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Zero-Shot Sim-to-Real Transfer of Tactile Control
Policies for Aggressive Swing-Up Manipulation

Thomas Bi , Carmelo Sferrazza , and Raffaello D’Andrea

Abstract—This letter aims to show that robots equipped with
a vision-based tactile sensor can perform dynamic manipulation
tasks without prior knowledge of all the physical attributes of the
objects to be manipulated. For this purpose, a robotic system is
presented that is able to swing up poles of different masses, radii
and lengths, to an angle of 180◦, while relying solely on the feedback
provided by the tactile sensor. This is achieved by developing a novel
simulator that accurately models the interaction of a pole with the
soft sensor. A feedback policy that is conditioned on a sensory
observation history, and which has no prior knowledge of the
physical features of the pole, is then learned in the aforementioned
simulation. When evaluated on the physical system, the policy is
able to swing up a wide range of poles that differ significantly
in their physical attributes without further adaptation. To the
authors’ knowledge, this is the first work where a feedback policy
from high-dimensional tactile observations is used to control the
swing-up manipulation of poles in closed-loop.

Index Terms—Force and tactile sensing, modeling, control, and
learning for soft robots, dexterous manipulation.

I. INTRODUCTION

TACTILE sensors aim to provide robots with a sense of
touch that captures information from their environment

through physical contact. In this letter, the vision-based tactile
sensor presented in [1] is deployed in order to demonstrate that
it can provide robots with a dexterity akin to that of humans
in dynamic manipulation tasks. For this purpose, a robotic
system that performs swing-up maneuvers for different poles
is presented (see Fig. 1). The robotic system consists of a
parallel gripper, mounted to a linear motor, with two tactile
sensors acting as fingers. Thereby, three key capabilities enabled
by the artificial sense of touch provided by the tactile sensor
are demonstrated: (i) The system is able to adapt its motion
and successfully swings up poles that differ in their physical
attributes (e.g. mass, length, and radius) without prior knowledge
of these attributes. (ii) The system does not rely on external visual
sensing; instead, the pose and attributes of the pole in contact
are implicitly inferred from the tactile observations alone. (iii)
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Fig. 1. In this work, tactile control policies for the swing-up manipulation
of poles are learned in a simulation of the tactile sensor that runs faster than
real-time. When transferred to the real-world system, the policy achieves the
desired behaviour without further adaptation, and swings up poles to an upright
position without prior knowledge of the physical attributes of the pole.

The tactile observations can be processed in real-time and act
as feedback for closed-loop control at 60Hz. As a result, highly
dynamic swing-up manipulations are achieved without the need
for a previous in-hand exploration of the pole.

The three components that enable such adaptive dynamic
swing-up manipulation are presented here. First, the high-
dimensional force distribution acting on the sensor surface is
directly inferred from the sensor camera images using an ef-
ficient convolutional network, which is trained on purely sim-
ulated contact interactions of the sensor with different poles.
Second, a novel simulator is developed that accurately models
the behaviour of the soft sensor surface when interacting with a
rigid cylindrical pole. This simulation is based on combining
the finite element method with state-of-the-art semi-implicit
time-stepping schemes for contact resolution and runs at 360Hz
on a single core of an Intel Core i7-7700 k processor. Third, a
framework for learning adaptive feedback policies conditioned
on a history of sensory observations is proposed. Deep rein-
forcement learning is utilized to train a single policy, entirely in
simulation, that is able swing up different poles with unknown
physical attributes. Thereby, various strategies that facilitate
the sim-to-real transfer of policies learned in simulation are
employed, namely dynamics randomization [2], and privileged
learning [3], [4].
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A. Related Work

As reviewed in [5] and [6], many works have demonstrated
how robots can leverage the sense of touch in dexterous manip-
ulation tasks in closed-loop. For example, in [7] tactile data
is used to control both the grasping force and slippage of a
tactile gripper. Other examples include [8], where a pair of
grippers are used to pick one end of a cable and follow it to
the other end. Each gripper contains tactile sensors from which
the current pose and friction forces acting on the cable can be
estimated in real-time, enabling the approach to generalize to
cables of different thicknesses and materials, based on a model
learned from real data. A similar approach was proposed in [9];
a dual palm robotic system estimates the pose and the stick/slip
behaviour of an object solely from tactile feedback, in order to
manipulate an object on a planar surface to a desired position.
In [10], a deep dynamics model is learned that can predict
future tactile observations based on the previous observations
and actions taken. Data for the training of the dynamics model
is autonomously collected on the physical system. The learned
model is then used in an MPC-framework to manipulate a ball,
analog stick, and 20-sided die to a desired configuration. Other
learning-based approaches rely on deep reinforcement learning
to find optimal control policies directly on the physical hardware.
Examples include a 5-DoF arm that learns to reorient objects
using a latent representation of the tactile data [11], and a robotic
system that learns to type on a Braille keyboard [12].

While these approaches demonstrate robustness against ex-
ternal disturbances and changes in object properties, the manip-
ulation tasks they solve generally do not require a high degree
of dynamicism. For more aggressive manipulation tasks such
as the swing-up manipulation of poles, feedback control based
on tactile data has proven to be challenging and thus differing
methods have been proposed. In [13], the sensing and manipu-
lation are separated into two steps. First, the physical features
of different poles are learned by shaking and tilting the pole
in-hand and observing the tactile feedback. The learned features
are then used to optimize an open-loop trajectory of a robotic
arm that dynamically swings the pole up to a desired angle.
The learning of the physical features, as well as the trajectory
optimization, are performed end-to-end using models trained on
a physically collected dataset. In [14], tactile sensing and visual
tracking are combined to pivot an object to a desired angle by
adjusting the gripping force exerted by a two-finger gripper. This
fusion of visual and tactile information was also employed on
a robotic hand in [15] to perform highly dynamic tasks such as
pen spinning, ball dribbling, and ball throwing.

In this work, a unified approach is presented where aggres-
sive swing-up maneuvers can be achieved in closed-loop from
high-dimensional tactile feedback, without relying on a visual
tracking system or prior in-hand exploration of the pole. More-
over, instead of relying on data collection on the physical system,
as is done in the learning-based methods mentioned above, the
feedback control policy is learned entirely in simulation. This
removes the cost of collecting data on the physical system,
which can be highly time-consuming. Additionally, challenging
motions that may lead to unsafe behaviours by the physical

Fig. 2. The robotic system presented in this letter consists of a parallel gripper
comprising two tactile sensor, and a linear motor to which the gripper is mounted.

hardware can be first explored without repercussions. This data
can then be utilized to train the policy to satisfy the safety con-
straints that are present on the physical system. While simulators
for the behaviour of tactile sensors have been developed (see
e.g. [16]–[23]), the authors are not aware of any work where
a simulation from first principles is utilized to learn tactile
feedback control policies. Rather, the mentioned works focus
on gathering supervised datasets of tactile images in simulation
to train deep neural networks that can predict object position and
rotation ([16], [21]), the force distribution acting on the sensor
surface ([22], [23]), or the three-dimensional mesh of the object
in contact ([17]).

B. Outline

The hardware employed for the experiments is presented in
Section II. In Section III, the proposed methods are described.
This includes the sensing approach of the tactile sensor in
Section III-A, the design of the tactile simulator in Section III-B,
and the synthesis of the swing-up control policy in Section III-C.
Results from employing the learned policy on the real-world
system are presented in Section IV. Finally, Section V draws
conclusions and gives an outlook on future work. In the remain-
der of this letter, vectors are expressed as tuples for ease of
notation, with dimension and stacking clear from the context.

II. HARDWARE

The robotic system considered in this letter consists of three
main parts; a two-finger robotic gripper where each finger com-
prises a tactile sensor, a linear motor (stator/slider), to which
the gripper is mounted, and finally, embedded computing sys-
tems that process the sensing data and send commands to the
actuators. The linear motor and tactile gripper are pictured in
Fig. 2.

A. Tactile Gripper

To enable the high-resolution gripping capability of the sys-
tem, a custom 1-DoF parallel two-finger gripper was built in-
house, see Fig. 3(a). A Dynamixel MX-28R servo motor is used
to control the distance between the two fingers with a resolution
of 0.06mm. Two tactile sensors, placed opposite each other, act
as fingers for the gripper. The sensing principle employed in this
letter is based on [1]. Three soft silicone layers are poured on top
of an RGB fisheye camera (ELP USBFHD06H), surrounded by
LEDs. The base layer (ELASTOSIL RT 601 RTV-2, mixing
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Fig. 3. This figure shows exploded views of the gripper (a) and the tacile
sensor that acts as finger (b). A Dynamixel MX-28R controls the opening and
closing of the two fingers, each of them equipped with a tactile sensor.

ratio 7:1, shore hardness 45 A) is stiff and transparent, and
serves as a spacer. The middle layer (ELASTOSIL RT 601
RTV-2, ratio 25:1, shore hardness 10 A) is soft and transparent,
and embeds a spread of randomly distributed fluorescent green
particles. A black top layer (made of the same material as the
middle layer) completes the sensor and shields it from external
light disturbances. The soft sensor’s surface is slightly curved to
provide a more anatomical grasping surface. An exploded view
of the sensor layers is shown in Fig. 3(b).

B. Linear Motor

In order to achieve the translational motion of the gripper,
a linear motor comprising a stator and a slider is employed.
The stator (LinMot P01-23x160H-HP-R) contains the motor
windings, bearings for the slider, position capture sensors and a
microprocessor, and is thus able to generate motion with respect
to the slider. The slider (LinMot PL01-12x850/810-HP) is a
stainless steel tube and is fixed to a table so that the stator
is the only moving part. The gripper is then mounted to the
stator through the use of a motor flange (LinMot PF02-23x120).
A motor drive (LinMot C1100-GP-XC-0S-000) controls the
motion of the stator.

C. Embedded Systems

Two embedded devices are used to control the system. First,
a Raspberry Pi (RPi) runs two low-level controllers, one for
the linear motor and one for the gripper. The linear motor
controller tracks commanded acceleration setpoints, while the
gripper controller tracks the distance between the two fingers.
Second, an NVIDIA Jetson TX2, a compact embedded device
with a built-in GPU, obtains the camera images from the tactile
sensor at 60Hz, pre-processes the images, and infers the force
distribution. Note that this pipeline is only executed for sensor
1 (see Fig. 2). This is motivated by the fact that due to the
planar nature of the system, the forces acting on sensor 2 can
be assumed to be symmetrical to those acting on sensor 1.
Furthermore, this reduces the computational complexity of the
pipeline.

The Jetson also receives the current actuator states from the
RPi. Control actions are then inferred using the proposed control
policy and are communicated to the low-level controllers on the
RPi that execute the commands.

III. METHOD

The proposed method can be divided into three different
parts. First, the vision-based tactile sensor estimates the force
distribution acting on its surface from its camera images. Second,
a simulator for the dynamics of a pole and the given robotic
system is developed. Third, a tactile feedback control policy for
the swing-up manipulation is learned in the simulation using
reinforcement learning.

A. Vision-Based Tactile Sensing

The tactile sensor employed in this letter follows the same
sensing principle as introduced in [1]. When the soft sensing
surface is subject to force, the material deforms and displaces the
particles tracked by the camera. This motion generates different
patterns in the images. The material deformation at any point in
time can thus be described by two camera images, one where no
loads are applied and the material is at rest, and another at the
current deformed state.

In [22], a method to generate such images in simulation is
presented to train a supervised learning architecture that aims to
accurately estimate the real-world 3D contact force distribution.
The same approach to generate training data is employed here,
using finite-element simulations of the sensor surface under
various contact conditions, where hyperelastic material models
for the sensor’s soft materials are employed. The details of this
procedure can be found in [22]. In addition to the two men-
tioned images per datapoint, the polar coordinates of each pixel
are encoded here as two additional image channels. Explicitly
incorporating such spatial location features has previously been
shown to significantly improve accuracy where the location of
image features is relevant for the task at hand [24]. Using a fully
convolutional neural network based on ShuffleNet V2 [25], the
resulting four-channel image is then mapped to accurate contact
force distribution labels (see Fig. 4), with ground truth also
obtained from finite element simulations [26].

On the real-world sensor, camera images are preprocessed
to match those of the simulated training dataset as described
in [22] and [23]. Specifically, images are converted to gray-scale
and remapped using the real-world camera model (obtained via a
state-of-the-art calibration technique [27]) to images of the same
scene as if they were taken in the simulated world. A circular
mask is then applied to remove any irrelevant image information.
The results of this preprocessing procedure are illustrated in
Fig. 5. On the given hardware, the force distribution for a
given preprocessed camera image can be inferred in real-time in
2.5ms.

B. Tactile Simulation

In order to achieve a fast simulator, essential for training
reinforcement learning algorithms in a reasonable amount of
time, a few model simplifications are introduced here. First, the
material of the sensor is assumed to be linearly elastic. Second,
the forces acting on the sensor surface are decoupled into two
components: the forces arising due to the material deformation
in the z direction, and the lateral friction forces resulting from
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Fig. 4. The features and labels of our supervised learning task. The features
are the images of the particles in the undeformed and in the deformed states.
Two additional channels provide the polar coordinates of the pixels. For the
labels, Fx, Fy and Fz denote the x, y and z components of the discretized force
distribution. The force distributions shown in the figure were collected with a
pole pivoting on the sensor (as in the experiments discussed in Section IV).
They show how the shape and pose of the pole manifest themselves correctly in
the force distribution readings. Additionally, the lateral forces (Fx and Fy) on
either side of the center of rotation point in opposite directions, which can be
deducted from their change in color.

Fig. 5. Camera images from the real-world sensor are preprocessed converting
the original image (a) to gray-scale, and remapping the image using a calibrated
camera model (b). The last image (c) corresponds to a simulated image that is
used for training and is provided for comparison.

the relative motion of the pole with respect to the sensor. A
real-time finite element approach is then employed to compute
the two mentioned force components.

1) Problem Statement: A sketch of the system considered in
this work is shown in Fig. 6, where a single coordinate system
is defined. The x-axis is aligned to the moving axis of the linear
motor, denoted in the following as the cart. The y-axis points in
the opposite direction to gravity, i.e. upwards. Finally, the z-axis
is chosen such that all the points on sensor 1 exhibit a negative
z-coordinate. The reference position s = (xs, ys, zs) is chosen
with the point on the curved surface of sensor 1 that is closest
to the x-y plane (at rest). While there are two tactile sensors,
their positions are symmetrical about the x-y plane. Hence, it
suffices to only consider the position of a single sensor. Next,
the orientation of the pole is defined by the angle φ. Lastly,
p = (xp, yp, zp) denotes the position of the center of mass of
the pole. Note that the sensor is fixed in the y-direction (ys = 0)
and the pole is fixed in the z-direction (zp = 0). These definitions

Fig. 6. The system can be described as a cart-pole augmented with a parallel
gripper that features the two sensors.

are illustrated in Fig. 6. The state vector x is then defined as

x = (xs, ẋs, zs, xp, ẋp, yp, ẏp, φ, φ̇) (1)

Since only the static behavior of the sensor material is analyzed,
żs is not considered.

The inputs to the system are the cart acceleration and the
increment in zs between two subsequent timesteps:

u = (ẍs, Δzs) . (2)

Note that on the real system, the servo commands are mapped
to Δzs with a linear mapping identified from data.

Next, the pole is characterized as a rigid cylinder. Its radius is
given by rp, the mass by mp and its moment of inertia about the
center of mass and along the z-axis by Ip. The length of the pole
above its center of mass is given by lp,u and the length below the
center of mass by lp,l.

Given these definitions, the goal is to model the state evolu-
tion over time, i.e., x(k + 1) = f(x(k),u(k)), where k is the
discrete time index, and f describes a functional dependency. In
the following, the time index (k) will be omitted, and variables
at time (k + 1) will be denoted by a + superscript, e.g. x+.

2) Equations of Motion: The pole is modeled as a free-body
constrained to move in the x-y plane, meaning that its motion
is governed by the force Fp = (Fp,x, Fp,y, 0) and torque Tp =
(0, 0, Tp,z) acting on its center of mass. Using a semi-implicit
integration scheme ([28], [29]) the equations of motion are then
given by

ẋ+
s = ẋs +Δt ẍsx

+
s = xs +Δt ẋ+

s (3)

ẋ+
p = ẋp +Δt

Fp,x

mp
x+

p = xp +Δt ẋ+
p (4)

ẏ+p = ẏp +Δt
Fp,y

mp
y+p = yp +Δt ẏ+p (5)

φ̇+ = φ̇+Δt
Tp,z

Ip
φ+ = φ+Δt φ̇+ (6)

z+s = zs +Δzs (7)

In the following, the derivation of Fp and Tp is presented.



BI et al.: ZERO-SHOT SIM-TO-REAL TRANSFER OF TACTILE CONTROL POLICIES FOR AGGRESSIVE SWING-UP MANIPULATION 5765

Fig. 7. The nodes of the finite element mesh are assigned to three sets: C if in
contact with the pole, F if constrained to not move, N otherwise.

Both sensors are discretized using an identical mesh of N =
576 finite elements (nodes). Hereafter, all quantities introduced
will refer to sensor 1, where the corresponding counterparts of
sensor 2 are clear from the symmetrical context and are denoted
using a tilde, i.e. ·̃. Then, for node i of the mesh, let (xi, yi, zi) be
its coordinates, and Fi the force acting on the node. Each node
i in contact with the pole leads to a planar reaction force

Fp,i = −(Fi + F̃i) ⇒ Fp,i,x:y = −2Fi,x:y (8)

where the implication follows from symmetry, with the x :y
subscript denoting the stacked x and y components of the three-
dimensional vector. Next, the gravitational force acting on the

pole is denoted by Fg =
(
0, −mpg, 0

)
, where g = 9.81ms−2.

Defining ri :=
(
xi − xp, yi − yp, 0

)
, the total force and

torque acting on the pole are then

Fp = Fg +
∑
i∈S

Fp,i Tp =
∑
i∈S

ri × Fp,i. (9)

where S is the set of all nodes on the surface of the sensor.
As mentioned above, the contact forces are postulated to be the

superposition of forces F 0
i arising from the normal indentation

of the pole into the sensor, and the lateral friction forces F f
i , that

is, Fi = F 0
i + F f

i , which implies

Fp,i = −
(
F 0
i + F̃ 0

i

)
︸ ︷︷ ︸

=:F 0
p,i

−
(
F f
i + F̃ f

i

)
︸ ︷︷ ︸

=:F f
p,i

(10)

3) Forces Arising From Normal Indentation: The forces F 0
i

are derived using the finite element theory for linearly elastic
materials. Let U0

i be the deformation of a node i. Then, a linear
relationship between the external forces and deformations is
found by the finite element method as:

F 0 = KU0 (11)

where F 0 :=
(
F 0
1 , . . . , F

0
N

)
, U0 :=

(
U0
1 , . . . , U

0
N

)
, and

K is the global stiffness matrix, obtained in this work in
Abaqus/Standard. The system of equations in (11) can be solved
by introducing the following sets, displayed in Fig. 7:
� C: The set of all nodes that are in contact with the pole. It is

the intersection of the set of nodes at the surface of the sen-
sor (i.e., the set S) and the set of nodes whose positions at

rest collide with the pole, based on the geometric properties
of the pole considered. The nodes in this set are assumed
here to translate only in z-direction, and their deformation
is obtained by finding the appropriate z-coordinate that
intersects with the surface of the pole (see Fig. 7).

� F : The set of all nodes that are in contact with the base layer
of the sensor. Since the base layer’s stiffness is much larger
than the stiffness of the sensor surface, the nodes of this set
are assumed to be rigid. Therefore, their deformation is set
to zero, i.e., U0

i = 0, ∀i ∈ F .
� N : The set of nodes that are neither in contact with the

base layer nor in contact with the pole. No external forces
are acting on these nodes, i.e., F 0

i = 0, ∀i ∈ N .
Therefore, for a node i, once a corresponding set is identified,

either the force F 0
i or the deformation U0

i is known. The system
(11) is then solved by using the UMFPACK library, and F 0

p,i
computed as in (10).

Note that here the current approach exploits the cylindrical
geometry of the poles, rendering a mathematically simple inter-
section problem, which enables a highly efficient identification
of the aforementioned sets. The extension to objects of various
geometries may still be addressed efficiently by employing
algorithms tailored to solve the intersection problem for generic
polygons, e.g., based on the Weiler-Atherton clipping algorithm
[30].

4) Lateral Friction Forces: In order to find the lateral friction
forces for the nodes in contact, first the case where only the
friction at a single node is unknown is considered. From the
solution of this case, an iterative method is utilized to solve for
all friction forces in the multi-contact case.

First, it is assumed that all the friction forces except for the
one at node i are known, i.e. F f

j is known for all j �= i. Let

vi,rel :=

(
ẋi

ẏi

)
−
(
ẋs

0

)
=

(
ẋp

ẏp

)
+

(
−ri,y

ri,x

)
φ̇−

(
ẋs

0

)

be the relative planar velocity of the point on the pole which
is in contact with the node i at time k. Then, by plugging in
the equations of motion (3)-(7), the relative velocity at the next
timestep is found to be

v+
i,rel = vi,rel−Δt

(
ẍs

0

)
+ Jii Fp,i,x:y︸ ︷︷ ︸

F 0
p,i,x:y+F f

p,i,x:y

+
∑
j �=i

JijFp,j,x:y

(12)

where, for generic indices a and b,

Jab = Δt

⎡
⎢⎣

1

mp
+

ra,yrb,y
Ip

−ra,yrb,x
Ip−ra,xrb,y

Ip

1

mp
+

ra,xrb,x
Ip

⎤
⎥⎦ . (13)

In this work, Coulomb friction is assumed, and two cases are
identified, where μ indicates both the static and kinetic friction
coefficients. First, for the static friction case, consider the force
F f,static

p,i that takes on exactly the value to prevent motion at node i.
This force can be found by setting v+

i,rel = 0 in (12) and solving
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for F f
p,i,x:y . If this force satisfies the friction cone constraint, i.e.∥∥∥F f,static

p,i

∥∥∥ ≤ 2μ
∣∣F 0

i,z

∣∣ , (14)

then F f
p,i,x:y = F f,static

p,i,x:y. The z-component is set to zero as it
would eventually cancel out when considering both fingers.

If (14) is not satisfied, friction is not sufficient to prevent
the motion at node i. In this case, kinetic friction is present,
where the force is opposite to the direction of the velocity and
is proportional to the normal component of the force. Since
the velocity v+

i,rel and the friction force F f
p,i are coupled, an

approximation of the subsequent velocity is employed as

v̂+
i,rel := vi,rel −Δt

(
ẍs

0

)
+ JiF

0
p,i,x:y +

∑
j �=i

JjFp,j,x:y

which is the relative velocity at the subsequent step when the
effects of friction at node i are ignored. If the number of nodes
is sufficiently large, this approximation is close to the true value,
since the effect of the force at the single node i is small compared
to the combined effect of the remaining forces at nodes j �= i.
Using this approximation, the kinetic friction is set to

F f
p,i,x:y = −2μ|F 0

i,z|v̂+
i,rel/

∥∥v̂+
i,rel

∥∥ (15)

Given this solution to the single contact problem, the multi-
node contact case is solved by repeatedly iterating over all nodes
in contact until convergence, and updating the friction force at
node i using the above solution, given the values at nodes j �= i
of the current iteration. Then, Fp,i is obtained as in (10) from
F 0

p,i and F f
p,i, and finally Fp and Tp can be computed as in (9).

C. Learning Tactile Control Policies

Given a simulation of a robotic system, deep reinforcement
learning (deep RL) algorithms have been successfully applied to
learn sophisticated behaviours [32]. These algorithms typically
depend on the Markov property of the system, i.e. they assume
that the state and physical parameters that fully describe the
system at a given time are available to the policy. However, for
the experiments presented in Section IV, the physical parameters
of the pole, e.g. the length, are unknown to the policy and the
Markov property no longer holds. In deep RL, such problems
are typically dealt with by using the history of observations and
parametrizing the policy using recurrent neural networks which,
however, can be challenging to train.

The approach employed here exploits the fact that in simula-
tion the state and physical parameters are known. In a first stage,
an expert policy πe is learned that has access to the state as well
as the simulation parameters (satisfying the Markov property).
In a second stage, a student policy πs that only has access to the
observations that are available on the real system is learned by
imitating the behaviour of the expert policy (see Fig. 8). This is
also referred to as privileged learning [3], [4].

1) State-Feedback Expert Policy: In order to achieve the
swing-up with a feedback policy that adapts to different poles,
the expert policy is conditioned on the state x(k) (defined in
Section III-B), as well as the pole’s physical parameters which

Fig. 8. The figure depicts the privileged learning approach. The expert and
student policy training take place in two separate steps, both performed entirely
in simulation. Further, both policies are parametrized using two-layer fully
connected neural networks. For the reinforcement learning of the expert policy,
the SAC [31] method is employed to find the optimal policy according to (17).
The student policy is then deployed to the real-world system without further
adaptation.

may vary. This yields the augmented state

x′(k) :=
(
x(k), rp, mp, Ip, lp,u, lp,l, μ

)
. (16)

As a result, the policy may choose different control actions based
on the features of the pole.

The goal is then to find a policy, π : x′(k) → u(k), that is
optimal in the sense of maximizing the expected sum of future
discounted rewards, i.e.

πe = max
π

E

(∑
k

γkr(x′(k), π(x′(k)))

)
, (17)

where γ is the discount factor. The reward function r is shaped
to encourage low slippage and pole orientations that are close to
180◦. The policy is learned using deep RL, namely the SAC [31]
algorithm with the stable-baselines3 implementation [33]. The
discount factor is set to γ = 0.995 while the remaining hyperpa-
rameters, as well as the policy network architecture, correspond
to the default ones proposed in [31]. During training, the pole
parameters rp, mp, Ip, lp,u, lp,l and μ are randomly sampled
at each new episode such that the policy learns the correct
behaviour for different poles and friction ratios. This dynamics
randomization [2] also greatly aids in the successful transfer
from simulation to reality.

2) Tactile Student Policy: The expert policy is conditioned
on privileged knowledge, only available in simulation, and can
thus not be deployed on the real system, where the pole’s pose
and physical attributes can only indirectly be observed through
the available force distribution measurements. As a result, the
student policy must be able to reason over time and implicitly
recover the missing state information. First, in order to condense
the sensory information into a compressed representation, an
estimate of the pole’s orientation φ̂(k) is obtained by computing
the force magnitude at each bin, thresholding the magnitudes
to obtain a binary image, and finally applying a Hough line
transform [34]. In addition, the total sensed normal forceF tot

z (k)
is extracted by summing the z-distribution at all bins. This
is motivated by the fact that the normal force yields direct
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Fig. 9. This figure shows a trajectory which results from employing the learned feedback control policy on the robotic system. As can be seen, the pole is
dynamically swung up to an upright position.

Fig. 10. Using deep reinforcement learning, robust policies can be learned
to achieve various tasks. Here, the reward function is shaped to encourage the
throwing and catching of the pole after a rotation of 360◦.

information about the friction and slippage, while the angle of
the pole is the main quantity to be controlled. Then, a student
policy conditioned on a history of condensed representations
of the observations is learned by imitating the behaviour of the
expert policy.

A condensed observation at time k is given by

o(k) =
(
xs(k), zs(k), φ̂(k), F

tot
z (k)

)
. (18)

Note that xs(k) and zs(k) are known for the real system, and the
velocity of the cart ẋs(k) is not included, since it can implicitly
be derived from the history of xs(k) observations.

The student policyπs is then parametrized by a neural network
that maps the history of the last T condensed observations o(k−
(T−1) :k) to the control action u(k), where T = 12 is the fixed
history length. The same stochastic network as proposed in [31]
is used, which outputs a squashed Gaussian distribution over
the control actions. This stochasticity accomplishes a desirable
smoothing of the policy. The imitation of the expert policy is then
posed as a supervised learning task that minimizes the negative
log-probability

L := − log Pr (πs (o(k−(T−1) :k)) = πe (x′(k))) .

In this work, the DAGGER [35] method is employed, where the
dataset is continuously aggregated with the incoming data from
the training rollouts of the student policy. Labels are obtained
by querying the expert policy for the visited states. At each
training iteration, the student policy is updated by performing
an optimization step with batches sampled from the aggregated
dataset.

IV. RESULTS

The validity of the methods presented is verified on the
physical system, where the learned feedback policy is deployed
to swing up different poles.

Feedback is crucial for this task for three reasons: i) the control
actions to perform a successful swing up greatly depend on the

physical parameters of the specific pole, which are assumed to
be unknown to the policy in this work, ii) these control actions
depend on the initial position and orientation of the pole, which
is likely to differ across trials on the real system, iii) even when
the physical parameters and starting pose of the pole are well
known, and a trajectory is generated in simulation for such a
configuration, in the authors’ experience this led to swing-ups
with an offset in the final angle due to slight model mismatches.
Feedback is thus needed to precisely control the final angle.

Throughout the following experiments, the initial grasping of
the pole is achieved by a human holding the pole between the
two tactile sensors. The gripper then slowly closes its fingers
until the total force applied on the sensor by the pole reaches a
user-defined threshold.

The student feedback control policy is evaluated on the real-
world robotic system on four different poles with masses ranging
from 20 g to 38 g, lengths from 20 cm to 35 cm, and radii from
2.5mm to 5mm. For each pole, the control policy is run ten
times and the error from 180◦ in the final estimated angle φ̂ is
recorded. Experiments show that all four poles are successfully
swung up to an upright position, and a mean absolute error of 4.3◦

is achieved. A detailed analysis of the experimental results is pro-
vided in an experimental report [36]. These results demonstrate
how a single policy is able to adapt the robot’s motion to perform
swing-up maneuvers for a wide range of different poles without
any prior knowledge of the pole’s physical features, based on the
feedback provided by the tactile sensor. The resulting behaviour
of the policy for one of the listed poles is depicted in Fig. 9. The
supplementary video1 contains the trajectories for the remaining
poles. It is vital to note that the pole shown in Fig. 9 is not
contained in the distribution of poles that is used while learning
either the teacher or the student policy.

Moreover, the policy is transferred directly from the simula-
tion to the real system with no adaptation needed. This further
asserts the robustness of the policy as it is able to adapt to
the real system that exhibits dynamics that are not modeled in
the simulation (such as dynamic effects of the sensor material,
unmodeled dynamics of the actuators, and delays of the actuator
commands).

V. CONCLUSION

In this letter, a strategy has been presented to transfer tactile
control policies for the swing-up manipulation of different poles
from simulation to a physical robotic system. As the simulator
has been shown to closely match the dynamics of the real system,

1https://youtu.be/In4jkaHzJLc

https://youtu.be/In4jkaHzJLc
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the policy learned in simulation generalizes to the real-world
robotic system with no adaptation needed.

Note that the system presented here does neither exploit a
mechanically fixed pivot point nor directly control the rotational
degree-of-freedom of the pole, but it can achieve the desired
motion only through the presence of friction, whose modeling
was crucial in enabling a realistic simulation.

This constitutes an important step towards a general frame-
work to learn a wide variety of tactile manipulation tasks safely
in simulation. Yet, current results have only been demonstrated
for a single task on a single robotic system. Future work will
focus on several aspects to further extend the generalizability
of this work. In a first step, the proposed framework could be
utilized to learn other pole manipulation skills on the given
system, e.g. the throwing and catching of a pole. While such
a policy was already successfully learned in simulation (see
Fig. 10), the transfer to the physical system requires further
work due to non-idealities of the hardware. For instance, when
the pole is thrown in the air, it may leave the plane to which the
motion is assumed to be constrained. In fact, instead of relying
on the planar nature of the manipulation task, as was done in
this work, the suggested simulator could be extended to handle
non-planar tasks. As a result, manipulation skills for grippers
that can be controlled in six degrees of freedom could also be
learned. Moreover, in this letter, hand-engineered features are
extracted from the tactile observations, i.e. the orientation and
total normal force acting on the pole. These features may not be
relevant for other tasks, where learning such features end-to-end
with the policy, e.g. using autoencoders, may further generalize
the proposed framework.
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