
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 12, 2024

Online Learning of the Dynamical Internal Model of Transfemoral Prosthesis for
Enhancing Compliance

Heins, Sophie; Tolu, Silvia; Ronsse, Renaud

Published in:
IEEE Robotics and Automation Letters

Link to article, DOI:
10.1109/LRA.2021.3091953

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Heins, S., Tolu, S., & Ronsse, R. (2021). Online Learning of the Dynamical Internal Model of Transfemoral
Prosthesis for Enhancing Compliance. IEEE Robotics and Automation Letters, 6(4), 6156 - 6163.
https://doi.org/10.1109/LRA.2021.3091953

https://doi.org/10.1109/LRA.2021.3091953
https://orbit.dtu.dk/en/publications/81435c3d-e88a-4d2a-b0bf-e83cce0ed3c5
https://doi.org/10.1109/LRA.2021.3091953


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021 1

Online Learning of the Dynamical Internal Model
of Transfemoral Prosthesis for Enhancing Compliance

Sophie Heins1, Silvia Tolu2 and Renaud Ronsse1

Abstract—Powered prostheses hold promises to restore adap-
tive and robust locomotion to lower-limb amputees. However,
their daily use is still challenged by several shortcomings, on
top of which those related to their control methods. This
paper reports the development of an adaptive controller for
a transfemoral prosthesis that combines a predictive torque
component with a feedback error-correction mechanism. The
predictive module is based on the Locally Weighted Projection
Regression (LWPR) algorithm that achieves nonlinear function
approximation of a dynamical model of the prosthesis joints.
The performance of the proposed control strategy are assessed
with a simulated biped walker with a unilateral transfemoral
amputation. Results show that the LWPR-based module provides
accurate predictions of the ankle and knee torques, resulting in
a precise position tracking. This allows reducing the gains of the
feedback error-correction mechanism by one order of magnitude,
leading to a feedback contribution to the total joint torque lower
than 3% and 8% for the ankle and the knee, respectively.
Compliance of both prosthesis joints is enhanced accordingly.
In addition, the control architecture is robust to speed changes
while the joint dynamical internal model is continuously learned.
This approach is thus promising for the development of adaptive
controllers for lower-limb prostheses.

I. INTRODUCTION

Lower-limb loss is a strongly incapacitating condition af-
fecting many aspects of life, including mobility, social life,
psychological well-being and general discomfort [1]–[3]. To
replace their missing limb, amputees can be equipped with
a leg prosthesis, which improves their quality of life and
helps them recovering some independence. Transfemoral, i.e.
above-knee, amputees are often prescribed a semi-passive,
microprocessor controlled knee prosthesis (e.g. the Ottobock
C-leg [4]) combined with a semi-passive, energy storage and
return ankle prosthesis (e.g. the Ossür Proprio foot [5]).
However, walking with such a prosthesis requires large energy
expenditure and is characterized by slower speed and less
stability compared to unimpaired walking. The higher the
amputation level, the worse the walking performance [6]–
[8]. Recent evidence showed that lower-limb amputees could
benefit from using an active prosthetic device by decreasing
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the load of the sound limb during walking [9] or reducing
the associated metabolic cost [10]. However, designing such
solutions still raises many challenges, related to both their
mechanical design (weight or autonomy) and the development
of appropriate control strategies for their actuators. The present
work focuses on the latter.

Several control frameworks are being investigated in differ-
ent devices [11], based either on a finite state machine with
impedance control [12] or on time- or phase-dependent trajec-
tories to be tracked by the prosthesis joints [13]–[16]. A recent
trend consists in adapting these trajectories to the user in real-
time, for instance in order to minimize some metabolic metrics
[17], [18]. Given the dynamic nature of human locomotion and
the periodic and intermittent interactions with the environment,
a general design rule is to rely on low-impedance control laws
contributing to the user’s safety by increasing the controller’s
robustness and helping to cope with environment uncertainties
[11]. Compliance is indeed a fundamental feature of human
locomotion [19], [20] and is likely achieved by combining
predictive and pure feedback-based control mechanisms [21].

In this work, we report the development of an adaptive
controller for a lower-limb prosthesis using an iterative on-
line learning method. This controller combines a predictive
contribution with a feedback error-correction mechanism. The
predictive module provides an accurate prediction of the
control command by using the Locally Weighted Projection
Regression (LWPR) algorithm that achieves non-linear func-
tion approximation using local linear models [22]–[24]. The
complementary feedback pathway can thus have low gains,
leading to a resulting low impedance at both joints. In sum, this
controller achieves precise tracking of a reference trajectory,
while displaying low joint impedance in case of perturbation.
Due to the fact that this approach has never been used for the
control of actual lower-limb prostheses, and thus for safety
reasons, the proposed control strategy was firstly validated on
a simulated biped walker with a transfemoral amputation. The
material presented here is an improved and extended version
of the preliminary study presented in [25], both regarding
the methodology and the quality of the results. The paper is
structured as follows. Section II outlines the general control ar-
chitecture. Section III provides a description of the simulation
environment used for assessing the controller’s performance
and develops the experimental procedure. Simulation results
are presented in Section IV and discussed in Section V.

II. CONTROL ARCHITECTURE

The proposed control framework is depicted in Fig. 1 and
relies on joint position tracking. For each joint of the prosthesis
(i.e., ankle and knee), compliant position tracking is achieved
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by combining feedback and predictive torque commands. For
each joint i ∈ {a; k}, the desired torque is expressed as
τ ides = τ iFB+τ

i
pred, where the feedback torque component τ iFB is

computed by a proportional-derivative (PD) controller and the
predictive torque component τ ipred relies on iterative learning of
a dynamical internal model. This control architecture — and
in particular its prediction module — is inspired from [26],
[27].

A. Reference Trajectories

For each joint i ∈ {a; k}, the reference trajectory θiref is
obtained from a weighted combination of 3 periodic Gaussian
functions, which are expressed as:

Gn(φ) = exp
(cos(2π(φ− µn))− 1

σn

)
(1)

where µn is the peak position of the n-th Gaussian function
and σn its width. Their values were selected based on angular
trajectories taken from the literature for slow, normal and fast
walking, corresponding respectively to a cadence of 0.71, 0.83
and 1 stride/sec [28]. More precisely, the chosen values of
µn match a joint flexion or extension peak, and they were
respectively set to (0.06; 0.44; 0.66) and (0.14; 0.72; 0.98)
for the ankle and the knee joints; and the values of σn were
respectively set to (0.02; 0.62; 0.20) and (0.63; 0.50; 0.12),
which are associated to the lowest reconstruction error between
the obtained reference and the original trajectories. These
Gaussian functions are continuous functions of the gait phase

φ ∈ [0, 1] and their weights are modulated as a function of
the gait cadence ω. These weights were first computed for
slow, normal and fast walking based on the trajectories of
[28], and then interpolated by second-order polynomials to
make them continuous functions of the gait cadence and thus
generating smooth transitions across all walking speeds. The
gait phase φ and cadence ω are estimated in real-time from
the hip angle of the amputated leg θh by means of an adaptive
oscillator [29]. Approximating the reference trajectories by
linear combinations of periodic Gaussian functions aimed at
smoothing these trajectories and making them continuously
differentiable [30].

B. Predictive contribution: Dynamical Internal Model

The predictive torque component is computed by an adap-
tive dynamical internal model of the joint (orange block in Fig.
1). This dynamical model is incrementally learned by LWPR,
an algorithm that has been successfully used in different simu-
lation studies, e.g. [26], [27]. In our approach, each prosthesis
joint i ∈ {a; k} has its own LWPR module, computing τ ipred
from the set of sensory inputs x. These sensory inputs are the
reference angular position and velocity of the specific joint
(θiref and θ̇iref), and the actual angular positions and velocities
of the ankle, knee and hip joints of the amputated leg (θa, θk,
θh and θ̇a, θ̇k, θ̇h). Importantly, we included neither angular
accelerations nor contact forces in the input vector x, although
the exact dynamical model of the prosthesis also depends on
these variables. Indeed, we decided to restrict the input vector

Simulated Biped Walker

Kinematics

Adaptive Oscillator

Reference

Trajectories PD

Controller

Dynamical 

Internal Model

(LWPR)

Fig. 1. Global control architecture of a simulated biped walker with transfemoral amputation. The controller combines predictive (orange) and pure feedback
(blue) torque components for the ankle and knee joints. The superscript i ∈ {a; k} refers to the controlled joint. The dynamical internal model of the
ankle (resp. knee) receives the reference kinematics of the ankle (resp. knee); while both receive the actual hip, knee, and ankle kinematics. The predictive
component τ ipred is computed by these dynamical internal models, which are incrementally learned by the LWPR algorithm. The pure feedback component
τ iFB is computed by a PD controller.
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to signals that could be readily measured on a real device,
i.e. having joint encoders but no contact force sensors. The
predictive torque is a weighted mean of k local linear models
ψk(x), and the weights wk(x) are Gaussian functions called
receptive fields (RFs):

τ ipred(x) =
∑
k

wk(x)ψk(x) (2)

wk(x) = exp
(
(x− ck)TDk(x− ck)/2

)
(3)

where Dk is the distance metric and ck is the center of each
RF. These parameters define the validity region of the local
models. The local models (i.e. their regression directions) are
continuously updated using weighted partial least square (PLS)
regression, and new local models are created if, for a training
sample x, no local model has an activation wk(x) above a
configurable threshold. The distance metric Dk of each RF is
continuously adjusted using stochastic cross validation. More
details on the LWPR algorithm and its parameters can be found
in [31].

C. Feedback error contribution: PD controller

The feedback controller (blue block in Fig. 1) provides
error correction following the reference trajectory. It is a PD
controller, whose gains Kp and Kd take independent values
for the swing phase and for the stance phase. The global gain
Ki

FB is used to modulate the overall feedback contribution,
and in particular to decrease it once the dynamical model is
learned in order to enhance the prosthesis compliance.

III. EXPERIMENTAL METHODS

This work assesses the ability of the LWPR-based module
to act as a dynamical internal model for the knee and ankle
joints of a transfemoral prosthesis, based on the experimental
methods described in this section.

A. Simulated Biped Walker

The biped model depicted in Fig. 1 was developed in the
Robotran multibody software [32], [33]. It is composed of 7
rigid bodies (a trunk and 2 segmented legs with foot, shank
and thigh), 6 revolute joints that only move in the sagittal
plane (ankle, knee and hip of both legs), and 1 prismatic joint
that only moves in the vertical direction (the center of mass).
The dimensions, mass and inertia of the bodies constituting
the biped walker were taken from [34], and its total mass
is 80 kg. The ground contact model accounts only for the
vertical component of the ground reaction force (GRF), and
its computation is based on [34]. The hip, knee and ankle
joints of the left leg and the hip joint of the right leg are
position-controlled, i.e. they perfectly track reference position
profiles that are synchronized to a so-called artificial phase
variable φref = mod (t, 1

ωref
)ωref, where t is the simulation

time and ωref is the imposed gait cadence. The right hip
joint is synchronised with φref, whereas the left hip, knee and
ankle joints are synchronized with φref shifted by 50%. These
joints track Winter reference trajectories for slow, normal or
fast walking [28], depending on the experimental tests (see

Section III-B). The control architecture presented in Section II
is implemented on the simulated prosthetic joint, i.e., the knee
and ankle of the right leg (represented in dark orange in Fig.
1). During the simulations, the desired torque patterns were
directly fed to these joints, assuming perfect torque tracking,
i.e. modelling these joints as pure sources of torque.

B. Experimental protocol

The performance of the proposed controller architecture was
assessed with the simulation tests described below. Experi-
ments 1 and 2 focus on normal walking data only, while
experiment 3 specifically focuses on transitions between the
three walking cadences.

Experiment 1: Basic normal walking: This experiment aims
at evaluating the capacity of the LWPR-based module to act
as a dynamical internal model and predict accurate torque
commands for the knee and ankle joints of a transfemoral
prosthesis. During the task, the dynamical models were ini-
tially learned during 2 gait cycles while the prosthesis joints
were controlled in pure feedback mode, i.e. while the desired
torque was such that: τ ides = τ iPD. These 2 gait cycles of initial
training were performed to avoid including in the total torque
nonlinearities that affect the prediction and thus the stability
of the system. The predictive torque was then included in the
desired torque from the beginning of the third gait cycle and
the dynamical models were continuously learned until the end
of the simulation. The simulation was performed over 100 gait
cycles in normal walking conditions.

Experiment 2: Reduced joint impedance: This experiment
assesses the feasibility of increasing the joint compliance
after the initial learning phase of the dynamical internal
models. In other words, it evaluates the feasibility of lowering
the prosthesis joints impedance while maintaining a similar
tracking accuracy. It is performed in two steps:

A) Reduced PD gains: we first assess the feasibility of
decreasing the feedback contribution of the joint torque com-
mands by reducing the feedback controller gains after the
initial learning of the dynamical internal models. During
this task, the dynamical internal models of the prosthesis
joints were initially learned during 50 gait cycles in normal
walking conditions (like in Experiment 1). Then, the PD gains
were decreased by one order of magnitude, i.e. the value of
Ki

FB was set to 10% for both joints. The LWPR training
continued for 50 additional gait cycles, i.e., until the end of
the simulation. The contributions of the predictive torque and
feedback torque components to the total joint torques were
assessed by computing the ratio between the integral of their
respective absolute value over the cycle.

B) Torque perturbation: we then evaluate the effect of
decreasing the PD gains on the joints impedance, by applying
a torque perturbation to the prosthesis joints and measuring
the resulting angular displacement. More specifically, we
compare three cases: (i) the pure feedback mode (i.e. forcing
τ ides = τ iPD), (ii) the predictive controller combined with high
PD gains (i.e., Ki

FB = 100%), and (iii) the predictive controller
combined with low PD gains (i.e., Ki

FB = 10%). In each
case, the biped walker executes one gait cycle during which
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a torque perturbation lasting 50ms is applied to the ankle or
knee joint at specific gait phases φpert. The dynamical internal
models learned during Experiments 1 and 2.A were used by
the LWPR module in (ii) and (iii) respectively, but their update
was stopped to avoid learning the torque perturbation. We
tested ankle perturbations of 2Nm for φpert = {0%, 75%}
(i.e. during the swing phase or the swing-to-stance transi-
tion) and 50Nm for φpert = {25%, 50%} (i.e. during the
stance phase), and knee perturbations of 65Nm for φpert =
{0%, 25%, 50%, 75%}.

Experiment 3: Cadence switching: The third experiment
focuses on evaluating the robustness of the proposed controller
to changing walking cadences. In this experiment, the imposed
walking cadence ωref was switched every 25 gait cycles, to
slow, normal or fast walking, as defined in [28]. Transitions
occurred over the first 5 cycles of each new cadence. During
these 5 transition cycles, the reference trajectories of the
simulated non-prosthetic joints were linearly blended from
one to the other, and the prosthesis reference trajectories
adapted via weighting of the Gaussian functions from the
estimated cadence ω (see Section II-A). Like in the other
experiments, learning of the dynamical internal models started
at the beginning of the simulation, but the prosthesis joints
were controlled in pure feedback mode during the first 2 gait
cycles. Again, this initial learning was performed to avoid
including in the total torque nonlinearities that affect the
prediction and thus the stability of the system. The cadence
sequence was: Normal - Slow - Normal - Fast - Normal -
Fast - Normal - Slow - Normal - Fast - Normal - Slow. The
global feedback gain Ki

FB was set to 100% throughout the
experiment, for both joints.

C. Parameters tuning

The controller’s parameters related to the feedback and to
the predictive contributions were tuned empirically in the sim-
ulation environment with normal walking conditions, before
conducting the experimental tests.

1) Feedback gains: The PD gains Kp and Kd of the
feedback torque were tuned while the prosthesis joints received
100% of the feedback torque component as control command,
i.e. τ ides = τ iPD. The synthesis objective was to maintain
trajectory tracking error below 2 deg for the ankle and 6

TABLE I
CONTROLLER PARAMETERS

Feedback controller Ankle joint Knee joint

Kp [Nm/rad] Stance 5000 6000
Swing 110 1000

Kd [Nms/rad] Stance 15 200
Swing 1.25 25

init_D 40 40
w_gen 0.1 0.1
init_α 5 10

add_threshold 0.5 0.5

LWPR-based module

deg for the knee, i.e. 10% of their maximum absolute value.
Numerical values of the feedback gain are provided in Table
I. To ensure a smooth transition between stance and swing, a
linear transition lasting 0.02 s following toe-off and heel strike
was implemented.

2) LWPR configuration: The most relevant parameters of
the LWPR algorithm were tuned with the objective to co-
optimize learning accuracy (i.e. minimizing RMSE between
predicted and desired torque profiles) and speed (i.e. mini-
mizing time before reaching stationary behavior). They are
reported in Table I, where init_D denotes the initial value
of the distance matrix Dk (Eq. (3)), w_gen is a threshold
value for the RFs wk that determines when a new local model
needs to be created, init_α is the initial learning rate for
the gradient descent algorithm that is used to continuously
update the RFs distance metric Dk, and add_threshold is
a threshold value determining when a new regression direction
should be added. A more detailed definition of each parameter
is provided in [31], [35].

IV. SIMULATION RESULTS

A. Experiment 1: Basic normal walking

Results of the basic normal walking experiment showed that
the LWPR-based module is able to quickly learn the dynamical
internal models of the knee and ankle joints and to provide
precise torque commands, producing stable and accurate walk-
ing patterns. This is illustrated in Fig. 2 showing the ankle
and knee angle profiles averaged over the last 5 cycles of the
simulation and compared to the ones obtained with a pure
feedback control strategy in (a-b), and their corresponding
predicted torque profiles compared to the desired torques in
(c-d).

We can observe that the torque predicted by the LWPR-
based module is very similar to the total joint torque for
both joints. The root mean squared error normalised to the

Fig. 2. Experiment 1: Joint position and torque trajectories averaged over
the last 5 cycles of simulation: (a)-(b) Ankle and knee angles obtained
with both control contributions (feedback and predictive) and compared to
their reference positions and to their corresponding profiles obtained in pure
feedback mode; (c)-(d) Ankle and knee torque predicted by the LWPR-based
module (τpred) and compared to the total joint torque (τdes).
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maximum amplitude (nRMSE) between the predicted torque
and the total torque converges to 0.34% for the ankle joint and
to 1.03% for the knee joint. This results in accurate tracking
of the ankle and knee position reference profiles, and the
nRMSE between the joint actual position and its reference
trajectory converges to 0.17% for the ankle joint and to 0.26%
for the knee joint. These values are lower than the ones
obtained in pure feedback mode - whose mean value are 2.59%
and 1.28% for the ankle and the knee joints respectively.
During the simulation, 48 and 79 RFs were created by the
LWPR algorithm for the ankle model and for the knee model
respectively.

B. Experiment 2: Reduced joint impedance gains

We observed during the second experiment that the pro-
posed controller still achieves a good position tracking accu-
racy for both joints when reducing the PD gains by one order
of magnitude, after sufficient learning. Indeed, the nRMSE of
the joint angular positions converges to 0.91% for the ankle
joint and to 0.55% for the knee joint (see the evolution per
cycle in Fig. 3(a)). Although these values are higher than the
nRMSE of the joint angular positions observed in Experiment
1, the tracking performance is still better than the one obtained
in pure feedback mode for both joints. In addition, reducing
the PD gains allowed to further decrease the contribution of the
feedback torque component to the total joint torque. Fig. 3(b)

Fig. 3. Experiment 2.A: (a) Evolution of the nRMSE of the knee and ankle
joint positions per cycle. The nRMSEs are compared to the ones obtained in
pure feedback mode with high gains (dashed). (b) Corresponding contributions
of the predictive torque and feedback torque components to the total joint
torques. The PD feedback gains were lowered after 50 gait cycles of learning.

Fig. 4. Experiment 2.B: Position profile of the ankle (top row) and knee
(bottom row). The left column shows the pure feedback mode with high
gains, and the central (resp. right) column shows the LWPR + high (resp.
low) PD feedback gains mode, with Ki

FB = 100% (resp. Ki
FB = 10%). All

panels compare the unperturbed behavior (green) and the behavior induced
after a torque perturbation applied at φpert = 25% (purple).

reports the evolution of the contributions of the predictive and
feedback torque components to the total joint torque per cycle.
It shows that the feedback contribution to the joint torque
reaches 2.15% for the ankle joint and 7.40% for the knee
joint before lowering the PD gains; these values then decrease
to 1.22% for the ankle joint and to 4.28% for the knee joint
with reduced PD gains. During the simulation, 50 and 78 RFs
were created by the LWPR-based module for the ankle model
and the knee model respectively.

Next, we conducted Experiment 2.B, a perturbation study
assessing the prosthesis resulting impedance. Figure 4 shows
the ankle and knee angle profiles in three cases: in the pure
feedback mode, and when the predictive controller is supple-
mented with high and low feedback gains. It further compares
the unperturbed profile (steady-state) to the profile obtained
when a torque perturbation is applied at φpert = 25%, i.e.
during the stance phase. This figure confirms that the predic-
tive action was beneficial for accurate trajectory tracking, both
with high and low feedback gains. It further illustrates that
both joints had lower impedance (i.e., were more compliant) in
the ”low PD gains” condition than in both others. We obtained
similar results for perturbations applied at three other phases
of the gait cycle, see Table II. In sum, lowering the PD gains
enhanced the simulated prosthesis compliance, with limited
impact regarding position tracking.

TABLE II
JOINT MAX. DISPLACEMENT AFTER TORQUE PERTURBATIONS (DEGREE)

φpert [% stride] 0 25 50 75

Ankle
pure FB 1.02 0.52 0.61 1.08

high-gains 0.97 0.62 0.62 1.01
low-gains 6.81 4.63 4.44 6.98

Knee
pure FB 0.19 0.08 0.09 0.14

high-gains 0.30 0.22 0.22 0.38
low-gains 7.20 3.85 1.96 4.43
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C. Experiment 3: Cadence switching

Results of the cadence switching experiment showed that the
proposed control architecture allows to maintain a stable be-
havior when switching from one gait cadence to another. The
controller architecture is indeed able to make fast adjustments
following a change in walking cadence, as emphasized in Fig.
5. After the initial learning phase of the dynamical internal
models of the joints, the torque computed by the LWPR-based
module is accurately predicted for the three gait cadences and
for both joints. This is illustrated in Fig. 6, depicting the ankle
and knee torque profiles averaged over the last 5 cycles of the
last simulation stage associated to each gait cadence. The mean
nRMSE between the torque predicted by the ankle internal
model and the total ankle torque over the last 5 cycles of each
gait cadence is 0.76%, 0.59% and 0.89% for slow, normal and
fast walking respectively. Similarly, the corresponding nRMSE
values for the knee predictive torque are respectively 0.70%,
0.98% and 1.72%. This accurate prediction allows for precise
position tracking performance for both joints, as illustrated
by the averaged joint angle profiles shown in the same figure
for the three gait cadences. Indeed, the nRMSE between the
joints positions and their reference trajectories remained below
the value observed with a pure feedback control approach

Fig. 5. Experiment 3: adaptation to changing cadence. (a) Target cadence
with smooth transitions corresponding to S = Slow; N = Normal; and F =
Fast. (b) Evolution of the nRMSE of the knee and ankle joint positions per
cycle and (c) corresponding contributions of the predictive torque τ ipred and
feedback torque τ iFB components to the total joint torques. The gait cadence
was changed every 25 gait cycles with smooth transitions over the first 5
cycles. The nRMSEs depicted in (b) are compared to the ones obtained with
a pure feedback controller (τ ipred = 0, dashed) in steady-sate.

(i.e. with τ ipred = 0 for both joints and for the three walking
speeds). In the last simulation stage associated with each gait
cadence, the mean nRMSE of the ankle angle over the last 5
cycles reached 0.28%, 0.29% and 0.28% for slow, normal and
fast walking respectively. This was associated to a respective
feedback contribution to the total ankle torque of 2.88%,
2.20% and 3.28%. Similar results were obtained for the knee
joint: in the last simulation stage associated with each gait
cadence, the mean nRMSE of the knee angle over the last 5
cycles was 0.18%, 0.23% and 0.39% for slow, normal and fast
walking respectively. This was associated to a mean feedback
contribution to the total knee torque of 10.08%, 6.24% and
10.36% respectively. By the end of the simulation, 266 and
418 RFs had been created by the LWPR-based module for the
ankle and the knee models respectively.

These results show that the control architecture is robust to
changing gait cadences and that the LWPR-based module is
able to continuously learn the dynamical internal models of
the knee and ankle joints.

V. DISCUSSION AND CONCLUSION

We developed an adaptive control architecture for a trans-
femoral prosthesis combining a predictive torque command
with a feedback error-correction mechanism. The predictive
action uses the LWPR algorithm, acting as a dynamical
internal model of the prosthesis system. We evaluated the
proposed approach on a simple biped model in a simulation
environment. Results showed that the LWPR module is able to
quickly learn the dynamical model of each joint and provides
accurate torque commands in real-time. This allows decreas-
ing the feedback gains, leading to similar position tracking
performance, but with lower joint impedance. Interestingly,
the set of inputs of the LWPR module only includes joint
angular position and velocity signals, i.e., signals that are
readily available from typical encoders of a real device. This
suggests that we may not need to feed the LWPR models
with a measurement of the ground contact forces to obtain a
reasonable approximation of the dynamical internal models.
Although this result has yet to be validated in a real-world
experiment, it is consistent with [36], where the dynamical
model of a robot arm manipulating unknown objects was
accurately learned based on the joint trajectories and achieved
precise control during load manipulation tasks, even with non-
stationary loads.

The proposed control architecture is bio-inspired, i.e., (i)
it implements artificial Central Pattern Generators (CPGs)
using an adaptive oscillator [37], [38], and (ii) it partially
mimics the function of the cerebellum in human locomotion.
Indeed, previous studies on human motor control highlighted
the key role of the cerebellum in motor control and learning,
and support the assumption that this neural structure encodes
forward and inverse internal models [39] to achieve accurate
and coordinated movements [40]. In this way, the putative
role of the cerebellum is twofold: (1) it provides a feed-
forward predictive action based on continuous learning of the
task, and (2) it provides an error-correction action to ensure
robustness to perturbations [41]. Our controller includes a
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Fig. 6. Experiment 3: Ankle angles and torques over the gait cycle, averaged over the last 5 cycles of the last simulation stage associated to each gait cadence.
Left to right: Ankle angle and torque profiles, and knee angle and torque profiles. Top to bottom: slow, normal and fast walking cadences.

prediction module encoding the dynamical internal models
of the prosthesis joints. As future work, adaptive short-term
cerebellar corrective actions will be added in the controller
(similarly as in [26], [27], [42]) to fully exploit adaptation
skills based on feedback from actual movement.

In addition, we showed that this controller is robust to
changing gait cadences and that the LWPR-based module
can continuously learn the dynamical internal model of the
knee and ankle joints. This suggests that the LWPR module
has the potential to automatically and continuously adapt
these models to each user and locomotion activity. Other
contributions targeted the development of online adaptive
controllers for locomotion. The approach presented in [18]
used the metabolic cost of walking — which is characterized
by oxygen consumption — to adapt the assistive torque profile
provided by an ankle exoskeleton. Another human-in-the-loop
optimization method [17] used muscle activity signals to adapt
the torque pattern delivered by an ankle exoskeleton. Both
studies illustrated that it is possible to optimize the human-
robot synergy by adapting the device control parameters as
a function of metabolic signals collected in real-time. We
also targeted closed-loop adaptation of a locomotion assistive
device, not for optimizing the human metabolic cost, but rather
for enhancing the compliance of the device. Interestingly, our
approach required only the use of proprioceptive sensors em-
bedded in the device itself. In future work, we will investigate
if there exist a relationship between this intrinsic compliance
of the device, and thus the way it reacts to natural stride-to-
stride variability, and the resulting metabolic cost of the user.

The presented study has also some limitations. First, the
simulated biped walker has no forward velocity and acceler-
ation, since its center of mass is constrained to move only
in the vertical direction and the implemented ground contact

model only includes the vertical component of the GRF.
This causes significant differences compared to reality, e.g.
in the dynamic force profiles at the feet. Additionally, the
transfemoral prosthesis was modelled as having the same
dimensions, mass and inertia than the sound leg and with
an ideal controller, assuming perfect torque tracking. These
simplifications are deemed reasonable given the objectives of
the simulation experiments, but they should be kept in mind
when translating the presented work into real-life applications.

The experiment showing the robustness to changing cadence
was tested with only three steady-state conditions (and smooth
transitions in-between). Further experiments are required to
validate the algorithm performance over a more continuous
set of target cadences. Moreover, the model complexity to
be learned by the LWPR significantly increased in this third
experiment, as illustrated by the higher number of RFs gen-
erated at the end of this simulation. In future work, we
will investigate the design of a mechanism to couple both
estimation and tracking errors toward more efficient learning
and RFs generation process [43]. As an alternative to LWPR,
we will explore other algorithms (i.e., LGR [44]) in which the
local models do know each other and collaborate to generate
a function fit, such that going back to a previously learned
region of the state-space would draw exclusively from the past
learning.

To sum up, an online adaptive learning of the dynamical
model of a biarticular prosthesis allows to provide accurate
torque commands without the need for an analytical model of
the human+prosthesis complex, whose derivation would be a
complicated task. The simulation experiments presented in this
paper indicate that the approach holds the potential to provide
adaptive and robust control for lower-limb prostheses. Future
work will focus on assessing the performance of the itera-
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tive learning mechanism on a real prosthesis, by conducting
walking experiments with amputated subjects.
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