c .
This formulation results in the following properties:

1) K(x∗,x∗) = 1, i.e. when the measurement reaches the
target, the kernel outputs 1;

2) Given a measurement xm such that ||xm − x∗|| = xc, the
kernel outputs K(xm,x

∗) = ε.
In practice, ε can be kept constant for each reward component.

The sensitivity of individual components are tuned by adjusting
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xc. We refer to xc as cutoff value of the kernel, since each norm
of the distance in the input space bigger than xc yields output
values smaller than ε. This formulation eases the composition
of the total reward rt when reward components are calculated
from measurements of different dimensionalities and scales.
In fact, once the sensitivities have been properly tuned for
each component, they can simply be weighted differently as
rt =

∑
i wiK(x

(i)
t ,x∗) ∈ R wherex(i)

t is the i-th measurement
sampled at time t, and wi ∈ R the weight corresponding to the
i-th reward component.
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