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Image-Guided Control of an Endoscopic Robot for
OCT Path Scanning

Zhongkai Zhang, Benoit Rosa, Oscar Caravaca-Mora, Philippe Zanne, Michalina J. Gora, Florent Nageotte

Abstract—Optical coherence tomography (OCT) endoscopic
catheters provide efficient solutions for the non-invasive scan of
malignant tissues in internal human organs. In this paper, we
investigate the image-guided control of a robotic flexible endoscopic
system equipped with an OCT probe for autonomous tissue
scanning. The visual control strategy is achieved by combining the
image feedback from both a monocular endoscopic camera (eye-
to-hand) and an OCT probe (eye-in-hand). Our control strategy
allows the OCT probe to automatically track a trajectory defined
by the user on the 2D endoscopic image and keep contact with
the scanned surface. The orientation, depth, and endoscopic 2D
image position are controlled by solving an optimization problem,
which is converted to a quadratic programming problem. For the
implementation of the visual control strategy, we also consider
visibility constraints and actuators limitations. In addition, a
marker-based method to estimate the 3D pose of the continuum
robot using only 2D images is proposed based on a Kalman filter
and a registration technique. The proposed control strategy is
validated using both simulation and laboratory experiments.

Index Terms—{flexible endoscopy, optical coherence tomography,
optimization based control, visual servoing, tissue scanning

I. INTRODUCTION

Optical coherence tomography (OCT) is an imaging modality
which allows obtaining cross-sectional images of tissues with
micrometer resolution and millimeter penetration depth. Flex-
ible, fiber-based OCT catheters are promising devices which
enable minimally invasive scanning of internal organs through
natural orifices. Employing OCT probes reduces the need for
tissue removal, and ex-situ biopsy can be replaced with in-situ
real-time optical measurement. OCT systems have been mostly
used for diagnostic in the upper digestive tract [1]. In these
cases, large selected segments of the esophagus are scanned at
high velocity for subsequent off-line analysis.

Continuum robots embedded with OCT provide promising
solutions to obtain medical information from tissues or organs.
In [2], a custom-made OCT probe is integrated with a continuum
robot to achieve micro and macro scale motion. New systems
are also currently under development for assistance to surgical
procedures performed with robotic flexible endoscopes in the
digestive tube [3]. In such systems, the OCT probe is rather
used to analyze specific areas online. For instance, it could be
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Figure 1. Experimental setup. (a) Overall setup consisting of a scanned surface
with QR codes, an OCT probe, and a flexible endoscope robot with a monocular
camera; (b) a typical endoscopic view; (c) the corresponding OCT image
showing the detected surface.

used to check that no tumoral tissues remain at the boundaries
after a resection/dissection. An endoscopic camera is available
for the user to define the tissues that should be scanned with
the OCT probe (such as Fig. 1 (a)).

OCT images can not only provide medical information but
also be used to guide surgical devices. An image-guided closed-
loop controller has been proposed in [4] to perform an inplane
positioning task of a concentric tube robot with respect to
a biological sample. This reference employs an eye-to-hand
configuration for visual servoing with OCT images being inputs
on the control loop. A needle tracking technique is developed
in [5] using OCT images to estimate the needle penetration
depth in the cornea. A wavelet-based visual servoing using
only OCT cross-sectional images is proposed in [6] to control
a 6 DoFs robot with an eye-to-hand configuration. It allows
to automatically move a biological sample so that its OCT
image reach a desired one. Only a limited number of visual
servoing strategies have been proposed to combine camera
and OCT images. A partitioned camera-OCT based 6 DoFs
visual servoing strategy [7] has been proposed for automatic
repetitive optical biopsies in an eye-in-hand configuration (3
DoFs controlled by the OCT images and the remaining 3 DoFs
controlled by the camera images). However, this was only



implemented onto a large laboratory robotic platform which is
not compatible with minimally invasive procedures.

To achieve precise scanning, the 3D position of the OCT
probe and its orientation should be taken into consideration.
Besides, due to the limited depth perception (a few mm) of the
used OCT probe, contact with the tissue should be maintained
during the scanning. Performing such tasks requires controlling
several DoFs while relying on both the endoscopic camera and
OCT images. They are very difficult to realize by a user, even
in telemanipulation. For this reason, we propose to make the
scanning automatically. This task is challenging because the
conventional monocular camera embedded on the endoscopic
robot can only provide 2D images of both the tissue surface
and the OCT probe. It is also impossible to estimate the distance
between the tissue and the probe using the OCT images when
said distance is beyond the perception range. To the best of our
knowledge, this is the first paper to investigate the automatic
control of a flexible endoscopic robot for OCT path scanning.

The control problem in this paper involves multi-objectives
and feedback integration from multiple-sensors. For multi-
objective tasks, the suitable strategies are to either separate the
task stage by stage [8] or to employ a global task function as
the weighted sum of individual task functions [9]. Our main
scientific contribution is the formulation of an optimization-
based visual servoing control strategy for the automatic scanning
control using image feedback from both a camera and an
OCT probe. The OCT probe serves as a sensor to detect
contact between the probe and the tissue. The control inputs
are computed in real-time by solving one constrained quadratic
programming problem. Our method has two main advantages:
3D path scanning without building a metric 3D reconstruction,
and control inputs computation without switching between
multiple control objectives. Unlike hybrid position/force control
approaches, where a force sensor [10] is used to control the
robot in the direction of contact, the processing of OCT images
can only provide binary information on contact existence.

II. PROBLEM STATEMENT

In this section, we first give an overview of the continuum
robot equipped with an OCT probe. Then, we briefly introduce
the control objectives for an automatic scanning.

A. System introduction

As shown in Fig. 1, the endoscopic robot called STRAS [11]
is composed by a main endoscope and a flexible instrument.
Actuated by two pairs of cables (joint variables g.; and g.7), the
steerable distal part (length: 185 mm, diameter: 16 mm) of the
main endoscope can be deflected in two orthogonal directions.
A monocular camera is embedded at its distal tip. A flexible
instrument can be inserted inside one of the two lateral channels
of the endoscope and has three DoFs: rotation ¢, insertion d
in the endoscope channel, and bending 8 for the short bending
distal part (length: s = 18.5 mm, diameter: 3.5 mm). All DoFs
are actuated from external motors at the proximal side.

A motorized OCT probe [3] is inserted in the bending
instrument shaft and extends 25 mm out its distal tip. The

probe consists of an external motor, an optical fiber, ball lens,
a casing, and the associated electronic and optical elements.
Light transmitted through the fiber is deflected by the ball lens,
creating an imaging beam orthogonal to the probe. The back-
reflected light is then processed to obtain A-line scans. Thanks
to the high-speed rotation of the fiber by the external motor,
radial images can be reconstructed (see Fig. 1 (c)) at S0Hz. The
perception range is 3.5 mm outside of the probe sheath (see
Fig. 1 (a)). In this work, we directly use planar radial B-scans
images. This OCT acquisition probe has been validated in [3].

B. Overview of the control framework

OCT B-scan
acquisition range

tissue surface
image plane

monocular camera

Figure 2. Illustration of the control objectives for tissue scanning. tg’CT and
tCOOCT‘ 4 are respectively the 3D position of the OCT probe and its desired position.
Their corresponding image positions are p;x and p; 4, respectively. m is the
normal direction of the surface at point tg)cr, 4- 1 is the direction of the OCT
probe. docr is the shortest distance on the OCT imaging plane between the
OCT probe and the tissue.

As shown in Fig. 2, the objective is to control the tip of the
OCT probe tCOOCT to follow a desired path tCOOCT, 4 on the tissue
under OCT and white light guidance. Because of the limited
field of view of the OCT image (B-scan shown as a red disk
on Fig. 2), the OCT probe should preferably be maintained in
close contact to the target surface, i.e. dpcr = 0. In order to
maximize the depth of visualization under the tissue surface,
the direction of the OCT probe n should be orthogonal to the
normal direction of the tissue surface m, i.e. m L n. Since only
2D image is available, the objective -, = t‘bOCT’ 4 is converted
as docr =0 and p;; = p; ¢ where p;; and p, 4 (defined by the
user) are respectively the image position of tCOOCT and tCOOCT7 g
Therefore, the control objectives are m L n, p;x = p;4 and
docr = 0. The only information about the surface that will be
used is its local normal m. The required user input is the desired
path on the endoscopic image plane, i.e. a sequence of desired
image positions p; 4.

The proposed control framework is shown in Fig. 3. The
pose estimation module is employed to estimate and update
geometric features of the environment and the instrument from
the endoscopic image. Firstly, the normal direction m of the
scanned surface is estimated using computer vision techniques.
Secondly, the module updates p;; on the current endoscopic
image. Since motions of the camera can be performed to realize
the task, it has to be updated at each sampling time. Finally, the
pose estimation module also implements the algorithm proposed
in Section VI-A to estimate n and p;; for the OCT probe.

The contact detection module processes OCT images in
order to estimate the feedback input 71, which depends on
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Figure 3. Framework of the proposed visual servoing strategy with four
modules (Pose estimation, Contact detection, Controller, and Mapping). The
pose estimation module obtains the normal direction of the scanned surface m,
the updated desired path with the interpolated point p; 4, the direction n, and
the image position p; ; of OCT probe. The contact detection module defines the
parameter 1 from OCT image to control the approaching speed to the tissue.
The control module computes the control input q in the configuration space,
and then q is mapped to x in the joint space.

the contact states (see Section VI-B). The control input q =
[ o B d g g }T(qx and ¢, shown in Fig. 1 (a) are
camera displacements.) expressed in the configuration space is
computed by the controller module. Finally, q in the configu-
ration space is mapped to x in the joint space by the mapping
module. The joints of the robot are controlled in position at the
low level.

III. KINEMATIC MODELING
A. Model of the main endoscope carrying the camera

Fe0r Fepr Fenk and Focr . are respectively the coordinate
systems attached to the initial camera position, the current
camera position, the exit of endoscope channel, and the OCT
imaging plane (see Fig. 1 (a)). When bending the main en-
doscope, the camera locally moves on a sphere whose radius
is close to the length of the endoscope bending section (185
mm). This remains true even when the original endoscope
configuration is bent. Moreover, in order to reduce contact
forces between the endoscope and the surrounding tissues, the
lateral displacement of .#.; with respect to .%.o should be
limited to typically = 3cm. For such small movements, the
change of orientation and depth of the camera can be neglected.
The camera motion can thus be approximately modeled as a
translation in the x —y plane of %, .

Based on this assumption, the Jacobian matrix J. € R3*?
which maps the tendon displacements Aqu =A [ ge1 ge2 ]T

to the camera displacement At = A[ gq. gy 0] "is constant.
Atz;? ~ Jchm (1

where Ax is the increment of * between two subsequent
sampling times.

For simplicity, we estimate J. offline by measuring the
displacement of the camera in a controlled environment [12].

B. Kinematic model of the OCT probe

Based on the assumption of constant curvature [13], the
discrete-time translational kinematic equation of the OCT probe
is derived with respect to F ;:

tcbkCT,kJrl = t‘bkcm + Jins AQins )

where (s = [ o B d ]T and J;,s = 8tC0kCT/8q,',,S e R33 s
the position Jacobian matrix for the flexible instrument. It only
depends on the current joint position of the instrument.

With respect to %o, the position ‘bOCT and the rotation
IgOOCT of‘lthe OC(’)F 1mag1n0g plane 21‘6 1computed respectlvely as
toor = toer 5 and R, =~ R%~". Then, the discrete-time
translational kinematic equation with respect to #.o can be
obtained as

tg)CT,kH = tcbOCT,k +J:0q 3)
with the position Jacobian matrix J, = [ Jins E3x2 | € R¥3,
g _[1 00 ’

3x2 = 01 0

In order to map both the movement of the camera and the
flexible instrument on the endoscopic image plane, we employ
a virtual camera with a fixed frame .#.o. On the image plane
of the virtual camera, the discrete-time kinematic equation can
be rewritten as

Pii+1 = Pix +JAq @)

where the image Jacobian matrix J is computed by J = LJ,.
The interaction matrix Ly of a 3D point feature (X,Y,Z) can be
found in [14].

Given the actuation vector q; = [ o B }T, we have the
discrete-time z-axis kinematic equation of the OCT probe with
respect to both .7, o and Z, ;%

N = +JiAqy ©)

where the orientation Jacobian matrix J; is computed as
Js = dn/dq, with n corresponding to the last column in the
orientation matrix of OCT with respect to Z .

IV. IMAGE-GUIDED CONTROL STRATEGY

In this section, we propose an optimization-based visual
control strategy to simultaneously achieve the above-mentioned
control objectives while simultaneously enforcing visibility and
actuator constraints. First, we explain how the control objectives
can be converted to a constrained quadratic programming (QP)
problem. Then, we show the design of all its components.

A. Optimization-based high level control

We express the objectives as three optimization problems
which are then integrated with the endoscope displacement
limitation into a single QP problem. The integrated QP problem
is written as:

min lAqTMAqucTAq (6)
Aq 2
s.t. Sl < Ach < Su (7)

!'As explained in the previous section, it is considered that the camera is not
subject to changes of orientation
2The insertion d does not act on the direction n.



where M = 2,M, + iM; + ¥aMy + XM, + .M, and ¢ =
XoCo + XiCi + Xaca + XcCc- In the next subsections, we explain
the semi-positive definite matrices M,,, M;, My, M, the vectors
Co, Ciy C4, Cc, the visibility constraint (7), and the actuator
velocity constraint (8). By adding an identity matrix M, in the
objective function, M becomes positive definite so that solving
(6) provides a unique solution.

B. Orientation control
To make sure that the OCT probe is parallel to the surface
at the scanned point, we need n”m = 0 which can be achieved

by solving:
min

Aq)"m]’ 9
min [ (nc-+ Jaa220) m) ©

where Jgo = [ Ja 03x3 | is the augmented J; which is used
to take into account all actuated DoFs. (9) can be converted as
a QP problem with the following standard form:

1
5AqTM(,Aq +(2q) ¢, (10)

min
Aq

where M, = J! mm’J;, and ¢, = J mn/m.

C. Image position control

An image-based visual servoing strategy is employed to
achieve the objective p;x = p;4. Given the current image po-
sition p;; and its desired one p; 4, the control input can be
computed by

min || JAQ+Ppix —Pia |2 (11)
Aq
In order to compute all the five control variables, the objective
function is obtained based on the kinematic equation (4) which
is built on the image plane of the virtual camera introduced in
Section III-B.

Similarly, (11) can also be converted as a QP problem:

1
min quTM,Aqu AqTCi
Ngq 2

12)

where M; = J7J is also semi-positive definite and ¢; =
I (Pix —Pia)

Remark 1. The 2D error vector p; x —Pp;q in (11) is supposed to
be measured on the image plane of the virtual camera. However,
the virtual image plane does no exist for the robotic system.
Because of the minor rotation of % with respect to .%o, we
have p;x — Pia ~ Pf§ — Pi%, where pfk and pf¥ are respectively
the current and the desired image positions (in pixel) of the
probe on the real image plane with respect to .# .

D. Contact control

In order to achieve contact between the OCT probe and the
tissue, the movement of the probe is controlled along the normal
direction m of the scanned surface. To design the controller, the
kinematic equation (3) is projected along m as

Peit1 = Pex+m’ J,Aq (13)

where p. =m!t.. is the variable obtained by projecting v,
along m.

Then, the control inputs to maintain the contact are computed
by solving the following optimization problem:

min || m"J,Aq+ pes = pea |2 (14)
where p.x — pcq is the distance between the OCT probe and
the tissue along the normal at the desired position.

In (14), pc 4 is unknown due to the lack of 3D environment
perception. Actually, p.x — pca can be used to define the
approaching speed, for the probe, to the tissue. Instead of
computing it directly, we employ a variable 1 to capture the
speed. 1 can be estimated from the OCT image at each step
(see Section VI-B). (14) can then be converted to:

min  ||m’J,Aq+7 |2 (15)
Aq
which can, in turn, be converted to a QP problem:
1
min  ~Aq'MyAq+AqT ey (16)
Aq 2

where My = JTmm’J, and c¢; = JTmn. M is also semi-
positive definite.

In order to avoid perturbations caused by noise in the OCT
images, 1 is quantized into three values which depend on three
contact states (see details in Section VI-B): I ( 7 =n; when
no object is detected in the OCT image), II ( 7 = 1, when an
object is detected but there is no contact), and III (1 = 13 when
contact is detected).

The value of 7 dictates the speed and direction of the probe
movement with respect to the tissue. When no object is detected,
the probe should move towards the tissue. As soon as an object
is detected in the image, the speed should be reduced, therefore
11 > 12 > 0. In order to avoid pushing the surface too much,
the OCT probe is controlled to retract slightly away from the
tissue when the contact is detected. It is achieved by changing
the direction of 1, i.e. M3 < 0. However, the contact situation
is desirable and should be maintained as long as possible.
Therefore, we employ a relative small 73, i.e. —13 < 3.

E. Endoscope displacement limitation

Deflecting the main endoscope, i.e. moving the camera, may
be necessary for achieving the scanning objectives. Neverthe-
less, a limitation for the endoscope displacement is used to avoid
strong interactions with surrounding organs.

Given the current camera position tzg with respect to ..,
the incremental displacement Atig is computed by solving the
optimization problem: mina¢, || t0 + At ||, which minimizes
the absolute camera translation at each step. Considering that
AtY = 032 Irxa | Aq (see Section III-A), this optimiza-
tion problem can also be converted as the following QP problem
with an extended optimization variable Aq.

1
EAqTMLAq +Aq e,

min
Aq

a7

03,2

Iy

where M, = [ 83X3
2x3

} is semi-positive definite and ¢, =
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FE. Visibility constraint

The visibility constraint is enforced to make sure that the
probe stays within the endoscope field of view. The visibility
constraint is unrelated to the camera position % because
the probe moves with the camera during a camera motion.
Therefore, the kinematic model in the image plane for the tip
of the probe s,, with respect to % ; can be written as

Smk+1 = Sm k + Jm,irzsAqins (18)

where J,ins = LsJins is the image Jacobian matrix for the
flexible instrument with respect to ..

Given the bounds [ Smin  Smax } of the image position (s, x
in pixel) of the probe tip, the visibility constraint is achieved by

Smin — Sm.k < Jm,insAqins < Smax — Sm k (19)

In this expression, the control horizon is set to one step for
the optimization. This could generate abrupt motions or even
instabilities because of the limited response time to deal with
hard visibility constraints. Instead of using (19) directly, we
therefore add a positive parameter N > 1 to smooth the motion.
Then, (19) can be modified as

S//N <A.Aq<S,/N (20)

where A, = [ Jm,ins 0252 ], S; = Spin — Sm. ks and S, = Syax —
Sm.k- The constraint (20) allows to increase the response time
(N steps) in a simple way. It is equivalent to assume that a
constant control input Aq is computed and applied for the N
future steps.

G. Actuators constraints

Due to constraints on the mechatronic architecture, the
actuator values on the configuration space are limited to
[ Qmin  Qmar |. Given the current actuator value q, Aq is
limited by qumin < q+ Aq < Qo We also limit its ve-
locity, i.e. Aq € [ Qumin Qvmax ] Then, we have Aq €
[Qmin — Qs Qmax — 4] N [Avmin, Qv.max]. The upper bound Aq,, and
the lower bound Aq; are computed respectively as Aq, =

min (qv,maxa Qmax — q) and A(]l = min (qv,mim Qnin — q)

H. Parameter selection

The values of the different weighting parameters come from
our task priorities. The orientation, image position, and contact
control are primary tasks and are more important than the en-
doscope displacement limitation, which is itself more important
than the QP regularization with an identity matrix. Therefore,
the parameters ). and ), should be set to small positive values
and we need 0 < ¥, < X < min(¥,, Xi, Xa)- The three main
tasks require only four DoFs, whereas the system generally
provides five. If the scanned point is reachable, the solution
of (6) can make the three objectives hold at the same time for
any positive X,, Xi, and xg [15].

The software packages qpOASES [16] is used to compute the
control inputs in the configuration space. The actuator inputs are
then computed by the mapping module.

V. SIMULATIONS

We validate the control strategy for positioning and track-
ing under the situation where the visibility constraint, the
actuator constraint, and the endoscope displacement limita-
tion are all activated. The Jacobian matrix in (1) is esti-
mated around the straight configuration based on the the-
oretical model in [13]. The desired path is defined as
[30 —30cos (k/30),—30sin (k/30),0] (the path is a circle with
radius 30 mm) with respect to %.. This trajectory represents
the boundaries of a lesion, which could be assessed before or
after Endoscopic Submucosal Dissection. The normal direction
of the scanned surface is set to m = (—0.5,0,—0.866025). To
build the simulation environment, a 3D desired path is defined
so that we can compute the 3D tracking error. However, the 3D
path is not controlled directly. For the computation of control
inputs, only the normal direction of the surface, the 2D desired
image position and the contact state are used.

The chosen control parameters are 1) =2 mm, 12 = 0.2 mm,
Mm=—-01mm, yo=x=xa=1, xo =107, x, =107, and
N = 5. The range of the actuators for the flexible instrument
are limited to o € [ —4.71 6.28 }rad, Be [ —2.1 2.1 ]rad,
and d € [ 0 100 }mm. The velocities of all five actuators
are constrained by [ Agq; Ag, | where Ag = —Ag, =
[—0.157rad, —0.157rad, —2mm, —2mm, —2mm]. The perception
depth of the OCT probe is set to 3 mm. These values are
representative of the real STRAS robotic system.

Fig. 4 shows the 3D path of the OCT probe (a), probe
mapped on the image plane (b), the camera position (c),
and the tracking error (d). The tracking errors are computed
by | n” - m |(orientation error), || p; — piy [(image error in

T tcO c0

pixels), m ocT —tCOOCT, d)(depth error in mm), and || toor —

t&., , ||(3D error in mm).

The defined image boundary (red rectangle in Fig. 4 (b))
can effectively enforce the visibility constraint. The endoscope
displacement is limited in a small range thanks to M, (see
Fig. 4 (c)). For the first 30 steps, the desired scanned point
remains constant to allow the initial positioning process, during
which the OCT probe will reach the first desired point on the
trajectory. As shown in Fig. 4 (d), the tracking errors converge to
small values. The scanning task is then switched to the tracking
process to allow the probe to follow the desired path. The
convergence of the image and depth (the distance between the
probe and the surface) can ensure the convergence of the probe
onto the desired 3D path (see Fig. 4 (a)).

In Fig. 4 (d), the chattering phenomenon is generated by the
backward velocity induced by the value of 13. A smaller value
of 13 would reduce the chattering effect (which also transmits to
the endoscopic image, because of slight coupling, and to the 3D
position errors). However, backward motions are useful because
they avoid pushing too hard on the surface during scanning. In
practice, this parameter would need to be adjusted keeping in
mind this tradeoff.

Other sets of parameters (X,,Xi,Xs) have been tested
((100,100,100) and (1,100,1)). These parameters have very lim-
ited impact on the positioning, with set (100,100,100) slightly
decreasing the maximum error on the orientation (see accompa-
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Figure 4. Simulation-based validation for positioning and tracking with visibility constraint. (a), (b), (c), and (d) are respectively the 3D OCT probe, the probe
image position, the camera position with respect to .%.9, and the tracking errors. In (a), the end of each blue line segment, which remains close to the desired
path, is the probe position. The red rectangle in (b) is the image boundary for the visibility constraint. The blue segments in (a) and (b) are drawn every 2 steps.

Errors : average (max)

v(®) orientation | image (pixel) | depth (mm) | 3D (mm)

no error 0.00 (0.01) 0.70 (2.97) 0.09 (0.24) 0.18 (0.47)

33 0.06 (0.22) 0.98 (2.82) 0.10 (0.55) 0.22 (0.58)

62 0.08 (0.29) 1.08 (3.36) 0.18 (1.00) 0.30 (1.22)

84 0.14 (0.47) 1.26 (4.85) 0.48 (2.62) 0.58 (2.66)
Table T

TRACKING ERROR IN PRESENCE OF A RANDOM DISTURBANCE WITHIN A
CONE OF APERTURE ¥ ON THE TISSUE NORMAL m.

nying video). This global absence of effect is expected as long as
the inequalities given in Section IV-H are respected. Our control
method works well for different trajectories. Some examples are
shown in the accompanying video. Table I shows the influence
of adding a random disturbance on the normal direction m of the
tissue at each time step k, simulating estimation errors. If this
error stays within a cone of 33 degrees aperture, the orientation
control is affected but the overall tracking errors increase only
marginally. Larger normal errors, however, affect all indices
(orientation, image, depth and 3D errors).

VI. EXPERIMENTAL VALIDATION

This section presents proof-of-concept validation experiments
performed on the experimental setup depicted on Fig. 1. Note
that the tissue was replaced by a planar board fitted with QR
codes. This simplification allows computing easily the normal
direction of the tissue surface m, as well as to update the desired
path. We first introduce a marker-based method to estimate
the pose of the probe. Then, we propose the image processing
method to obtain the contact state between the probe and the
scanned surface. Finally, we show the trajectory tracking results.

A. OCT probe pose estimation

Due to kinematic modeling errors for the flexible instrument,
it is not advisable to compute the 3D pose of the probe based on
the analytical model directly. We propose a marker-based pose
estimation strategy to estimate the 3D pose using the monocular
endoscopic images in real-time. Two markers are attached to
the probe with a distance of 25 mm. The strategy consists of
two steps: image position estimation and pose estimation using
model registration.

A Kalman Filter is employed to estimate the image position of
the markers. By implementing prediction, an estimation can be
obtained even if the image features are lost, for instance due to
marker occlusions or specularities. In the situation where image
features are lost, the update step is only based on the analytical
model.

The image positions of the two markers are estimated using
Kalman Filter as py, = [ Pix P2k }T at the sampling time k.

We denote tfifg = [ tﬁ‘k tg’fk ]T and J,. = [ Jie Jog ]T as
respectively the markers’ 3D position and their corresponding
Jacobian matrices with respect to .%, . The measurement matrix
Hyo=[ Hix Hy }T is employed to map the 3D positions
to image positions with H;; = Zl’ [ K po ] where Z; is the
depth of ith marker and py is the location of the principal point
in the image plane, which are known from camera calibration.
Motivated by the work in [17], an optimization-based method
is proposed for the registration:

inqln H Hreg (tilgg +JregAqins) - preg ||2 (21)
which can be converted to a QP problem:
. 1
glqln E (Aqins)T MregAqins + (Aqins)T Creg (22)
where Mreg (Hrng reg)T (Hreg-] reg) and Creg

HyeoJreq (Hregt?l‘fg _preg). The wvariables o, B, and d are
computed by accumulating the incremental control input Aq;ys.
They are used to compute the probe’s 3D pose based on the
direct kinematic model. Moreover, all the Jacobian (except
J.) are expressed analytically in function of «,f, and d. The
estimates are used to obtain numerical values on-line. In order
to have a unique solution for (22), at least two markers are
needed to recover the three variables.

B. OCT image processing

OCT images can be used to detect the contact state which is
needed for the control design. In Fig. 5 (d) showing a B-scan
OCT image in polar coordinates, the white pixels correspond to
the sheath of the probe and the canned surface in the field of
view. To detect the surface, we first calibrate the values of A



Algorithm 1 Implementation of configuration control
1. Inmitialization: 1123,N, Xoid.c.a>€os:€it,k=0,Jc,Pia
2. For each step do

3. pi.4(k) <—Update desired 2D image position

m <—Update normal direction

Pi x,n <—Pose estimation

n <—Contact detection

ep,e; +—Compute tracking errors

S;,S, <Define incremental image boundary

9. Aq;,Aq, <Define incremental actuator boundary
10. M, c,A. <—Compute components for QP

11. Aq +Solve (6)

12. q <Accumulate Aq

PNk

13. Robot actuation

14. If e, < e,;, e; < ej;, and contact is detected
15. k=k+1

16.End

and h,,, respectively the thickness of the probe sheath and of
the marker in the image. Pixels closer than A+ h,, pixels from
the top of the image are discarded. An image pixel is treated
as a noise if the number of its neighbor image pixels is smaller
than a predefined threshold. We can find the contour of each
group of pixels. If the number of image pixels within a contour
is smaller than another predefined threshold, the corresponding
group of pixels will also be filtered out.

The remaining white pixels correspond to the surface. h; is
then obtained as the shortest vertical distance between the OCT
probe and the tissues (see Fig. 5 (d)). Finally, the contact state is
obtained based on the relation between h; and hg + h,: contact
detected (h; = hs + h,,), object detected but no contact (h; >
hs + hy,) and no object (no white pixels in the filtered image).
Fig. 5 shows an example of OCT image with h;, hy, and h, (d),
as well as the corresponding processed image (e).

C. Implementation of the control strategy

The overall implementation of the proposed control method
is summarized in Algorithm 1.

The normal direction m of the QR board can be obtained
using the CharucoBoard Class in OpenCV. m is estimated at
each sampling time in order to deal with situations where the
normal direction changes locally during the scanning. However,
for simplifying the experiments, we employ a fixed planar
surface with a constant m.

We record the orientation error e,, the image error e;, and the
contact state at each sampling time. In the absence of an external
sensor which could provide ground truth, the orientation error
is computed from state estimates. Due to model errors (such as
backlash), it can be difficult to bring errors to small values in
a single step. A simple and reasonable strategy is to define two
threshold errors e, ; and e; ;. If e, > e, , or e; > ¢; ;, or no contact
is detected, a positioning task is employed instead of tracking
the desired path continuously. When e, < e,;, e¢; < e;;, and the
contact is detected, we switch the controller to the tracking mode
and OCT images are recorded for medical analysis.

D. Trajectory tracking results with visibility constraints

At the beginning of the scanning, the robot is telemanipulated
to a position close to the area to scan. Then, the initial desired
path is defined on the image plane. At each step, we estimate the
image position and the orientation of the probe (see (c) in Fig.
5). Besides, both the normal direction of the scanned surface
(see (a) in Fig. 5) and the desired 2D image position (see (b) in
Fig. 5) are updated to take into account the camera movement
for the computation of the control inputs. The thresholds of the
tracking errors are defined as e,; = 0.1 mm and ¢;, = 10 pixels.
A screenshot of the experiment is shown in Fig.5 where the
visibility constraint is activated within a user-defined rectangle
(see Fig. 5 (b)).

In Fig. 6, we illustrate the image position of the probe (a),
the tracking error without employing the error threshold (b) and
tracking error with error threshold (c). The desired image path
(see (a)) is gathered after updating the initial desired position
at each sampling time. In (b), the first 30 steps are used for
the initial positioning task to reduce the initial error and the
tracking task is carried out during the remaining steps.

For the tracking process without using the error threshold
(see (b), step 30-320), the average and maximum image position
errors are respectively 5.61 pixels (0.679 mm) and 17.4 pixels
(2.14 mm). However, for the tracking process with error thresh-
old (see (c)), the average and maximum image position errors
reduce to 4.64 pixels (0.563 mm) and 10 pixels (1.39 mm),
the latter being equal to be the e;; threshold. The orientation
errors for both cases converge to a small range with an average
error of 0.016. Note that this error is an estimation computed
from instrument state. It could differ from the real error. But
practically we observe the expected behaviour of the probe
direction. It can be noted that the scheme is robust to robot
model errors, and to approximations made on Jacobians. All
points on the path can be accurately scanned, ensuring the
complete assessment of the desired line on the surface, which is
a desired feature for optical biopsies. This experiment therefore
shows the feasibility of automatic path following for OCT
scanning of a surface. Moreover, realizing such a path tracking
by telemanipulating the robot while maintaining contact and
adequate orientation would be almost impossible which provides
a real practical interest.

VII. CONCLUSION

We have developed an optimization-based visual servoing
control framework to provide automatic scanning using a flex-
ible endoscopic robot embedded with an OCT probe providing
B-scans images. The proposed control framework allows to
track a desired path on a surface using the information provided
by the endoscopic camera and the OCT probe. The framework
is able to handle all degrees of freedom consistently, whatever
the current state of the probe with respect to the surface. The
proposed method has been validated using both simulation and
experiment for automatic scanning. Our main aimed applica-
tion is the pre-operative and post-operative assessment of the
boundaries of cancerous lesions in colorectal surgery.

One of the remaining limitations is the modeling which does
not consider nonlinear phenomena, like backlash. This mod-
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Figure 5. Screenshot of the tracking experiment. The surface normal direction is estimated based on the perception of the QR codes in (a). In (b), the desired
image path is updated and the image boundary is defined. The predicted image position of the markers is shown in (c). The original OCT image and the processed
image for the contact detection are shown in (d) and (e), respectively.
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Figure 6. Tracking performances on the image plane. (a) is the image position and orientation of the OCT probe. (b) and (c) are the tracking errors without
and with error threshold, respectively. In (a), the position of the OCT beam lies at the end of each blue line segment, which is close to the desired path. For
visualization purposes, the orientation errors are increased by 10 times in (b) and (c). The colored area (step 0-30) in (b) is the positioning process.

eling simplification results in larger tracking errors especially
when the actuators driving tendons change direction. An error
compensation step would be useful to increase the scanning
speed and decrease time spent outside of the desired trajectory.
While the control framework provides satisfactory results in the
proposed setup, some limitations will have to be tackled in order
to get closer to a real medical application. As a proof of concept,

the

scanned tissue is replaced with a board with QR codes and

the probe is equipped with markers. Future work will investigate
the use of computer vision techniques, such as [18], to estimate
the normal of the tissue surface and the pose of the OCT probe.
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