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Fast Online Planning for Bipedal Locomotion via Centroidal Model
Predictive Gait Synthesis

Yijie Guo!, Mingwei Zhang', Hao Dong!, Mingguo Zhao?

Abstract— The planning of whole-body motion and step time
for bipedal locomotion is constructed as a model predictive
control (MPC) problem, in which a sequence of optimization
problems needs to be solved online. While directly solving these
problems is extremely time-consuming, we propose a predictive
gait synthesizer to offer immediate solutions. Based on the
full-dimensional model, a library of gaits with different speeds
and periods is first constructed offline. Then the proposed gait
synthesizer generates real-time gaits at 1kHz by synthesizing
the gait library based on the online prediction of centroidal
dynamics. We prove that the constructed MPC problem can
ensure the uniform ultimate boundedness (UUB) of the CoM
states and show that our proposed gait synthesizer can provide
feasible solutions to the MPC optimization problems. Simula-
tion and experimental results on a bipedal robot with 8 degrees
of freedom (DoF) are provided to show the performance and
robustness of this approach.

I. INTRODUCTION

Bipedal robots are complex dynamic systems with high
degrees of freedom. Different approaches have been inves-
tigated for real-time motion planning for bipedal robots.
Classical methods based on reduced-order models have been
well developed[1], [2], [3], while the workspace of robots
may be limited and some physical constraints (actuator
bounds, friction cone, etc.) are not directly considered. Thus,
a lot of recent work [4], [5], [6] focused on trajectory
optimization based on full-dimensional models. However,
due to the complexity and non-convexity of the formulated
nonlinear optimization problems, these methods are not yet
ready for online implementation.

In order to consider full-dimensional dynamics/constraints
and avoid online trajectory optimization, gait library based
methods have been proposed. Through offline trajectory
optimization based on the full-dimensional model, these
methods first construct a library of periodic or aperiodic gait
trajectories, then choose the appropriate trajectory online.
One of the earliest work based on this idea is [7], where gaits
with fixed speeds are designed for a planar underactuated
biped. This idea was later extended to fully-actuated bipedal
robots in [8], [9]. In these studies, the gait trajectory is chosen
according to the speed command. The stability of the robot
heavily relies on the controller, since the motion planning
does not change according to robot states. Under large
disturbances, these methods may fail when the controller can
not track the planned motion due to the physical constraints
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of actuators or ground reaction forces. To address this issue,
a gait updating method is proposed in [10], the gait trajectory
is updated according to the mid-step average speed, thus the
robots can handle larger speed perturbations. However, as
the gait is updated only once at the middle of each step, it
can not react in time for disturbances near the beginning or
end of each step.

In the meantime, current gait library methods generally
keep a constant step time, while adjusting both step location
and step time greatly enlarges the margin of stability [11]. It
is shown in [12] that a shorter step time results in a larger
capturability region. However walking consistently with a
very short step time is unnatural and power-consuming, and
users may require a specific step time in some cases. This
brings the need for online step time adjustment to meet
the user command under normal circumstances and ensure
stability under disturbances.

In this paper, we propose a gait synthesis approach from an
MPC point of view. The proposed gait synthesizer generates
real-time gaits by synthesizing a multi-period gait library
based on the online prediction of centroidal dynamics. This
enables fast reactive gait updating at 1kHz, and the step time
is adjusted online by synthesizing gaits with different peri-
ods. There is also related work in [13], [14], [15], [16], [17]
on planning step timing and location using MPC techniques.
They generally use the LIP model to construct an online solv-
able MPC problem, subject to the stability/viability condition
proposed also based on the LIP model. While our approach
constructs a whole-body MPC problem that considers the
whole-body constraints. Instead of directly solving this MPC
problem as people usually do, we find immediate solutions
by gait library synthesizing, which avoids the extremely
time-consuming online solving process. More importantly,
we prove that the constructed MPC problem can ensure the
UUB stability of the CoM states and show that our proposed
gait synthesizer can provide feasible solutions to the MPC
optimization problems. At last, simulation and experimental
results show that robots can achieve versatile and robust
locomotion with this proposed approach.

The paper is organized as follows. The MPC problem
for locomotion planning is described in Sec. II. Then the
multi-period gait library is constructed in Sec. III. In Sec.
IV, the predictive gait synthesizer is proposed and shown to
offer feasible solutions to the MPC optimization problems,
the UUB stability of the post-impact CoM states is also
proved in this section. Simulation and experimental results
on an 8-DoF bipedal robot are presented in Sec. V. Finally,
conclusions and future directions are given in Sec. VL.



II. PROBLEM DESCRIPTION

The overall motion planning and control architecture is
shown in Fig. [1} The planner generates whole-body motion
trajectories according to the user command and current robot
states, then an operational space controller (OSC) generates
appropriate motor commands to follow these trajectories. We
focus on the motion planning part in this paper.
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Fig. 1. The overall motion planning and control architecture. The proposed

centroidal model predictive gait synthesizer is shown in the dashed box.

Our proposed gait synthesizer is an MPC style planner,
the basic idea is to solve the following optimization problem
for future 2 steps at ¢y, the time from the last foot impact
(assume the right leg is the stance leg at the i step):
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Joint position, velocity and torque constraints satisfied.

Ground reaction force (GRF) constraints satisfied.

where ¢(t) represents whole-body motion trajectories, T}
is the step duration, 7, and w,(;) are the joint torques
and velocities to achieve ¢(t), p™[i] = [pf[i], p;[i]]” and
v[i] = [v[i], v, [i]]" are the post-impact horizontal CoM
position and velocity relative to the stance foot, p:lr =
[p;wR/Lp;d]T and v} = [v;d,R/Lv;d]T are the desired
values, subscripts x,y indicate the x/y direction, subscripts
R, L indicate the right/left leg is the stance leg. The first four
constraints are stability constraints, the constants ki, ks €
(0,1) and ks3,ks4 € (0,00) ensures the uniform ultimate
boundedness (UUB) of v* and p* around v and p], as
shown in Sec. IV.C. The bounded set is determined by the
small non-negative constants ¢, and ¢,. With ¢, and ¢, being
0, v* and p* will be exponentially converged to v} and p}.

However, directly solving (I)) using whole-body trajectory
optimization is extremely time-consuming. In the following
sections, we show that our proposed gait synthesizer can pro-
vide a feasible solution by combining an offline constructed
multi-period gait library and online gait synthesis based on
centroidal dynamics. As shown in Fig.[I} this gait synthesizer
can run at 1kHz, the same as the OSC. This fast re-planning
greatly increases the robot robustness to disturbances and
environmental uncertainties.

III. MULTI-PERIOD GAIT LIBRARY

In this section, the multi-period gait library is first con-
structed through trajectory optimization based on the full-
dimensional model.

A. Hybrid Model of Walking

The walking process is modeled as a hybrid system,
including a single support phase and an instantaneous double
support phase. Assuming the right leg is the stance leg, the
overall hybrid model of walking can be written as:

D(q)g + H(q,4) = B + Jr(a)" fr .
Jr(9)i+ Jr(g,d)g =0 4,q4) ¢S

" =Aq)q~ (¢,9) €5

2
where S = {(q,¢)|pi (q) =0, pj(q,4) < 0}.

The first two equations in (2)) describe the single support
phase dynamics. The first equation describes the floating base
dynamics, where ¢ is the vector of generalized coordinates
including both floating states and joint states, D(q) is the
mass-inertia matrix, H(q, ) contains the gravity force and
coriolis force, 7 is the vector of motor torques, fgr is the
contact wrench. B is the motor torque distribution matrix,
Jr(q) is the Jacobian matrix of the contact point. The
second equation describes the contact constraint, i.e., the
acceleration of the contact point is zero.

The third equation in (2) describes the instantaneous
double support phase. When the vertical position of the
swing foot p7 (¢) decreases to 0, i.e. (¢,4) € S, the robot
enters double support phase. Following the rigid impact
development process in [18], the double support phase can
be modeled as a discrete map A(q) between ¢~ and ¢ (the
velocity of the system just before and after impact).

B. CoM Related Outputs

Each gait in the gait library contains time trajectories
of the selected quantities to be controlled, these quantities
are termed as ’outputs’. In existing work, joint angles are
usually selected as outputs [7], [10] for direct use of joint-
level control. Recently, workspace quantities are also used
for their intuitive physical meanings [19], which can then
be combined with an OSC. In this paper, CoM related
quantities are selected as outputs to support the CoM based
gait synthesis in Sec. IV.

Specifically, 10 quantities are selected as outputs, they
are listed in Tab. [I. The CoM x and y positions are not
selected as outputs as the stance foot roll and pitch are in fact



weakly actuated for limited sole area, these two actuations
are used in the controller to regulate the pre-impact CoM
velocity for robots with active feet. For underactuated bipedal
robots, certain quantities are removed from the outputs. For
example, for a bipedal robot with fully-passive feet, ¢ foot,
000t should be removed.

TABLE I
SELECTED OUTPUTS

Torso roll, pitch and yaw Otorsor Dtorsor Vtorso

Vertical position of the CoM 200M
Swing foot x and y positions Z foot
relative to the CoM Yfoot
Swing foot vertical position Zfoot

Swing foot roll, pitch and yaw | ¢foot, Ofoots Voot

C. Periodic Gaits Optimization

For a periodic gait, the sagittal pre-impact CoM velocity
(v, ) repeats every step, while the lateral pre-impact CoM
velocity (rv, and rv,’) repeats every two steps. Therefore,
in order to cover different periodic sagittal and lateral move-
ments, we need a gait library with at least four dimensions
[T,v, , RV, , LV, ]. As the development of trajectory opti-
mization tools such as FROST[20] and C-FROST [21], this
gait library can be constructed conveniently.

Periodic walking gaits with different sagittal, lateral aver-
age velocities and different lateral velocity differences are
optimized for multiple periods. The difference of lateral
velocities 6vy_ = RV, — LU, is also constrained as different
combinations of gv, and v, can realize the same average
lateral velocity. Each optimization problem is performed over
two steps with the right and left leg being the stance leg
successively. The cost function used in the optimization is
the sum square of power:

2T
Cost = / |7 - wl||?dt, (3)
0

where 7 and w are the actuated joint torques and velocities.
Constraints enforced in the optimization are listed in Tab.
The swing foot impact velocity is constrained to 0 so that
the foot impact will not change the CoM velocity, i.e.

vifzv;,v;:v;. “)

TABLE I
CONSTRAINTS USED IN GAIT OPTIMIZATION

Average Sagittal Velcoity Uz i
Average Lateral Velcoity Uy i
Difference of Lateral Velocity | v, ;

Period T;

Friction Cone n=0.6
Mid-step Swing Foot Height | 0.07m
Swing Foot Impact Velocity (0,0,0)m/s
Joint Position, Velocity and Determined
Torque Limits by hardware

After these optimizations, we acquire output trajectories
for different gaits. All these trajectories are parameterized

with Bézier polynomials in terms of the normalized time
s=1t/T € [0,1]. The i™ output h’, can be represented as

hg(s) = ZjMil a(iaj)W!_jH)gsrl(l — )M,

&)

where M is the order of the Bézier polynomial, N is the
number of outputs, v € RV*(M+1) ig the parameter matrix.
Thus, each gait can be represented with a parameter matrix
labeled with its unique [T, v, rv, , Lv, ], i-e., aZ;Rvy_}Lvy_.
Remark 1: A simplified gait library can be constructed
with 2 dimensions [T, v; ], the nominal lateral footstrike

location can be calculated online using the LIP model [22]:
yfoot(T) - (U; - d)/O’, (6)
2
where o = Manh(IX), A = /-2, 4 = YeechGNT

zZcom’ 20 Yo
T is the current period, Zcoas is the average COM height
of current gait, ¥, is the desired average lateral velocity .
Remark 2: Standing motion can be considered as a pe-
riodic trajectory with an oo period. The posture at the
beginning of a gait with zero average sagittal and lateral
velocity can be directly used for standing.

IV. CENTROIDAL MODEL PREDICTIVE GAIT
SYNTHESIZER

In this section, we propose the MPC style gait synthesizer.
It provides a feasible solution of (I)) by first predicting the
pre-impact CoM states v~ [i], p~ [¢] according to current v, p
and then synthesizing gaits accordingly.

A. Pre-Impact CoM States Prediction

The pre-impact CoM states v—, p~ are first predicted
according to current v, p. The centroidal dynamics of a robot
can be described as:

1
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where z is the vertical position of the CoM, p represents the
horizontal position of the CoM, which can be either x or y
axis position, f, and f, are ground reaction forces, m is the
total mass, g is the acceleration of gravity. It is assumed that
there is enough rotational friction between the foot and the
ground to balance the z axis angular momentum. The x/y
axis angular momentum change rate is also assumed to be
0, as the swing and stance legs are generally symmetric and
the torso is kept upright, i.e.

fpz—=fp=0 ®)
Combining (7) and (), we can have
1
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where f. is determined by the PD controller in the OSC,

fo=CE +kp(z" —2) + ka(2" — 2) + g)m, (10)



where z*, 2*, Z* are current CoM vertical reference trajectory
and its derivatives, k, and kg are controller parameters (As
the robot used in this paper is a joint-torque-controlled
robot and the OSC controller explicitly considers the full-
dimensional dynamics, the OSC can accurately regulate the
vertical acceleration and hence f, during stance). Rearrang-
ing (9) and (I0), we can have a nonlinear state space model

X:fpredict(XaZ*72*aé*at)7 (11)

where X = [z,p, 2,v]T. Given current state X (to), the pre-
impact states can be predicted by numerical integration,
Tt

fpredict(X, 2%, 2%, 2%, t)dt.

to

X" =X(T) = (12)

For standing gait, the CoM height is kept constant, the
Capture Point (CP) is calculated instead of predicting the
CoM states at T; = oo. As the CP is the nearest zero
momentum point (ZMP) that can reduce the horizontal CoM
velocity to 0, the support region should at least contain the
CP for the robot to keep standing. Thus the CP is used as
the criterion to predict if the robot can keep standing. The
CP is calculated by

CP=p+v/\g/z

Note that the CoM height is assumed constant for standing
to simplify the control architecture, other more advanced
standing controllers [23] that can vary the CoM height can
also be used in this gait synthesis framework.

13)

B. Gait Synthesis Algorithm

Algorithm 1 Gait Synthesis Algorithm

1: Imput: p, v, tg, So, Jd» 113', 1

2: Output: «

3: Initialize: Flag =0

4: for y = j4, 54+ 1,--- ,k do

5: T=5r{j}, Ty =to+ (1 —s0)T

6 Predict p—[i], v~ [¢] using p, v, to, T} with

7: if (pi [Z‘],’Uf[i]) € Sfcasible then

8: Gait Interpolation:
vgall = gt ovga = oyl
a = Gi"tP(T Vg [ ]a Uy [ﬂ?vy,s[l])'

9: Gait Modification:
alb, M +1) = a5, M + 1) + kg (v [i] — v;d),
a(6, M +1) = a(6, M + 1) — ky(v, [i] — Lv,f ).
Then check kinematic constraints.

(15)
10: Flag = 1, Break;
11: end if
12: end for
13: if Flag == 0 then
14: Prepare for falling
15: end if

Assume the gait library has %k periods, [ sagittal pre-

impact velocities and n pair of lateral pre-impact velocities.
The set of periods is St = {T1,T%, -+, Ty} in descend-
ing order. The sets of pre-impact velocities are S, - =
{v:;1>v;,27"' 7”;1}9 SRU {Rv;bRU;zv"' 7Rvy_,n}
and S - = {Lv, 1,LVy 2, " 1LV, ,} in which velocities
are in ascending order. From now on, the right leg is assumed
to be the stance leg, subscripts R and L can be swapped for
the left leg case. The gait synthesis algorithm is summarized
by the pseudo code in Algorithm 1.

In lines 1-3 the input, output and initialization of the
algorithm are defined. The input includes current robot states
P, v, the time from the last foot impact ¢¢, the normalized step
time s, the index jg of the desired period Ty(Ty = St{ja})
and the desired post-impact velocities v:j, 1 is the current step
number. The output is the synthesized gait parameter «. The
variable Flag is the flag for finding a feasible a.

In lines 4-7 the period set St is traversed from the j4-
th element, until a feasible 7" is found. And the total step
duration 77 is modified accordingly. If the period is changed
to T at tp (normalized step time 50), then s is updated with
the new period T by s = s —1— = to keep s continuous, until
s = 1, where t, is the sample time. Thus the total step
duration of this step is T; = tg + (1 — sp)T. A T is feasible
if the predicted (p~[¢], v~ [¢]) with this T is in Sfeqsipie. The
feasible set Sfcqsivie is defined as

{(p_av_)lp_ € SCO]Magfoot<T7 Ug; ; y ; y 3) € Sfoot}
(16)

where o0t (T, v vy, v, ) (part of Gipgy in ) calcu-
lates the pre-impact swing foot position of the interpolated
gait, Sconm and Spoo are feasible regions of the CoM
and swing foot positions, they are designed to satisfy the
kinematic limits and avoid foot collision. If the predicted
(p~[i], v~ [i]) with current T is not feasible, a smaller T is
tested as decreasing step time enlarges the feasible region.

In line 8 the gait parameter « is synthesized if a feasible
period T is found. First, the gait library is interpolated by
tri-linear interpolation:

Gintp(T7 U; [Z]a/U; [Z]7U;9[l]) =
+al (1-&)(1 = &)1 - &)

Vg, u, RVy, v, LUy, w

+al_ e a1 =6)(1 - &)

Uy ut+1 RVy, v, LYy w

+a ooy (60821 = &5)
JrOévTT RV L U 11 (1 - 51)(1 - 52)53 (17)
+off‘ S s
UT wsRUy o150 LVy 1
+av2u+1 T 515253,
if g, < vy [i] S vgup1s RV Sy (1] < RUY 1LV <
vy sli]l < L, 41, Where & = %, )
v, [i]—rvy , by = vy_,.[] LUy w

,0<u<,0<v<n,
RV, 41— RV’ w1 —LVyw’

0 < w < n. This 1nterpolated gait is approximately a
periodic gait, which can drive v, [i + 1], v, [i 4+ 1] to a very



small neighbor of v [i],v, [i] as explained in .

In line 9 « is partlally modified to regulate v~ [i + 1]
towards v} with a discrete P-type controller, a(5, M + 1)
and «(6, M + 1) represent the pre-impact swing foot posi-
tions Zfoor and Yoot respectivelyﬂ This type of controller
has been successfully implemented in [1], [10], [22], [24].
After the gait modification, the kinematic feasibility of the
swing foot position is checked again, if violated, the gait
modification will be truncated.

In line 10, the traversing is break when a new feasible gait
is synthesized. In lines 13-15 the robot prepares for falling
if no feasible gait is found.

During standing, if the CP is outside the support region,
the robot will use Algorithm 1 to adapt to a finite period.
When the CP is within the support region at a double support
instant, the robot can switch to standing.

C. Stability Analysis
In this section, we present the stability analysis of v and

pt in terms of UUB stability. First the solution of is
shown to ensure the UUB stability of v+ and p*.

Theorem 1.1. The solution of (I) ensures the uniform
ultimate boundedness of vt around vj, ie., there 3b,c > 0,
Sor every 0 < a < ¢, there exists N = N(a,b) € Ny such
that

lv™ [io] = v || < a = [[o"[i] = v || <b,¥i > ig+ N (18)

Proof: We prove for v here, the proof for v is similar.
Let ¢ = min(||v, , —v;d”, vz — v:’d||), i.e., the minimal
distance from v+ q tothe Velocity boundary of the gait library.

and N > log;Cl

fm

Letb >

—*L_ Then according to the

- T
first constraint in , and k; € (0,1), we can have
||U+[ } — Uy || < kll 10”1} [ ]_Ud || +Ez io— 1]€]
<klzoa+ €$<k‘1110
(19)

T kl

Since i —ig > N > logk1 and k; € (0,1)

[0 [i] = v || < kaVa+ 5

kl a+ =5 = b,
(20)
which completes the proof. |

Theorem 1.2. The solution of ({I) also ensures the uniform
ultimate boundedness of p* around pg.

Proof: Since v is uniformly ultimately bounded, accord-
ing to the 3rd and 4th constraints in (1), p} and p are also
uniformly ultimately bounded, with the bounded set being
k3(k4) times the bounded set of v™. ]

Remark 3: If ¢, = 0 and ¢, = 0, it can be easily shown
that the solution of (I ensures the exponential stability of
vt and p* towards v and p].

Next we show that the generated gaits of our gait syn-
thesizer satisfy the stability constraints of (I). The velocity

*Tfoor and Yroor are the 5h and 6™ outputs in Tab. E} they are
parameterized by the 5 and 6™ rows of «, and for a Bézier polynomial,
the last coefficient equals to the end value, i.e., the pre-impact value.

range of the gait library is defined as

Sv_: {(Ux_aRvy_aLvy_)|U S U < Uzla (21)
RV, 1 S RV, S RV, LV, S LUy S LU )

The poincaré map of the pre-impcat CoM velocities between
steps are defined as P4y, i.€.,

[vg [0 + s v, [0 +1]] = Prap(ci, vg i vy [i]), - (22)

where «; is the gait parameter implemented for the i step.

Then an assumption is given about the gait interpolation.

Assumption 1. There exist €;,€, > 0 such that, for any
[ ;7 Rv;v L’Ui] S Sv and Qintp = Gintp(Ta ’U;, RU;7 LU;);
[ijmp, Pmap] = Prap(Qintp, v, RUy ) satisfy:

H map x || < €z, || map Lvy_H S 6y~ (23)

This assumption is based on the fact that each gait
o’ _  _ in the periodic gait library satisfies
Vg yRVUy LUy

Prap (aT_

Vg yRUy sLVy

vy RUy ) = (v, L0, ], (24)

thus the interpolated gait should approximately satisfy (24)
at the in-between velocities with very small errors €, and €.
They are bounded by the grid size of the gait library, as the
grid size decreases, €, and €, converge to 0.

Lemma 2.1. There exist 0,,0, < 0 such that, the ratios of

the pre-impact CoM velocity change AP, ., to the footstrike
location change Aa(5, M + 1) and Aa(6, M + 1) satisfy:

x

AP,
61 < map

S Ra(5,M+1) (25)

AP,
< 0,0y < xawirm <0

Then we can discretize it to

According to @) p= f .

e [f«i s 3] ()

mz(k)

(26)

For a given nominal gait, z(k) is a fixed trajectory, so is
f=(k). Thus i ZZ((]Z) is a fixed trajectory, besides jL ZZ((’Z)) is
positive and bounded. Then we can multiply (26) iteratively
for a step period T to get the pre-impact CoM velocity, given
initial CoM states py and vg, and show that the change ratio
is negative and bounded. Note that the initial CoM position

equals to the negative value of the footstrike location. W

Lemma 2.2. Each element @inp(T, vy, RUy s LUy ) of
Gintp(T, vy, RV Lv;) is Lipschitz continuous in S,, i.e.,
there 3K > 0 such that, for all Vo = [vg 4, RV 4 Ly o]
and Vi, = [v;b, RV, p» Lv;b] in S,

||gintp(Ta Va) - gintp(Tv ‘/b)H § KHVa - VbH (27)

According to , eVery gintp 1S a cubic function in each
subset of .S, and can be shown to be Lipschitz continuous
in each subset. Then it can be further shown to be Lipschitz
continuous in S, since .S, is convex. The detailed proof is
omitted due to space limit. |

Theorem 2. The generated gait of our gait synthesizer



satisfies the stability (the first four) constraints of (1)), if

O<kx<—%,0<k¢y<—%. (28)

Proof: (Assume the right leg is the stance leg for step %)
We here prove for the sagittal direction. First, we show

o i + 2] = v Il < Kl i + 1) = of gl + e (29)
According to (T4),(T3):

vp[i+1) = Py + mopaistrke vz [i] — vl G0)
Thus
oz [i + 1] = o
= |PE 0 — vz [i) + (1 + mopemer k) vz li] — vl )|
<1+ magp ez kallllvg i) = vf gl + 1 PEa, — vz )]

3D

Accordmg t0 | and ( Prap — vz (il < ea,
1+ APS,,/ a M+1 <|\1+5k||<1thus

oz [i+1] —vg 4ll < |\1+5x/€z||||v;[i] —vg gl +€a (32)

Furthermore, (@) indicates that v*[i+1] = v~[i], thus
is proved with k1 = ||1 + d,k.||. Next we show that

[i + 2] v; 4 ‘ ’

i+ 2]] [Rv;:d] (33)
The pre-impact swing foot position is part of the output

of Gintp (as explained in Sec. IV-B®), noted as Jfoot- The

post-impact CoM position equals to the negative value of the

pre-imapct swing foot position, i.e., p*[i + 1] = —p,,[i].

Thus for the desired periodic gait, p} and v should satisfy

(34)

It li+2) =2l < | |12

+ _ . + o+
Pr.da = ~Yfoot (T’ Vy,d>» RVy d» Lvy,d)'

Consider the i + 1" step, according to ,,

Pili+ 2 = —g% oo (Tooy [i 4+ 1), vy i + 1], vy [i + 1])
—ko (v [i + 1] = v} )
(35)
Thus,
1P li 4+ 2) = P all = 195 001 (Ts Vaugli + 1)

i (07 [+ 1] = 07 0) = G500t (T 0 a5 BV 05 20y )|
< ||gjrcoot (T7 Ua_ug [Z + 1]) - gf’oot (T’ U;d’ RU;_,W L’U:Id)”_‘_
kol [0+ 1] = v 4]
(36)
where v, [i + 1] = [v; [i + 1], v, [i + 1], v, [i + 1]].
Then, according to @) and (27)

I li + 2] = pf
v;[i—FQ]—U;d
<K‘ o li+ 2= oy | || + ko i+ 2 — o)

v;[i+2}7Rv;d N

v*[i+2]} [v d}
< (V2K + k)|[ |2l B H
(V2 ) {v;[z—i—Z] Rv;d

Thus is proved with k3 =

(37
V2K + k,. The proof for the

lateral direction is similar, it is omitted here. |

D. Kinematic and Dynamic Feasibility

The kinematic limits including the joint position and
velocity limits are explicitly considered in the offline gait
optimization. To further ensure the kinematic feasibility of
the interpolated and modified gaits, the feasibility of the CoM
and the swing foot position is checked in line 7 in Algorithm
1 during gait interpolation, if violated, a smaller 7" will be
used. Then in line 9, the feasibility of the swing foot position
is checked again after gait modification.

The generated gaits are dynamic feasible if the joint
torques and ground reaction forces to realize the output
trajectories are within feasible limits. These limits are also
explicitly considered in the offline gait optimization. Despite
the loss of theoretical soundness, this provides a good
foundation for the interpolated and slightly modified gaits to
also satisfy these feasibility constraints. In practical, we can
set more conservative constraints in the offline optimizations
and constrain the modified term in (I3) to ensure the dynamic
feasibility of the generated gaits.

In our simulations and experiments, the constraints in the
offline optimizations are not tightened and the modified value
in (T3) is less than 5% of the leg length, and the generated
gaits are always kinematically and dynamically feasible.

Overall, the generated gaits of our gait synthesizer satisfy
the stability constraints of (I, and we can use the gait library
and the pre-mentioned actions to ensure their kinematic
and dynamic feasibility practically. Thus our proposed gait
synthesizer can provide feasible solutions to ().

V. IMPLEMENTATION RESULTS

This section presents simulation and experimental results
of the proposed gait synthesizer. As shown in Fig. [Zh,
an 8-DoF bipedal robot is used in the simulation, it has
four actuators in each leg, they are for hip abduction, hip
flexion, knee and ankle respectively. A physical robot is built
according to this model first with passive feet (Fig. 2p) and
then with active feet (Fig. 2k). The active-foot robot weighs
17 kg and the hip height is 0.41m in standing pose.

Hip
Abduction

Fig. 2. Bipedal robots for simulations and experiments. (a) Simulation
model. (b) passive-foot robot. (c) active-foot robot.

A. Simulation Results

We first show simulation results on the 8-DoF robot
model. The gait library is constructed with 3 peri-
ods {00, 0.35, 0.2}(s) and 8 sagittal average velocities



{-0.5, —0.3, —0.15, 0, 0.15, 0.3, 0.5, 0.7}(m/s), the peri-
odic gait for the lateral direction is calculated using (6). The
controller used in the simulation is a QP-based operational
space controller, similar to the one used in [25]. The gait
modification parameters are k, = 0.08,k, = 0.095, same
for all simulations.
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Fig. 3. Plots of velocity and gait period of the robot for (a) versatile
walking, (b) push recovery and (c) rough terrain walking in simulations. In
the period plots, 7" is oo in the blank segments, i.e., the robot is standing.

The first simulation is walking and standing following
the user command. As shown in Fig. Eh, the robot started
from standing, then transitioned to walking following the
desired velocity and period commands, finally returned to
standing. We can see that the robot followed the desired
v 4 RV 4, LU, very responsively and accurately.

TABLE III
THE TIME AND MAGNITUDE OF IMPULSES.

Time 4s 8s 128 | 16s 20s 24s
Sagittal | 5SNs | 7Ns | 0 0 9ONs | 9Ns
Lateral 0 0 2Ns | 4Ns | -6Ns | 6Ns

The second simulation is the push-recovery test. The robot
started from standing. Six impulses with different magnitudes
were applied to the robot in the sagittal and lateral directions.
The magnitude and applied time of these impulses are shown
in Tab. [l As shown in Fig. Bp, for the first and third
impulses, the robot recovered to steady state purely by the
standing controller. While for other cases, the robot detected
that it can not keep standing and automatically took steps
with appropriate periods and then returned to standing. The
robot recovered from instant velocity change up to 0.7m/s in
the sagittal direction and 0.5m/s in the lateral direction.

The third simulation is the uneven terrain test. As shown
in Fig. @, the robot blindly walked over a terrain with 15
degree slopes, Scm stairs (12% of the hip height) and 2-5cm
boards. The desired speed is 0.4m/s and the nominal period
is 0.35s. The velocity and gait period are shown in Fig. Bk,
we can see that the robot successfully passed this terrain with
small velocity variation.

B. Experimental Results

Finally we apply the proposed gait synthesizer to both the
passive-foot and active-foot physical robots in Fig. [2| The

Fig. 4. (a) shows the uneven terrain (15 degrees slopes, Scm stairs and
2-5cm boards) in simulation. (b) shows the passive-foot robot walking over
2cm rough terrain. (c) and (d) show that the passive-foot and active-foot
robot are hit by a Skg wall ball during stepping in place. (e) shows the
active-foot robot walking over a 3cm board. (f) shows the active-foot robot
walking over a 5 degrees slope.

robot achieved stable walking with maximal speed 0.7m/s,
passed the push-recovery tests and preliminary uneven-
terrain tests as shown in Figl] The experimental data of
the push-recovery test for the active-foot robot is presented
here. As shown in Fig. [dd, the robot was hit by a 5kg (29%
of its weight) wall ball in the sagittal direction for 9 times
while stepping in place. The sagittal velocity and gait period
are shown in Fig. [5] the robot recovered from instant velocity
change up to 0.8m/s.
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Fig. 5. The first figure shows the sagittal velocity of the robot during the
push recovery experiment. The second figure shows the gait period.
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Fig. 6. Experimental data plots of the joint positions, velocities and torques
of the right leg after a push disturbance.

The experimental data plots of the joints and ground
reaction forces (estimated with joint torques) of the right leg
just after a push disturbance are shown in Fig. [f] and Fig.



[7l We can see that all joint positions, velocities and torques
are well within the bounds represented by the dashed lines.
The ground reaction forces also well satisfy the friction cone
constraints (11=0.6). These results help to demonstrate the
feasibility of the generated gaits. Furthermore, the estimated
vertical ground reaction force f, is compared with the value
from the PD law (I0), we can see they are almost identical
during the stance phase, thus (I0) can used to predict f..
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Fig. 7.  Experimental data plots of the right leg GRFs after a push
disturbance, and the comparison of f. with the value of the PD law (I0).

VI. CONCLUSION

The results in this paper provide a methodology towards
full-dimensional model based real-time motion planning for
bipedal locomotion with UUB stability. We showed that our
proposed gait synthesizer can provide feasible solutions to
the constructed MPC optimization problems, which leads
to fast online planning at 1kHz. The proof of stability
is provided by showing that the post-impact CoM states
of the robot are UUB stable. Simulation and experimental
results showed that, with this proposed approach, robots can
achieve flexible transitions between standing and walking,
accurate velocity tracking with different step periods, robust
locomotion under disturbances, and passing uneven terrains.

Future work will be extending current work to locomotion
planning with terrain knowledge. Exploring more intelligent
methods of combining whole-body and centroidal dynamics
for motion planning and combining other methods of gener-
ating centroidal trajectories [26] are also future directions.
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