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Multi-tour Set Traveling Salesman Problem in
Planning Power Transmission Line Inspection

František Nekovář , Jan Faigl , Martin Saska

Abstract—This paper concerns optimal power transmission
line inspection formulated as a proposed generalization of the
traveling salesman problem for a multi-route one-depot scenario.
The problem is formulated for an inspection vehicle with a
limited travel budget. Therefore, the solution can be composed of
multiple runs to provide full coverage of the given power lines.
Besides, the solution indicates how many vehicles can perform the
inspection in a single run. The optimal solution of the problem
is solved by the proposed Integer Linear Programming (ILP)
formulation, which is, however, very computationally demanding.
Therefore, the computational requirements are addressed by the
combinatorial metaheuristic. The employed greedy randomized
adaptive search procedure is significantly less demanding while
providing competitive solutions and scales better with the prob-
lem size than the ILP-based approach. The proposed formulation
and algorithms are demonstrated in a real-world scenario to
inspect power line segments at the electrical substation.

Index Terms—Planning, Scheduling and Coordination

I. INTRODUCTION

IN this paper, we address the inspection planning of the
Power Transmission Line (PTL) formulated as a proposed

generalization of the well-known combinatorial Traveling
Salesman Problem (TSP). The presented method is motivated
by the inspection of transmission infrastructure using Un-
manned Aerial Vehicles (UAVs). It is becoming a standard
approach advertised as a cost-saving solution compared to
either manned inspections or those done using piloted heli-
copters, such as seen in Fig. 1. Although the development of
autonomous inspection is currently in progress, the necessity
of having a prepared plan for the efficient utilization of
single or multiple vehicles to achieve cost-efficient inspection
is desirable for human-piloted UAVs, as well. The problem
addressed in this paper is a major aspect of the objectives of
the EU-funded AERIAL CORE project.

The transmission line inspection is performed during vehicle
flights close to the power lines. It is advantageous to perform
such an inspection flight between segments of the power lines
defined by the pylons [1]. Hence, the problem is defined
as coverage to visit the transmission line segments, where
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Figure 1. UAV performing visual inspection on a power transmission line.

each segment is a target to be visited. In the inspection, the
segments are organized into a sequence of segments; thus, we
formulate the sequencing problem as a variant of the TSP.

A solution of the TSP is a sequence of visits to the given
targets that is further generalized to targets grouped into sets,
where only a single visit to some target in a set is required,
but all sets have to be visited. Furthermore, within the context
of a small UAV with limited operational time, it might not be
possible to inspect all the sets in a single run. Therefore, we
generalize the standard TSP formulation to consider limited
maximal flight time Cmax, to consider multiple vehicles to
cover all segments or a single vehicle with multiple tours,
and with the start and end of the respective tours at the
common depot. Such a generalized formulation of the TSP
is proposed to describe the herein addressed PTL inspection
planning problem, where a UAV has to visit each segment
of the PTL exactly once, but in an arbitrary direction. The
travel cost to the particular start of the segment inspection
is also relevant as it is part of the travel budget Cmax. Note,
the difference between using a single UAV in a multi-tour
scenario and multiple UAVs simultaneously is manifested in
the problem cost function. Since we aim to minimize the
total inspection time with the one-vehicle multiple-tours case,
minimizing the min-sum of the tour costs is more relevant
rather than minimizing the maximum cost from all the tour
costs.

The proposed TSP-based formulation for PTL inspection is
addressed by Integer Linear Programming (ILP) to find an op-
timal solution. However, it is computationally demanding and
does not scale with the problem size. Therefore, we propose
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Figure 2. An example of the proposed GRASP-based solution with four UAV
routes for inspection of power transmissions lines around Nechranice power
line substation, located at 50°20’44.7"N 13°19’30.9"W.

a heuristic solution based on the combinatorial metaheuristic
Greedy Randomized Adaptive Search Procedures (GRASP) to
provide a solution in a reasonable computational time, as it is
possible that targets could change and a solution would need
to be computed on-site. Based on the performed empirical
evaluation, the proposed heuristic solver provides adequate
solutions with significantly lower computational requirements
than the optimal ILP. An example of the solution found is
depicted in Fig. 2. Our contribution is the formulation of
the PTL inspection as the ILP problem, solvable using an
off-the-shelf solver and introduction of the computationally
less demanding GRASP-based solver providing competitive
solutions.

The remainder of the paper is organized as follows. An
overview of related work on power transmission line inspec-
tion and existing related formulations of the TSP is provided
in the following section. The addressed problem is defined in
Section III. The proposed ILP-based formulation is introduced
in Section IV and the proposed heuristic GRASP-based solver
in Section V. Results on optimal and heuristic solutions using a
real-word test scenario are reported in Section VI. Concluding
remarks are detailed in Section VII.

II. RELATED WORK

The use of robotic vehicles in the PTL inspection is
widespread, with possible solutions reviewed in surveys [2],
[3]. Multi-rotor UAVs in automated inspection utilizing path
planning are evaluated in [4], where it is concluded that a
high maneuvering precision makes them suitable for efficient
vision-based inspection. Various other used, but not herein
discussed robots include line-hanging vehicle [5], fixed-wing
UAV [6], Vertical Take-Off and Landing fixed-wing UAV [7],
or UAV with wire landing capabilities [8]. Vision-based track-
ing of power-lines is evaluated in [1] and [9] reports on
experimentally verified real-time automated tracking of power
lines using a multi-rotor UAV.

The inspection planning can be formulated as a variant of
the TSP [10], e.g., applied in pylon components inspection
using a Genetic Algorithm (GA) [11]. The TSP-based formu-
lation with a GA solution is proposed in [12] to address the
PTL inspection with the maximum flight distance limit. The
authors of [13] propose the TSP-based Two-Layer Point-Arc
Routing problem for the coordinated inspection using ground
and aerial vehicles solved by “Cluster First, Route Second”
and “Route First, Split Second” based heuristics.

The Set TSP, also called the Generalized TSP, has been ad-
dressed by heuristics [14] and ILP [15]. The Cost constrained
TSP [16] is a suitable formulation for tasks where each target
has associated value, and the problem is to visit targets with
the maximal sum of the values within constrained tour cost,
which is also known as the Orienteering Problem in the
literature [17]. A further generalization is addressed in [18];
however, these approaches are for single tour problems.

Multi-route inspection can be formulated as a variant of the
Multiple Traveling Salesmen Problem (MTSP) [19] that can be
solved using the ILP [20], which is known to be very compu-
tationally demanding, however. Alternatively, less demanding
GRASP heuristics have been employed in [21] for a problem
similar to the herein addressed PTL problem. The problem
is referred to as the multi-product multi-vehicle inventory
routing problem, which is a generalization of the inventory
routing problem [22]. Heuristics and integer programming
formulations of the MTSP for UAV planning already exist,
such as [23] for UAV-based delivery in combination with
trucks. Besides, soft computing techniques have been used
for the MTSP, such as GA [24], simulated annealing [25],
and neural networks [26], [27] to name a few. However, the
proposed Multi-tour Set TSP formulation differs from the
existing variants of the MTSP in the set generalization and
travel budget. Therefore, a novel solution is required, and the
reader is referred to [28] for an overview of methods for the
existing variants of the MTSP.

Based on the literature review and the best of the authors’
knowledge, the problem of Multi-tour PTL wire inspection
with a limited travel budget has not been addressed by the
existing approaches. Therefore, we propose to formulate the
problem using the ILP to find an optimal solution. Further-
more, we address the computational challenges of the studied
PTL inspection planning by the proposed heuristic inspired
by the successful deployment of the GRASP-based approach
to solving a similar problem in [21]. GRASP is fine-tuned
with the guidance of work discussing the specifics of tabu-
search [29], which is a part of the proposed novel meta-
heuristic algorithm.

III. PROBLEM STATEMENT

In the addressed PTL inspection, the goal is to traverse
all given PTL segments in the shortest time possible. The
segments are defined as the power lines between two pylons,
where each must be traversed in a single run to complete
its inspection. However, the direction in which the segment
is traversed is arbitrary. The visit to each segment can be
formulated as a vertex visit in a set of possible traverse
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directions, where every set should be visited exactly once.
It implies the problem can be formulated as a variant of the
Generalized TSP [30], also called the Set TSP [31]. However,
the formulation needs to include the practical limits of UAVs.

PA PB
sA,B

PC PD
sC,D

tBC

tAD

tD1t0A

initial and terminal depot

BA, dBA

AB, dAB

DC, dDC

CD, dCD

(a) Power-line segments between the pylons

v2=AB

sA,B c34=tAC+dCD

c2,5 = tBD+dCD

c0,2=t0A+dAB

v3=BA v4=CD

v0 v1

v5=DC

c0,3=t0B+dBC

sC,D

c2,4 = tBC+dCD

c4,1 = tD1

c5,1 = tC1

(b) Graph representation of the problem

Figure 3. Representation of the PTL inspection planning problem, where the
pylons are denoted by alphabet letters for improved readability. (a) Each power
line segment can be inspected in two possible directions, with the inspection
speed being lower than overflight speed from one segment endpoint to another.
(b) The vertices represent the power line segment visits in a specific direction;
therefore, the edge cost is a sum of the travel cost from one segment to another
and the cost of the target segment inspection.

First, the inspection plan must satisfy the UAV’s limited
flight time. Additional constraints are the maximal flight
speed and acceleration addressed in the estimation of flight
times using a trajectory planner, making the planned routes
physically feasible. Multiple inspection tours are allowed as
long as they begin and end at the same specific depot. Based
on the problem description, the notation used in the formal
problem definition is as follows.

We model the problem domain as a weighted oriented graph
G = (V,E, c) with a set of vertices V representing visits
to the PTL segments and a set of edges E. A segment can
be visited in an arbitrary direction, and therefore, the visits
to the segments are partitioned into ns sets corresponding
to ns physical segments. A segment sA,B = {vAB , vBA}
corresponds to two directions of visits to the segment between
the pylons PA and PB , see Fig. 3a. Each inspection tour
is requested to start and terminate at the defined locations,
and therefore v0 ∈ V and v1 ∈ V correspond to starting
and termination depot, respectively. An example valid route
in Fig. 3a is v0 → PA → PB → PC → PD → v1
in, which in the graph formulation Fig. 3b translates to
v0 → v2 → v4 → v1.

The graph G contains n = 2 + 2ns vertices V =
{v0, . . . v2ns , v2ns+1} that are grouped into 2+ns sets, where
the first two sets contain vertices corresponding to the initial
and termination locations. Hence, the vertices can be referred
to as integer values, and the edges can be referred to using
integer indices of V , e.g., e(v2, v5) = e2,5. Furthermore, the
first vertex index corresponding to the visit of a power line
segment starts at 2, and two directions of the possible segment
visits are vertices v2i and v2i+1. Thus, V = {v0, v1}∪

⋃ns

i=1 Si,
where the set Si = {v2i, v2i+1} represents two possible visits
of the i-th segment.

The particular flight times are determined by estimating
flight trajectories connecting the segment endpoints and trajec-
tories along with the segments. The trajectories are subject to
lateral flight dynamics constraints. The constraints include the
maximum flight velocity vmax, maximum inspection velocity
vinsp, and acceleration amax. The time of flight between the
segment endpoints (pylons) t is limited by the maximum UAV
velocity vmax, and the time of the segment inspection d is
limited by the inspection velocity vinsp. The edge cost c(ei,j)
(also referred as ci,j) is the time spent on the travel to the
segment endpoint from the endpoint of the previous segment
added to the time spent on the inspecting the power line
segment, except the edges to the terminal vertex v1, as seen
in Fig. 3b. The practical feasibility that the UAV can track
the used trajectories has been experimentally verified and the
results are reported in Section VI.

Due to the limited travel budget Cmax, all the power line
segments cannot be visited in a single tour. Therefore, we
search for the optimal number of tours T = {T1, . . . , Tnt

}
such that each tour Ti ∈ T originates at v0, terminates at
v1, and each segment is visited exactly once in a union of
all tours, i.e., only one of v2i and v2i+1 is visited, because
the PTL segment is represented by two vertices with the first
vertex of the even index and the second incremented by one.
The travel cost of the tour Ti ∈ T has to satisfy the travel
budget constraint c(T ) ≤ Cmax.

The PTL inspection planning problem can be formally
defined as the Multi-tour Set Traveling Salesman Problem
(MS-TSP) depicted in Problem 3.1.

Problem 3.1 (Multi-tour Set Traveling Salesman Problem):

minimizent,T={T1,...,Tnt} c(T ) =
∑
T∈T

c(T )

s.t.
c(T ) ≤ Cmax for T ∈ T and for each Si = {v2i, v2i+1},
1 ≤ i ≤ ns, only v2i or exclusively v2i+1 is visited by T .

.

IV. ILP FORMULATION

The optimal solution of the formulated MS-TSP can be
obtained by a solution of the ILP problem formulation using
the notation of the problem instance on a graph with n
vertices and precomputed individual costs between them as
two-dimensional asymmetric cost matrix C ∈ Rn×n, with
the edge costs c(ei,j), 0 ≤ i, j ≤ n. The solution can
be described by the three dimensional matrix of variables
X ∈ {0, 1}nt×n×n, where the matrix element xm,i,j denotes
the edge traversal from i to j by a tour m, and nt is the
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maximal number of the tours. The matrix X specifies which
edges are used by the individual tours. The tours are encoded
in traversal matrix T ∈ Nnt×n, where elements tm,i denote
the position of the vertex i in the tour m. Thus, T specifies
the order of the edges visits.

The initial and final locations are defined as vertices v0 and
v1. Furthermore, each segment is represented by two vertices
v2i and v2i+1 for 1 ≤ i ≤ ns; therefore, the number of vertices
n is always even. The ILP formulation is as follows.

C =
∑

1≤m≤nt

∑
1≤i≤n

∑
1≤j≤n

cm,i,jxm,i,j (1)

n−1∑
i=2

xm,0,i = 1, for 0 ≤ m < nt (2)

n−1∑
i=2

xm,i,1 = 1, for 0 ≤ m < nt (3)

n−1∑
j=0

nt−1∑
m=0

(xm,2i,j + xm,2i+1,j) = 1, for 1 ≤ i <
n

2
(4)

n−1∑
j=0

nt−1∑
m=0

(xm,j,2i + xm,j,2i+1) = 1, for 1 ≤ i <
n

2
(5)

n−1∑
i=0

(xm,i,j − xm,j,i) = 0, for 0 ≤ m < nt, 2 ≤ j < n (6)∑
(i,j)∈Xm

cm,i,jxm,i,j ≤ Cmax, for 0 ≤ m < nt (7)

tm,i − tm,j + xm,i,j ≤ n− 1, for 2 ≤ i 6= j ≤ n,
0 ≤ m < nt

(8)

The objective (1) is to minimize the total solution cost C.
Constraints (2) and (3) ensure that each tour starts at v0 and
terminates at v1. The requirement that each set (corresponding
to two possible directions of how the power-line segment can
be inspected) is entered and exited exactly once is ensured
by (4)–(6). Constraints (4) state that for each pair of segment
vertices i, the sum of all variables (representing the arrival to
destination vertex j) over all routes m is equal to 1. Constraints
(6) ensure that for each tour m, once a vertex j is entered, the
tour also exits it, where i indexes all possible points of entry
and exit for the vertex. The travel budget Cmax is constrained
by (7), where Xm ∈ {0, 1}n×n denotes the square sub-matrix
of X containing variables for the tour m. Finally, the sub-tour
elimination constraint (Miller-Tucker-Zemlin [20]) is included
for each tour using elements of the matrix T in (8).

The presented formulation can be used to solve the problem
using off-the-shelf ILP solvers. The CPLEX [32] solver was
used to obtain our baseline solution.

V. PROPOSED HEURISTIC SOLVER

Even though the solution of Problem 3.1 can be found for
a particular value of nt by the presented ILP formulation, it
requires high computational resources for finding the optimal
solution that might not be practical when the inspection plan
needs to be updated on-site in real-time. It may happen
that finding the optimal solution requires more time than

performing an inspection with a suboptimal solution. Thus, we
propose a GRASP-based heuristic algorithm to find a feasible
inspection plan quickly to follow the requirements of PTL
operators from the AERIAL CORE consortium.

The proposed algorithm is based on the existing GRASP-
based planner for the multi-product multi-vehicle routing prob-
lem [21] that we generalized to the Set TSP. In particular, the
proposed planner employs two meta-heuristics. The initial (but
not necessarily feasible) solution is found by the Greedy Ran-
dom search Procedure (GRP) and is followed by the adaptive
Tabu Search (TS) to explore the solution neighborhood using
a set of specific moves. A soft constraint is used to limit the
maximum tour cost during the search. It is not guaranteed that
the best solution found will be feasible with respect to Cmax.
Hence, multiple iterations with an increasing number of tours
nt might be required.

The soft constraint is violated if the tour cost c(T ) exceeds
the maximum allowed cost Cmax, as shown in Equation 9. The
constrained cost is referred to as ccon(T ).

ccon(T ) =

{
c(T ) if c(T ) ≤ Cmax,

c(T ) + (c(T )− Cmax)kc if c(T ) > Cmax.
(9)

The constant kc is chosen to be a sufficiently large number
with regard to the tour costs. Similarly to the ILP formulation,
all costs between the vertices are pre-computed using the
same trajectory planner to obtain feasible trajectories. The
real computational requirements of finding all trajectories are
negligible compared to the combinatorial part of the problem.
The two parts of the GRASP-based solver are described in the
following parts of this section.

A. Greedy Random search Procedure (GRP)

The initial solution Sinitial of is obtained using the GRP
where the segments are iteratively placed into Sinitial from
the set of unused segments Savailable. Possible insertions are
stored in Iproposed, where the insertion is,m,p,d ∈ Iproposed
encodes a possible insertion of some segment s into the tour m
at the position p of the tour in the direction d. Since the costs
are pre-computed, the solution cost after insertion is known
and denoted as Cost(i) and is the cost ccon(T ) of the route T
that is being inserted into. It partially equalizes individual tour
costs to reach a valid solution that does not violate Cmaxand
leads to better solutions in the following TS.

The Boolean variable indicates the inspection direction d,
however it can be an integer value in the case of further
generalization. The Restricted Candidate List (RCL) of the
best insertion candidates denoted IRCL is utilized in the
randomized search of the GRP. The IRCL is empirically
chosen to contain 25% of all proposed insertions to get varied
initial solutions. The GRP is summarized in Algorithm 1.

B. Adaptive Tabu Search

After the GRP determines the initial solution, the adaptive
TS is applied over several iterations to the routes. The solution
space is explored by repeatedly selecting from four distinct
moves using the weighted roulette wheel [21]. Similar moves
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are used to specify the solution neighborhood with one move
for direction-switching added, which hastens the convergence
to a lower solution cost.

• Move 1 - Random-shift: Remove a random segment from
a random route and insert it into a random position in the
same or other route. The move adds randomness to the
search, increasing its weight in every iteration.

• Move 2 - Best-shift: Remove a random segment from the
route and insert it into the best position in the same or
other route. The cheapest (best) solution is determined by
the exhaustive search from all possible insertions.

• Move 3 - Best-swap: Swap a random segment from a
random route with the best segment in the same or other
route. The best swap is, like in the previous move, found
through an exhaustive search from all swaps.

• Move 4 - Best-direction-switch: Switch a traversal direc-
tion for the best segment that is also evaluated over all
segments.

Both directions of segments are evaluated for the first three
moves and the best is/are chosen.

The score weight of each move (wi, i ∈ 1 . . . 4) is initialized
to the value w0 and is increased every iteration according to
the performance of moves. Two prize values are used in the
employed adaptive TS: p1 and p2. The price p1 is added to the
best move in the neighborhood, and p2 is added to the move
that improved the best overall TS solution. The value of p1 is
added to the weight w1 every iteration to promote randomness
in neighborhood exploration. For every Rt iterations, the score
weights are reinitialized to the value w0. The neighborhood of
the size n2 is explored using the tabu list Tlist of the size n/4.

The TS procedure is outlined in Algorithm 2, where S
denotes some existing solution, Tlist is the tabu list of explored
solutions, and N(S) is the neighborhood of some solution S.
The stopping criterion in Algorithm 2 is when there is no
improvement of Sbest in the last 50 iterations of creating a
solution neighborhood. This empirically selected criterion is
chosen to acquire the best possible solution to be compared
with the CPLEX solution. Specific application of the GRASP
procedure might prefer a different criterion, such as a time
limit in real-time operation.

Algorithm 1 Greedy Random search Procedure (GRP)
1: Sinitial ← ∅;
2: Savailable ← S;
3: while size(Savailable) 6= 0 do
4: Fill Iproposed with all possible insertions;
5: Order elements of Iproposed by Cost(i);
6: Fill IRCL with a subset of Iproposed;
7: iselected ← Random i from IRCL;
8: Insert iselected into the route m and update Sinitial;
9: Remove iselected, and other insertions referring to

same segment set from Savailable;
10: end while
11: return Sinitial;

Algorithm 2 Adaptive Tabu Search
Require: Some existing solution S.

1: Sbest ← S;
2: Scurrent ← S;
3: Insert Scurrent into Tlist;
4: while Stopping criterion is not met do;
5: Create a solution neighborhood N(Scurrent);
6: Scurrent ←Best{S ∈ N(Scurrent) and S /∈ Tlist};
7: if Cost(Scurrent) < Cost(Sbest) then
8: Sbest ← Scurrent;
9: end if

10: end while
11: return Sbest;

VI. RESULTS

The feasibility of the proposed PTL inspection planning
has been empirically validated on a real-world dataset [33]
of the PTLs originating from the substation Nechranice, cour-
tesy of ČEPS, a.s. (Czech power transmission infrastructure
institution, a member of the AERIAL CORE advisory board).
A map showing an overview of the PTL layout surrounding
the substation is depicted in Fig. 4.

Figure 4. Map of Nechranice substation and its surroundings used to create
realistic PTL inspection planning problem instances. The map was acquired
from Open Street Map [34] database.

The S-JTSK coordinates of pylons were transformed into
the Cartesian system with the origin at the substation. The
benchmark problem instances were sampled from the area
around the Nechranice substation using the perimeter Dmax,
starting with a small number of segments that increases with
Dmax, as indicated in Table I. Furthermore, several limits on the

Table I
SIZE OF THE BENCHMARK INSTANCES

Dmax[m] 500 600 700 800 900 1 000 1 200 2 000 5 000
ns 15 23 28 33 40 43 51 76 172

flight time Cmax have been chosen for each particular scenario
to evaluate the influence of the inspection area defined by Dmax
and the maximal flight time per a single tour. The travel budget
Cmax is set proportionally to Dmax to obtain feasible solutions
for nt ∈ {3, . . . , 6} that corresponds to tens of minutes of



6

flight time for Dmax in hundreds of meters and reaches up
to several hours for finding a feasible solution of the largest
instances.

The travel costs have been determined by estimating flight
trajectories of a real UAV constrained by its flight dynamics.
The cost of travel between the segments is limited by the
maximum flight velocity vmax = 5ms−1 and the traversal cost
during the segment inspection is limited by the maximum in-
spection velocity vinsp = 1ms−1. The maximum acceleration
is limited to amax = 2.5m s−2. Experimental validation of the
costs is reported in Section VI-B.

Each particular instance is solved optimally using the pro-
posed ILP formulation for the lowest nt, for which the ILP
solver provides the solution within the maximal computational
time of up to 24 h. Note that the ILP solver finds the optimal
solution for the increasing number of tours, which is usually
less demanding. However, such a solution is not the optimal
solution of the original problem with respect to the minimal
number of tours as stated in Problem 3.1.

Both proposed methods, the ILP-based and GRASP-based
approaches, have been implemented in C++. The ILP is solved
using CPLEX 12.8.0 [32] implemented in C++ using the ILOG
Concert technology library. Computations were performed on
the Intel Xeon processors (2.2–3.3GHz) limited to utilization
of a single core. Each CPLEX instance has been limited by
100GB of RAM. Without a prior initial solution, the com-
putational requirements of solving the ILP are exceptionally
high, and most of the herein reported results would not be
computed in a limited time. Therefore, the CPLEX solver has
been initialized a solution found by the proposed GRASP-
based solver, which computational cost is negligible compared
to the cost of the optimal solution. The GRASP-based solver
has been parameterized as follows.

The candidate list size is 25% of the possible insertion list
size. The initial move weight in the TS is w0 = 5, the prize
weights p1 = 1, p2 = 5, and number of iterations after which
the weights are reset is set to wr = 5. As outlined in [29],
the size of tabu lists should be kept small. We therefore opted
for n/4, where n is the number of segments manipulated. The
size of the solution neighborhood has been fixed at n. The
stopping criterion is 50 iterations without improvement of the
best solution. Because the GRASP is stochastic and relatively
inexpensive to compute, each instance has been solved 30
times. Both the best solution found and mean solution values
among the trials were reported.

A. Computational Evaluation

The performance of both proposed solvers including a basic
Greedy Random (GR) search has been studied for the size of
the instances defined by Dmax, the travel budget Cmax, and the
number of inspection tours nt. The evaluation results are de-
picted in Table II, where the lowest optimal solution costs are
in bold. The best solution cost provided by the GR algorithm
is also included in case it managed to provide a valid solution
among the performed trials. The %SR denotes success rate
of this search. In all examined benchmark instances, the best
solutions are found by the ILP problem formulation for the
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Figure 5. Computational requirements to solve the ILP formulation for
instances with Dmax = 700 m, travel budget Cmax, and nt tours. The y−axis
is in log-scale. Solution costs are above their respective bars.

lowest possible nt that is considered the optimal solution of
the instance with the particular cost C∗. Therefore, we measure
the quality of the ILP-based solution for the increased number
of tours nt, and also for the heuristic GRASP-based solutions
as the percentage deviation of the solution cost to the optimal
solution cost %PDB = (C − C∗)/C∗·100%. The computational
time of the optimal ILP-based solution and the solution of all
30 trials by the GRASP is denoted t and reported in seconds.
Thus, the times can be compared with the solution cost C
that is reported as the required total flight time in seconds.
Additionally for the GRASP, the mean computational time
tmean per a single trial is reported together with the mean
solution quality Cmean, which is reported as the percentage
deviation of the mean solution cost to the optimal solution
cost %PDM = (Cmean − C∗)/C∗ that measures the robustness
of the solution among the performed trials.
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Figure 6. Example of the solution found by the GRASP for the largest
examined instance for Dmax = 5 km with ns = 172 segments and nt = 3.

The result indicates that the ILP is very demanding. More-
over, the computational time spikes unpredictably depending
on the mixture of constraints and quality of the initial solution.
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Table II
COMPUTATIONAL RESULTS

Dmax Cmax nt
ILP GRASP GR†

[m] [s] t [s] C [s] %PDB tmean [s] t [s] Cmean [s] %PDM C [s] %PDB t [s] C [s] %PDB %SR

500 1 000 4 7.4 3 178.6 0.0 0.05 1.64 3 506.5 10.3 3 499.8 10.1 0.05 - - 0
500 1 000 5 2.6 3 221.4 1.3 0.08 2.27 3 397.4 6.9 3 371.0 6.0 0.06 - - 0
500 1 000 6 0.9 3 328.4 4.7 0.04 1.34 3 566.6 12.2 3 478.4 9.4 0.06 - - 0
500 1 500 3 1.9 3 053.2 0.0 0.06 1.77 3 281.7 7.5 3 262.4 6.9 0.04 - - 0
500 1 500 4 1.4 3 087.9 1.1 0.12 3.47 3 321.7 8.8 3 260.1 6.8 0.04 5 228.8 71.3 62
500 1 500 5 1.2 3 194.9 4.6 0.05 1.49 3 458.4 13.3 3 448.1 12.9 0.05 5 063.1 65.8 100
500 1 500 6 0.8 3 296.1 8.0 0.05 1.58 3 492.2 14.4 3 452.7 13.1 0.05 5 637.1 84.6 100
600 1 800 3 74.1 5 143.5 0.0 0.07 2.15 5 582.9 8.5 5 497.5 6.8 0.13 - - 0
600 1 800 4 46.3 5 176.8 0.7 0.15 4.63 5 645.5 9.8 5 590.7 8.7 0.14 - - 0
600 1 800 5 35.5 5 244.6 2.0 0.11 3.25 5 764.9 12.1 5 705.2 10.9 0.15 8 608.0 67.4 19
600 1 800 6 39.4 5 356.3 4.1 0.13 4.01 5 843.6 13.6 5 701.6 10.9 0.18 8 501.0 65.3 81
600 3 000 3 12.1 5 090.4 0.0 0.18 5.36 5 562.5 9.3 5 460.4 7.3 0.13 8 473.0 66.5 57
600 3 000 4 11.9 5 162.0 1.4 0.08 2.49 5 595.4 9.9 5 464.2 7.3 0.14 8 750.1 71.9 100
600 3 000 5 10.9 5 229.8 2.7 0.13 3.78 5 698.6 11.9 5 661.9 11.2 0.16 9 098.5 78.7 100
600 3 000 6 12.9 5 344.1 5.0 0.16 4.84 5 878.6 15.5 5 796.4 13.9 0.16 8 994.1 76.7 100
700 2 100 4 51 355.1 6 268.3 0.0 0.17 5.21 6 951.6 10.9 6 736.5 7.5 0.26 - - 0
700 2 100 5 3 838.8 6 321.1 0.8 0.14 4.08 6 986.3 11.5 6 717.4 7.2 0.26 - - 0
700 2 100 6 194.3 6 416.9 2.4 0.20 6.13 7 042.3 12.3 6 928.9 10.5 0.27 11 247.0 79.4 100
700 3 500 3 6 401.6 6 161.8 0.0 0.29 8.61 6 700.0 8.7 6 526.1 5.9 0.24 - - 0
700 3 500 4 2 755.7 6 222.4 1.0 0.19 5.71 6 748.6 9.5 6 637.1 7.7 0.25 10 744.4 74.4 95
700 3 500 5 328.7 6 289.7 2.1 0.43 12.88 6 880.6 11.7 6 716.0 9.0 0.26 11 434.3 85.6 100
700 3 500 6 188.4 6 415.7 4.1 0.20 6.01 7 118.6 15.5 7 024.6 14.0 0.28 10 676.7 73.3 100
800 2 400 5 15 765.0 7 510.0 0.0 0.19 5.77 8 420.8 12.1 8 234.7 9.6 0.40 - - 0
800 2 400 6 2 807.3 7 602.4 1.2 0.28 8.54 8 421.3 12.1 8 288.1 10.4 0.42 - - 0
800 4 000 3 24 120.2 7 369.2 0.0 0.39 11.64 8 058.1 9.3 7 879.4 6.9 0.38 - - 0
800 4 000 4 769.0 7 404.0 0.5 0.35 10.56 8 210.2 11.4 8 020.5 8.8 0.39 13 000.5 76.4 100
800 4 000 5 24 379.7 7 488.0 1.6 0.46 13.91 8 285.1 12.4 8 081.8 9.7 0.40 12 807.7 73.8 100
800 4 000 6 1 770.0 7 602.4 3.2 0.49 14.73 8 482.1 15.1 8 289.6 12.5 0.41 13 613.2 84.7 100
900 2 700 6 10 661.1 9 014.4 0.0 0.59 17.77 10 210.4 13.3 9 933.2 10.2 0.67 - - 0
900 4 500 3 35 372.2 8 782.4 0.0 0.64 19.05 9 804.2 11.6 9 600.3 9.3 0.63 - - 0
900 4 500 4 1 004.2 8 817.1 0.4 0.53 15.87 9 906.9 12.8 9 631.8 9.7 0.64 15 503.3 76.5 100
900 4 500 5 26 029.7 8 884.4 1.2 0.87 25.97 10 108.4 15.1 9 809.0 11.7 0.64 15 896.3 81.0 100
900 4 500 6 3 506.5 9 006.6 2.6 0.52 15.47 10 246.7 16.7 9 986.0 13.7 0.67 16 090.8 83.2 100

1000 3 000 6 21 174.5 9 887.6 0.0 0.65 19.51 11 130.4 12.6 10 870.0 9.9 0.80 - - 0
1000 5 000 4 86 370.0 9 712.7 0.0 0.62 18.48 10 845.0 11.7 10 544.2 8.60 0.76 16 970.2 74.7 100
1000 5 000 6 13 605.2 9 887.6 1.8 0.63 18.97 11 112.0 14.4 10 917.7 12.4 0.82 17 442.7 79.6 100
1100 5 500 4 86 370.1 11 113.4 0.0 1.50 45.14 12 407.4 11.6 12 144.0 9.3 1.02 19 603.2 76.4 100
1100 11 000 3 59 362.5 10 995.0 0.0 1.11 33.38 12 196.8 10.9 11 988.4 9.0 0.98 17 879.1 62.6 100
1100 11 000 4 86 370.0 11 078.4 0.8 0.68 20.27 12 372.6 12.5 12 168.8 10.7 0.98 18 963.6 72.5 100
1100 11 000 5 9 371.1 11 179.8 1.7 0.77 23.21 12 565.2 14.3 12 233.3 11.3 0.97 19 021.9 73.0 100
1200 12 000 4 86 370.1 12 453.0 0.0 0.76 22.80 13 870.3 11.4 13 567.6 9.0 1.25 21 502.8 72.7 100
1200 12 000 5 86 370.0 12 564.0 0.9 1.03 30.83 14 044.0 12.8 13 502.2 8.4 1.23 22 327.5 79.3 100
1300 13 000 3 86 370.0 13 143.8 0.0 1.31 39.33 14 476.4 10.1 14 156.6 7.7 1.32 22 278.2 69.5 100
1500 15 000 4 86 370.1 15 860.6 0.0 1.75 9.81 17 637.8 11.2 17 258.8 8.8 2.03 26 821.4 69.1 100
†Missing values indicate no feasible solution has been found among the performed trials for a particular problem instance.

Generally, it tends to increase exponentially with tighter Cmax
and decreasing nt, as is further shown in Fig. 5.

The computational cost of the proposed heuristic GRASP-
based solver is significantly lower than the ILP, and scales with
the size of the instance defined by Dmax and tight constraints
on Cmax and nt. Solutions are provided in about 1min for the
largest instance depicted in Fig. 6. In the presented results for
30 trials, the solution cost variance is about 17% and %PDM
is relatively high, but not exceeding 20%, which indicates a
high variance in the found solutions. The measured %PDB of
GRASP is not exceeding 15%.

Discussion: - Based on the reported results, the trade-off
between almost instantaneously solving the ILP to improve
the initial solution provided by GRASP is mostly unfavorable
in the case of limited computational time. The benefit of the
optimal solution rapidly decreases with tighter constraints or
larger instances. Thus, it might be more suitable to deploy
heuristic solutions, which are about tens or even hundreds
of seconds longer than the optimal solutions that require
significantly longer computational times. On the other hand,
the results also indicate that with the increasing number of
tours nt, the ILP-based solution might still be better than a

heuristic solution for a lower number of tours with signifi-
cantly lower computational time to find the optimal solution.
Here, it is worth mentioning that the lowest feasible nt is not
necessarily optimal for Cmax. The coincidence of the lowest nt

in the presented results arises from the problem geometry of
closely spaced star-shaped PTLs and the flight cost between
the segment inspections being cheaper than the inspection cost.
The optimal value of nt depends on the use-case and which
optimality criterion is preferred, i.e., the lowest number of
tours or the lowest overall flight time.

B. Experimental Validation

The practical feasibility of the proposed PTL inspection
planning approach has been experimentally verified with real
UAV in a testing polygon. The experimental validation has
been carried out using the control architecture [35] and UAV
platforms designed for the AERIAL CORE project [36]. A
multi-rotor UAV used during the inspection is depicted in
Fig. 7a and a trajectory containing a mix of segment lines is
shown in Fig. 7b. The experimental deployment supports the
feasibility of the presented approach and verifies the created
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(a) Experimental UAV above line (b) Trajectory shown in rviz

Figure 7. The multi-rotor UAV used during the experiment (a) was equipped
with Reach M2 GNSS module for Real-Time Kinematic (RTK) positioning.
Time sampled trajectory (∆t = 0.2 s) over segments (b) (shown in red) was
tracked with regard to the UAV constraints (shown in green). Grid resolution
is 1 m. Video from the experiment is available at [33].

benchmark instances as realistic. Besides, it also supports
feasibility of the estimated trajectory costs found by the
trajectory planner with the employed UAV controller.

VII. CONCLUSION

The PTL inspection planning with aerial vehicles has been
addressed by the novel generalization of the TSP called the
Multi-tour Set TSP. The optimal ILP-based formulation is
proposed together with a less computationally demanding
GRASP-based heuristic approach. Both solvers have been
empirically evaluated and the feasibility of the proposed
approach has been experimentally verified with real vehicles.
Additionally, a realistic dataset has been created and made
available for benchmarking the proposed approach and for
eventual further approaches. The main benefit of the presented
GRASP-based solver is in low computational requirements. It
can provide solutions on-site almost instantaneously, where a
change of the inspection plan may be needed as required by
the PTL operators and end-users of the proposed approach.
The possible future work lies with improving the scalability
for solving large instances.
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