
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021 5557

Immediate Generation of Jump-and-Hit Motions by a
Pneumatic Humanoid Robot Using a Lookup Table of

Learned Dynamics
Kazutoshi Tanaka , Member, IEEE, Satoshi Nishikawa , Member, IEEE, Ryuma Niiyama , Member, IEEE,

and Yasuo Kuniyoshi , Member, IEEE

Abstract—This letter focuses on the jump-and-hit motion of a
humanoid robot, wherein a robot instantaneously jumps forward
and hits a flying ball in the air, similar to how human players
behave in volleyball games. We propose a Immediate Motion gen-
eration using a Lookup table of learned dynamics (IMoLo) for
generating the motions of a pneumatic humanoid robot. To test
this method, we developed a humanoid robot called “Liberobot”
with eight joints applying structure-integrated pneumatic cable
cylinders. Using simulations, the prediction errors of the robot hand
positions during the jump-and-hit motions measured via nonlinear
interpolation when using IMoLo was smaller than without it in
cases having a small number of training trials. In the experiments,
the robot jumped and hit the flying ball 16 times out of 20 trials
using the proposed motion generation method. The results indicate
that a pneumatic humanoid robot using IMoLo can instantaneously
perform dynamic whole-body motions, such as jump-and-hit mo-
tions, with a changing target within a specified time. Our humanoid
robot is the first pneumatic humanoid robot capable of executing
such dynamic motions.

Index Terms—Machine learning for robot control,
hydraulic/pneumatic actuators.

I. INTRODUCTION

W E ARE interested in a humanoid robot that performs
dynamic motions. In particular, we focus on the whole-

body dynamic motions of a humanoid robot that are instan-
taneously generated in response to a changing target within
a specified time. A jump-and-hit motion (Fig. 1) describes a
coordinated whole-body dynamic action in which a humanoid
robot must adopt a posture of readiness to jump. It must then
detect the ball, predict its trajectory, generate coordinated mo-
tion, and strike the ball before it lands. The actuating system of
the humanoid robot must be able to accelerate its entire body to
jump and swing its arm simultaneously.

Manuscript received December 17, 2020; accepted April 10, 2021. Date of
publication April 30, 2021; date of current version May 25, 2021. This letter
was recommended for publication by Associate Editor L. Kaul and Editor T.
Asfour upon evaluation of the reviewers’ comments. This work was supported
by JSPS KAKENHI under Grants JP18K18087, JP18H05466, and JP19K14936.
(Corresponding author: Kazutoshi Tanaka.)

The authors are with the Graduate School of Information Science, and
Technology, Mechano-informatics, University of Tokyo, Tokyo 113-0033, Japan
(e-mail: tanaka@isi.imi.i.u-tokyo.ac.jp; nisikawa@isi.imi.i.u-tokyo.ac.jp;
niiyama@isi.imi.i.u-tokyo.ac.jp; kuniyosh@isi.imi.i.u-tokyo.ac.jp).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3076959, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3076959

Fig. 1. Concept of this study. A pneumatic humanoid robot immediately
generates and executes the jump-and-hit motion using a lookup table of learned
dynamics.

Pneumatic actuators have a higher power-to-weight ratio com-
pared with electrical and hydraulic ones, while electrical ones
have a higher accuracy of position control, and hydraulic ones
generate larger forces. Therefore, pneumatic actuators such as
pneumatic cylinders and pneumatic artificial muscles (PAMs)
have been used with dynamically moving robots so that they can
jump, owing to their lightness and high actuator power. Raib-
ert presented a hopping robot using a pneumatic cylinder [1].
Niiyama et al. developed a jumping robot [2] and a running
biped robot [3], which were equipped with musculoskeletal
body structures using PAMs. Although pneumatic actuators
have advantages for dynamic robotic motions, the response to
commands is slow, and the accuracy of the position control is
low. Thus, it is difficult for a pneumatic humanoid robot to
accurately follow the planned trajectory of its end effector via a
high-speed motion with regards to a changing target.

The purpose of this research is to develop a method of im-
mediately generating and executing jump-and-hit motions for
a pneumatic humanoid robot. Hence, we propose Immediate
Motion generation using a Lookup table of learned dynamics
(IMoLo), which enables a pneumatic humanoid robot to instan-
taneously generate a motion in response to a changing target

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0880-9333
https://orcid.org/0000-0003-0905-8615
https://orcid.org/0000-0002-9072-8251
https://orcid.org/0000-0001-8443-4161
mailto:tanaka@isi.imi.i.u-tokyo.ac.jp
mailto:nisikawa@isi.imi.i.u-tokyo.ac.jp
mailto:niiyama@isi.imi.i.u-tokyo.ac.jp
mailto:kuniyosh@isi.imi.i.u-tokyo.ac.jp
https://doi.org/10.1109/LRA.2021.3076959

5558 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

within a specified time period (Fig. 1). To test this proposed
method, we developed a humanoid robot named “Liberobot”
using structure-integrated pneumatic cable cylinders (SIP-CCs)
that enable the robot to be lightweight while generating suffi-
ciently high power. The main contribution of this letter is IMoLo,
which immediately generates a dynamic motion of a pneumatic
humanoid robot in response to a changing state and timing target.

II. RELATED WORKS

Control methods for catching and hitting flying objects have
been proposed. Birbach et al. introduced a method that enables a
wheeled humanoid robot to perceive two flying balls in real time
and to catch them both [4]. The catching motion was generated
by solving a nonlinear optimization problem having nonlinear
constraints [5]. Kim et al. presented a method of catching a
flying object using machine-learning techniques [6]. The robots
in the study learned the flying dynamics of the objects and the
reachable and graspable spaces and generated a trajectory for
their arm before performing the catching action.

Senoo et al. proposed a batting method for a robotic arm
using high-speed cameras [7]. The position and timing of hitting
were optimized to allow a ball to reach a target position after
hitting it. Their robotic arm trajectory was planned using a fifth-
polynomial function of time based on the position and timing,
and the arm followed this trajectory using proportional-integral-
derivative control. Mülling et al. adopted a machine-learning
approach that enabled a robotic arm to play table tennis [8].
The robot in their study learned a gating network for various
templates of swing motions to generate a paddle trajectory prior
to playing [9]. Huang et al. presented a method of generating a
trajectory of a paddle for robotic table-tennis tasks [10]. A robot
arm using this method generates a trajectory using a database
constructed beforehand and the function learned using reinforce-
ment learning. In their method, database of ball trajectories were
applied using regression with experience data. Jia et al. presented
a method for hitting a flying object toward a target [11]. The
feasible arm state for the batting action was determined from an
iterative computation using analytical models of flying objects
and those of the impact between the objects and the robot.

Note that by using the aforementioned methods, robots
planned the trajectory of their arm, and the arm followed this
trajectory to complete the task. However, it is difficult for a
pneumatic robot to follow a planned trajectory using feedback
control, owing to the slow responses of pneumatic actuators.
Thus, selecting a high-speed motion parameter and executing
this motion in a feedforward manner in IMoLo is suitable for
generating motion by a pneumatic robot.

Büchler et al. demonstrate the safe learning of table tennis
by robot arms driven by PAMs using model-free reinforcement
learning [12]. A robot arm using this method can directly de-
cide optimal output commands to pneumatic valves from the
observed state. The softness and back-drivability properties of
PAMs in their method allowed the arm to safely learn paddle
operations within 14 h. A biped humanoid robot cannot safely
learn jump-and-hit motions, owing to the mechanical property
of PAMs: they will break.

Fig. 2. (a) Hierarchical system of robots. (b) Control target switching.

A humanoid robot can immediately generate a reaching-
motion trajectory by computing the positions needed prior
to executing the reaching motion. Guilamo et al. introduced
a method that performed the advanced computation using a
database containing the reachable positions of a humanoid robot
equipped with redundant joints, which allowed fast querying
of the joint configurations with high manipulability [13]. Guan
and Yokoi used a database of reachable positions to generate
a method based on the Monte Carlo algorithm [14]. These ad-
vanced computations enable robots to instantaneously generate
motions. IMoLo follows this line of implementation employing
a database.

III. MOTION GENERATION WITH TARGET SWITCHING

The behavior of a robot is often generated using a hierarchical
system that contains higher and lower parts (Fig. 2(a)). The
higher part selects a lower part for concerted actions. These
lower parts are controllers. Each controller has a target. The
selected lower part decides the commands to converge the state
of the robot to the target of the control part.

Several variables are used for the control target, such as the
position and posture of the end effector in point-to-point control,
the velocity of the center of gravity of a humanoid robot, and
the zero-moment point [15] of a legged robot to control its
balance. Variables of a pneumatic robot are also used for the
target, such as the open/closed states of a pneumatic valve, flow
rates through the valve, and air pressure of a chamber. Liberobot
is equipped with pressure-proportional valves. Thus, we used the
target pressure of the valves as the control target, u.

The higher part in a kind of hierarchical system observes
the state of the robot and switches the lower parts as options
in the reinforcement-learning framework [16]. The higher part
in another hierarchical system switches the lower parts after a
certain time has elapsed. In the latter system, the state of the
robot is not required to converge to the control target before
switching the lower parts. Thus, this type of system is suitable
for and has actually been used for generating dynamic motions
of pneumatic robots, which has difficulty following a position
trajectory [3], [17], [18]. We also focus on this type of system
and use it to generate the jump-and-hit motion of a pneumatic
humanoid robot.

In this system, the controllers follow the control target,u. The
higher part switches u at every switching time, ti, and u does
not change prior to the switching (Fig. 2(b)). u is represented
by a vector, ui = [ui,1, ui,2, . . .]

�, which is u in the ith phase,

TANAKA et al.: IMMEDIATE GENERATION OF JUMP-AND-HIT MOTIONS BY A PNEUMATIC HUMANOID ROBOT USING A LOOKUP TABLE 5559

Fig. 3. Schematic of IMoLo.

where ui,j is the jth variable of the control target in the ith

phase. The time-series of the control target is represented by a
vector, U = [t1, t2, . . . ,u

�
1 ,u

�
2 , . . .]

�.
The dynamic motion of a pneumatic robot to the changing

target can be generated from U. A part of motion, such as the
position of the robot hand, can be changed by changing a part
of U. As one of the simplest methods of changing a part of U,
the target in the cth phase is changed as

uc = um + kuk, (1)

where um and uk are vectors, and k is a variable. This method
enables a robot to change positions, wherein the hand of this
robot reaches the target in the jump-and-hit motions by only
changing k. Thus, we used this method to generate the motions.

IV. IMOLO

In this study, we aimed to let a pneumatic humanoid robot
immediately start the motion, jump forward, swing its arm, and
reach its hand to the sriking position at which a flying ball will
be hit. We assumed that the robot anticipates the ball and takes
the same ready posture prior to launch. We developed a method
for generating this motion: IMoLo. See Fig. 3).

A robot using IMoLo can immediately generate motion using
a lookup table (Fig. 3(3)), which shows the time series of the
command using the hand of the robot to reach the target position
at the desired time. Thus, the robot can also start this motion at
the appropriate time and reach the hand to the position at the
target timing. The robot is not required to follow any trajectory;
it only needs to execute the commands.

A. Main Procedure

A robot using IMoLo constructs a lookup table and generates
motions as follows. First, this robot creates the time series of
commands, U, from a motion parameter, θ. It executes U,
performs the motion, and records the tuples (s, t,θ), where t
is the time elapsed since the initiation of the motion, and s is
the state of the robot at t (Fig. 3(1)). The robot repeats this
changing θ. Then, it constructs a lookup table using these tuples
(Fig. 3(2)).

Finally, it generates a motion referring to this table (Fig. 3(3)).
The robot obtains the query of the state, sq, and the time, tq. The
query requires that the state of the robot, s, reaches sq after tq.
The robot inputs the query to the table, and the table outputs
whether the table contains a tuple that includes both s and t

close enough to sq and tq, respectively. In this study, we defined
the two times, tq and t, and the two states, sq and s, to be enough
close to each other when |tq − t| < Δt/2 and when ||sq − s|| <
dgrid/2, respectively, where Δt is the time step, and dgrid is the
grid interval described in the next subsection, respectively. If
the table outputs true, the table provides the robot with θ in this
tuple, and the robot creates U from this θ and executes U.

B. Basics of IMoLo

Here, we provide some details information about IMoLo,
which help improve efficiency.

1) Nonlinear Interpolation Using Forward Models: Gener-
ating the lookup table (Fig. 3(2)) only from samples acquired
from trials of the robot results in a trade-off. That is, conducting
many trials to obtain dense s values increases the risk of the
robot being damaged. This risk decreases as the number of trials
decreases, but the distribution of s could be sparser. The robot
thus estimates s generated from θ, which it has not yet tried
using nonlinear interpolation, and adds the sets to the table.
Thus, using the training trials data, the robot approximates the
nonlinear functions, f , predicting s as

s = f(θ, t). (2)

Any nonparametric regression methods, such as a computational
neural network [19], Gaussian process regression [20], and a
ν-support vector regression [21] can be used as a nonlinear
approximation.

Using the inverse model used to calculate θ and t from a
given s is another method for nonlinear interpolation. However,
inverse models can introduce errors, as with the case shown
in Fig. 4(a). In this case, similar samples in the input space
may result in different samples in the output space and a large
prediction error. Thus, we adopt forward models (Fig. 4(b)).

Additionally, with IMoLo, the control target is switched as
described in Section III, and U is changed using Eq. (1) to
decrease the number of variables in θ.

2) Voxelization: The number of s can be large and biased in
a case where the robot saves all estimated s in the table. Hence,
one area might include many s values, whereas another area
might consist of only a few s values. In this case, searching
for the nearest s among all s values would be time-consuming.
Additionally, the table contains unused s values that are almost
the same. Thus, it has considerable computational costs and
memory consumption. Therefore, the robot uses grid points

5560 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Fig. 4. (a) Inverse model and (b) Forward model. (c–e) Update of commands.
(c) Comparison of query tq with the time in table t before starting a motion. (d)
Comparison after starting a motion. (e) Changeable time series of commands.
The robot can change U from Ua to Ub, but it cannot change U from Ua to
Uc.

and indices to increase the speed at which θ is selected as the
voxelization.

The robot arranges sgrid grid points evenly at intervals of dgrid
in the area where s is distributed. Each grid point, sgrid, sets its
index as i. The robot searches for the nearest sgrid from all s,
calculates i, and obtains tuples (i, t,θ). Unique sets of these
tuples are stored in a table (Fig. 3 (2)).

Note that some s have the same nearest sgrid and give the
same i, but no s gives an i. Therefore, the number of i in this
table is smaller than that of all predicted s. When selecting the
unique sets, if several s results in the same nearest sgrid and i,
one s is randomly selected.

3) Update of Commands: The robot should update U after
initiating a motion in some cases. For example, the predicted
future positions of a flying ball pball are used as sq in the jump-
and-hit motions in this study. In such a case, the robot should
repeat predicting the positions, obtain new sq, and update U to
compensate for prediction errors.

The tuple (i, t,θ) indicates that the state reaches the ith grid
point at time t after the onset of a motion if the robot generates
and executes this motion using θ. Thus, the robot selects a tuple
such that t is sufficiently close to the future time, tq, before the
onset of motion (Fig. 4(c)). After a time, te, from initiating a
motion, the robot selects another tuple such that t is sufficiently
close to tq + te (Fig. 4(d)). The robot should select a tuple having
a new motion parameter, θ, to generate a new U such that the
already executed parts of an old U match parts prior to time te
of this new U (Fig. 4(e)).

C. Limitation

IMoLo can be used for other tasks in which the control targets
are switched to correspond with a movement of an object, such
as the pick and place task of the robot arm while avoiding a

Fig. 5. Liberobot.

TABLE I
SPECIFICATIONS OF THE ROBOT

moving object, catching a thrown object, and fast walking while
avoiding humans. IMoLo works without any additional learning
when conditions change, such as a moving ball during a hitting
task as long as the robot can manage this changing by changing
control target and achieve its goal.

IMoLo has some limitations. A robot using IMoLo learns
motions from the same initial state. Thus, it will need to reach
its initial state each time before performing the learned motion.
Additoinally, a robot using IMoLo will perform many different
patterns of motions generated from different motion parameters
to learn new motions. Conducting trials to learn models in
IMoLo could damage the robot.

V. LIBEROBOT: A PNEUMATIC HUMANOID ROBOT EXECUTING

JUMP-AND-HIT MOTIONS

Experiments to test IMoLo require a pneumatic humanoid
robot that performs jump-and-hit motions. Such a robot should
be light enough to decrease the damage of a dynamic motion
while generating high-power. However, such robots are currently
unavailable on the market. Thus, we developed a pneumatic
humanoid robot called “Liberobot” (Fig. 5).

A. Mechanical System

Fig. 5 presents the appearance of Liberobot. Table I lists its
specifications. The robot has a height of 1163 mm and width of

TANAKA et al.: IMMEDIATE GENERATION OF JUMP-AND-HIT MOTIONS BY A PNEUMATIC HUMANOID ROBOT USING A LOOKUP TABLE 5561

Fig. 6. (a) Connections between cylinder chambers and valves. (b) Software
communication for Liberobot.

400 mm, and it weighs 7.4 kg without its power cable, local area
network (LAN) cable, and external air tube. The robot has two
legs and two arms. We attached an acrylic plate to each arm to
enable it to hit a ball. The size of this plate is 300 × 80 mm, and
its thickness is 3 mm. The shorter side of the plate corresponds
to the side direction in Fig. 5(a). The robot has eight joints: one
shoulder joint for each arm, and hip, knee, and ankle joints in
both legs. The range of motion of the joints is from 0 to 150◦

for the shoulder, hip, and knee, and from −45 to +45◦ for the
ankle relative to the posture in Fig. 6(a). The lengths between
the shoulder and hip, hip, and knee, and knee and ankle are 446,
290, and 310 mm, respectively. The length of the feet is 211 mm.

We arranged the axes of all joints in parallel as pitch joints
orthogonal to the sagittal plane. Liberobots with flat soles can
only generate motions along the sagittal plane; it cannot reach
different hand positions in the side direction (Fig. 5(a)) during
the jump-and-hit motions. Attaching other actuated joints with
axes along directions allow the hand to reach different positions
in the side direction while increasing the weight of the robot.
Thus, inspired by research on the shapes of the soles of biped
robots [22], we equipped ours with non-flat soles instead of
attaching extra joints (Fig. 5(c)). The soles have a semicircular
shape with a radius of 48 mm and an axis aligned in the forward
direction (Fig. 5(b)). We selected this semicircular shape as a
simple curve of the non-flat sole. The sole is rolled to the side
by the force biased toward the side by only the joint torque on the
pitch axes, and the rolling shifts the jump-and-hit motions in the
roll direction. The roll motion enables the robot with the joints
of the same axis to reach the hand to different lateral positions.

Two cylinders having an inner diameter of 25 mm drive the
arms of the robot, and cylinders having a diameter of 40 mm
actuate the legs. The thickness of the cylinder tube of these
cylinders is 1 mm. The cylinder tubes are made of carbon fiber
reinforced plastic (CFRP). The length of the joint moment arm is
26 mm. Speed-reduction pulleys having a speed reduction ratio

of two are attached to the leg joints to generate a large torque.
These parameters were determined as described in our previous
work [23].

B. Control System

Electrical power is externally supplied to the robot via electric
cables. The robot computer was provided with a power of
5 V, and the air-pressure sensors and valves were provided
with a power of 24 V. An external compressor (SLP-221EBD,
ANEST IWATA Corp.) supplied compressed air to the robot.
This compressor sends compressed air to the cylinder through a
polyurethane tube with inner and outer diameters of 4 and 6 mm,
respectively, and four aluminum tanks on board with a volume
of 550 ml each.

The robot was equipped with eight pressure-proportional
valves (Tecno-basic, Hoerbiger). Fig. 6(a) shows the connection
between these valves with the chambers and valve numbers.
Using one valve to control one chamber of a cylinder (i.e., using
twice the number of valves as cylinders) increases the weight
of the robot. Therefore, we decreased the number of valves so
that one valve (#7) controlled the two chambers that elevate the
arms, and another valve (#8) controlled the two chambers that
depress the arms and the six chambers that bend the legs.

The robot has eight pressure sensors (PSE560, SMC) onboard
and receives motion data from 11 external motion-capture cam-
eras (Prime13 W, NaturalPoint, Inc.) installed in the room. We
connected these pressure sensors to the tubes between the valves
and chambers to debug the robot motion data and analyze the
results. These cameras were installed to measure the positions
of the ball and body parts of the robot.

Fig. 6(b) shows the software communication channels used in
Liberobot. The robot has a single onboard computer (i.e., com-
puter 1, BeagleBone Black, BeagleBoard.org), which controls
the communication of the robot with the external computers (i.e.,
computer 2 and computer 3) via a LAN cable, pressure sensors
via an analog-to-digital converter (ADC) board, and valves via
a digital-to-analog converter (DAC) board. Computer 1 receives
the commands for the output of the robot from an external
computer (computer 2, Intel Xeon, 3.10 GHz) and sends these
to the valves via a DAC board. Computer 1 also receives data
from the pressure sensors via an ADC board and sends these
to computer 2. The software running on computer 3 (Intel
Core i7-3770, 3.40 GHz) receives the positions of the motion-
capture markers from the software of the motion-capture system
(MOTIVE; NaturalPoint, Inc.) running on the same machine
via NatNetSDK, which serves as the application programming
interface. It sends these positions to computer 2, which then
computes the commands. These three computers communicate
with each other via TCP/IP protocol.

C. Ball-Trajectory Prediction

Liberobot observes the position of the ball using the positions
of the markers measured by the motion-capture cameras. When
the robot detects a marker located farther from the robot than
2.2 m, the robot recognizes this marker as the ball. The robot
can also detect the position of the ball by directly processing

5562 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

TABLE II
MOTOR COMMANDS [0.1 MPA] FOR JUMP-AND-HIT MOTIONS

a camera image, as in a previous work [4]. In this study, we
adopted the method of detection using a marker, because it is a
simpler than camera-image processing.

The state of the ball is represented as a vector, x(t) =
[pball(t)

�,vball(t)
�]�, where pball(t) and vball(t) are vectors

that represent the position and velocity of the ball at time t,
respectively, after the current time. We assume thatx(t) changes
as a system according to the linear equation, x(t+Δt) =
Ax(t) +B, where A is a matrix, B is a vector, and Δt is
the time step as in [24]. We set the parameters in A and B
by throwing the ball from and to various positions 10 times,
measuring the ball, and evaluating the parameters using the
leave-one-out method. The robot estimated pball(t) and vball(t)
using a Kalman filter [25] from the position of the ball measured
by the motion-capture cameras and predicted the future pball by
iteratively calculating this linear equation. These pball and t
were used as sq and tq in IMoLo, respectively.

D. Generation of the Jump-and-Hit Motions

We set the vector of the motion parameter, θ, described in
Section IV and generated U as

θ = [k, tw]
�, (3)

where k is a variable in Eq. 1, and tw is the wth timing of the
switching control target (Fig. 2(b)). The Liberobot can change
the positions where the hand reaches by changing only k and
tw.

Table II presents the center of command changes, um, the
series of commands, u1,u2,u3, the unit commands of the com-
mand changes, uk, and switching time, ti. The valve numbers in
this table are the same as in Fig. 6. To generate the jump-and-hit
motions by Liberobot, we divided the jump-and-hit motions into
three phases: extending the knees to lean forward, extending the
legs to jump, and swinging the arms to hit the ball. To generate
these motions, we set c = 1 (u1 = um + kuk) and the changed
value of the left knee (#5) in uk to the opposite value of that of
the right knee (#2). This was intended to change the balance on
the ground reaction force from kicking by using the left and right
legs of the robot and the position of its hand in the side direction
when hitting in the air. We also set w = 2 (tw = t2) to adjust the
timing at which the robot starts to swing its arm. We determined
the commands in the table using a trial-and-error approach. We
determined the phase number as the minimum number needed
for the robot to jump and hit a ball, which then flies to various
positions. We added the phase to lean forward and decided the
balance of the output of the joint in the leg in order to jump high
and far.

Fig. 7. Errors when using interpolation were smaller than those without
interpolation for eight training trials (Nt = 8). Bars and lines represent the
mean values and standard deviations. ∗ and ∗∗, respectively, represent p < 0.05
and p < 0.01 in a t-test. N = 100.

VI. JUMP-AND-HIT SIMULATIONS

We simulated the jump-and-hit motions using a pneumatic
humanoid robot to validate the nonlinear interpolation in IMoLo.
We used the Open Dynamics Engine [26] as a dynamic simulator.
We set the error reduction parameter, the constraint force mixing
parameter, the time step, and the number of positions at which we
calculate the collision to 10−6, 10−6, 10−4 s, and 3, respectively.
We set the joint composition and the size, mass, and inertia of
the links of the model to be the same as those of Liberobot.
We simulated actuation of air cylinders in the robot using air
dynamics models from [27].

We validated nonlinear interpolation in IMoLo as follows.
First, we randomly selected θ, simulated a motion using this
θ, recorded the hand position of the model, phand, randomly
selected t from the time when swinging the arm in this motion
as tq, and obtained pq = phand(t) as sq. Second, we randomly
selected θ, simulated a motion using this θ, and recorded phand.
We repeated this Nt times as training trials. Third, we created a
lookup table using the data of these training trials. When creating
this table, we did not voxelize the hand positions to omit the
effects of voxelization. Finally, we calculated θ from sq and
tq using the table, simulated a motion using this θ, recorded
phand, and calculated the distance, dp = |pq − phand(tq)|. If
the lookup table gives the optimal θ, then dp is close to zero. We
repeated this process 100 times and recorded dp with interpola-
tion (w/) and dp without interpolation (w/o). We compared dp
(w/) with dp (w/o). We changed the number of training trials,
Nt, to 8, 16, and 24. We generated models designed with a radial
basis function (RBF) kernel setting the regularization constant,
insensitive loss parameter, and kernel width to 0.1427, 0.0143,
and 1.0, respectively.

Fig. 7 shows dp. The figure indicates that the mean values
when adopting nonlinear interpolation were smaller than those
in the case in which Nt = 8 and larger than those in the cases
in which Nt = 16. The p values for Nt = 8, Nt = 16, and
Nt = 24 in the T-test were 0.02, 0.0001, and 0.07, respec-
tively. We supposed that the model could estimate commands
more accurately through nonlinear interpolation when there
were few training trials, but the model could be estimated
by using a sufficient number of valid commands and times
by only using samples with many training trials. These re-
sults suggest that the nonlinear interpolation would enable a
robot to learn motions with few training trials, as with a real
robot.

TANAKA et al.: IMMEDIATE GENERATION OF JUMP-AND-HIT MOTIONS BY A PNEUMATIC HUMANOID ROBOT USING A LOOKUP TABLE 5563

TABLE III
MOTION PARAMETERS

VII. JUMP-AND-HIT EXPERIMENTS USING LIBEROBOT

We conducted jump-and-hit experiments using Liberobot to
confirm that a pneumatic humanoid robot can execute jump-and-
hit motions using IMoLo.

A. Setup

To learn the motions and evaluate the accuracy with which
they are performed, we measured the motions of the Liberobot
using a motion-capture system. To measure the motions, we
attached spherical markers covered with reflective materials to
the joint axis, hands, and feet of the robot. The motion-capture
system measured the positions of the markers at 120 fps.

We used a soft polyurethane foam ball (diameter: 90 mm;
weight: 10 g) to avoid damage or injury during the experiments.
We attached reflective seals to the surface of the ball to measure
its position using motion-capture cameras.

To enable us to control the experimental conditions, we de-
veloped and used a machine to throw the ball to the robot during
the experiments. The dimensions of this machine were 0.4 m
(W) × 0.6 m (D) × 1.1 m (H). The machine was equipped
with one pneumatic rod cylinder to move its arm and the same
two pressure-proportional valves and computer as those used in
Liberobot. We decided that the ball would be thrown from about
5-m away from the robot to land in front of it after 1 s. The robot
would then jump forward and hit the ball in the air according to
the motion setting. We prepared the machine to throw a ball to
satisfy these features.

We placed the robot on a box of 400-mm height. The robot
sat by stopping its movement at the joints in its legs as they were
at the ends of their range of motion. We marked the feet of the
robot and the box to ensure the same initial posture and position
of the robot at each run.

We placed a soft athletics mat in front of the robot to reduce
damage. We also connected the robot to a rope attached to a crane
in the room. This rope was long and was adequately supported
to avoid disrupting the motions of the robot. Subsequent to the
hitting motion, the rope pulled the robot upward, ensuring that
the legs of the robot landed on the mat softly.

B. Experimental Procedure

The simulation results in Section VI indicates that the pre-
diction errors using nonlinear interpolation in IMoLo were
smaller than those without it when the trial number was eight.
We supposed that the dynamics of the real robot are more
complex than those in simulations, and a large number of trials
was required to accurately approximate the dynamics. Thus,
during training, the robot executed 15 motions with different
commands.

Table III also presents k and tw used in this training. The
valvenumbers in this table are the same as in Fig. 6. We set the
supplied air pressure at 0.9 MPa.

We extracted the hand position, phand, as s at 0.13 < t−
tw < 0.22 for the training sample as the positions where the
hand is placed at the moment of hitting, where t is the elapsed
time from the onset of the motion. As a result, we sampled
161 training data points. Using support vector regression [21],
we generated models designed with the RBF kernel setting the
regularization constant, an insensitive loss parameter, and the
kernel width to the same parameters used in Section VI.

We estimated phand by varying tw from 0.21 to 0.41 s in
intervals of 0.002 s, k from -1 to +1 in intervals of 0.0133,
and t− tw from 0.14 to 0.21 s at intervals of 0.002 s. We set
dgrid = 10mm and the time step of the state transition of the
ball to predict its position Δt = 0.0083 s, respectively.

In the test trials, the machine threw the ball 20 times from
two positions (i.e., 10 times from each position) in different
directions. Trials in which the arm of the robot hit the ball
were considered successful. We calculated the success ratio and
accuracy of the positions reached by the robotic hand.

C. Results

Fig. 8(a) shows the snapshots of the jump-and-hit motions of
the robot in the experiments. This figure indicates that the robot
generated different motions without being pulled by the rope
and jumped forward and hit the ball in the air. The robot hit the
ball 16 times in 20 trials. The success rate was 0.8.

Fig. 8(b) shows the trajectories of the ball and the hand
positions of the robot before hitting in successful cases. The
figure indicates that the ball was thrown from two positions,
the robot generated different motions, and the ball was hit at
different positions.

The success rate and the distance between the hand and ball
when hitting was determined by the repeatability of the robot,
the errors of the regression, the ones of using the grid, and
the prediction error of the ball. The mean and the standard
deviation of the distance between the selected grid positions
and the positions where the hand reached were 12.9 and 9.4 mm,
respectively. The mean and the standard deviation of the distance
between the predicted ball positions before 0.25, 0.50, and 0.75 s
and the positions where the ball reached were 46.1 and 34.2 mm,
155.9 and 32.0 mm, and 338.2 and 35.7 mm, respectively. The
prediction errors of the ball were larger than the errors of the
hand. Thus, these results suggest that the success ratio was
mainly determined the prediction errors of the ball.

VIII. CONCLUSION

This study proposed the IMoLo method for immediately
generating dynamic motions of a pneumatic humanoid robot

5564 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Fig. 8. (a) Snapshots of two jump-and-hit motions and the coordinates. The
red circles show the positions of the ball. (b) Trajectories of the ball (left) and
hand (right) before hitting. The red circles show the positions of the ball and
hand at the instance of hitting. The blue dots shows the positions of the hand in
the training data.

to support jump-and-hit motions. In simulations, the prediction
errors of the positions where the hand of a humanoid robot
reached in its jump-and-hit motions with the nonlinear interpo-
lation in IMoLo were smaller than those without it. A pneumatic
humanoid robot called “Liberobot,” equipped with SIP-CCs,
performed different jump-and-hit motions using IMoLo and hit
a ball originating from different positions at a success rate of
0.8. The results indicate that a pneumatic humanoid robot can
instantaneously generate motion in response to a moving object
within the target timing and perform these motions using IMoLo.
The jump-and-hit motions of the Liberobot provide the first case
of such motions for a pneumatic humanoid robot.

REFERENCES

[1] M. H. Raibert, Legged Robots That Balance. MIT press, 1986.
[2] R. Niiyama, A. Nagakubo, and Y. Kuniyoshi, “Mowgli: A bipedal jumping

and landing robot with an artificial musculoskeletal system,” in Proc. IEEE
Int. Conf. Robot. Automat., 2007, pp. 2546–2551.

[3] R. Niiyama, S. Nishikawa, and Y. Kuniyoshi, “Biomechanical approach
to open-loop bipedal running with a musculoskeletal athlete robot,” Adv.
Robot., vol. 26, no. 3/4, pp. 383–398, 2012.

[4] O. Birbach, U. Frese, and B. Bäuml, “Realtime perception for catching
a flying ball with a mobile humanoid,” in Proc. IEEE Int. Conf. Robot.
Automat., 2011, pp. 5955–5962.

[5] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically optimal catching
a flying ball with a hand-arm-system,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2010, pp. 2592–2599.

[6] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE Trans.
Robot., vol. 30, no. 5, pp. 1049–1065, Oct. 2014.

[7] T. Senoo, A. Namiki, and M. Ishikawa, “ High-Speed batting using a multi-
jointed manipulator,” in Proc. IEEE Int. Conf. Robot. Automat., vol. 2,
2004, pp. 1191–1196.

[8] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and
generalize striking movements in robot table tennis,” Int. J. Robot. Res.,
vol. 32, no. 3, pp. 263–279, 2013.

[9] J. Peters, K. Mülling, J. Kober, D. Nguyen-Tuong, and O. Krömer, “To-
wards motor skill learning for robotics,” Robot. Res., pp. 469–482, 2011.

[10] Y. Huang, D. Büchler, O. Koç, B. Schölkopf, and J. Peters, “Jointly learning
trajectory generation and hitting point prediction in robot table tennis,” in
Proc. Int. Conf. Humanoid Robots, 2016, pp. 650–655.

[11] Y.-B. Jia, M. Gardner, and X. Mu, “Batting an in-flight object to the target,”
Int. J. Robot. Res., vol. 38, no. 4, pp. 451–485, 2019.

[12] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters,
“Learning to play table tennis from scratch using muscular robots,” 2020,
arXiv:2006.05935.

[13] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, “Efficient prior-
itized inverse kinematic solutions for redundant manipulators,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005, pp. 3921–3926.

[14] Y. Guan and K. Yokoi, “Reachable space generation of a humanoid robot
using the monte carlo method,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2006, pp. 1984–1989.

[15] M. Vukobratović and B. Borovac, “Zero-moment point-thirty five years of
its life,” Int. J. Humanoid Robot., vol. 1, no. 1, pp. 157–173, 2004.

[16] R. S. Sutton, D.Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1/2, pp. 181–211, 1999.

[17] S. Nishikawa, T. Kobayashi, T. Fukushima, and Y. Kuniyoshi, “Pole
vaulting robot with dual articulated arms that can change reaching position
using active bending motion,” in Proc. Int. Conf. Humanoid Robots, 2015,
pp. 395–400.

[18] S. Nishikawa, K. Shida, and Y. Kuniyoshi, “Musculoskeletal quadruped
robot with torque-angle relationship control system,” in Proc. Int. Conf.
Robot. Automat., 2016, pp. 4044–4050.

[19] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[20] Carl Edward Rasmussen, “Gaussian processes in machine learning,” in
Proc. Summer Sch. Mach. Learn., 2003, pp. 63–71.

[21] C.-C. Chang and C.-J. Lin, “ Training v-support vector regression: Theory
and algorithms,” Neural Comput., vol. 14, no. 8, pp. 1959–1977, 2002.

[22] S. H. Martijn, C.Wisse, and A. Ruina, “A three-dimensional passive-
dynamic walking robot with two legs and knees,” Int. J. Robot. Res., vol. 20,
no. 7, pp. 607–615, 2001.

[23] K. Tanaka, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “Humanoid robot
performing jump-and-hit motions using structure-integrated pneumatic
cable cylinders,” in Proc. IEEE-RAS Int. Conf. Humanoid Robot., 2017,
pp. 696–702.

[24] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling,”
in Proc. Int. Conf. Intell. Robots Syst., 2011, pp. 5113–5120.

[25] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering: With MATLAB Exercises. John Wiley & Sons,
New York, NY, USA, vol. 4, 2012.

[26] R. Smith, “ Open Dynamics Engine, 2005.
[27] J. E. Bobrow and B. W. McDonell, “Modeling, identification, and control

of a pneumatically actuated, force controllable robot,” IEEE Trans. Robot.
Automat., vol. 14, no. 5, pp. 732–742, Oct. 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

