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Moving Object Segmentation in 3D LiDAR Data:
A Learning-based Approach Exploiting Sequential Data

Xieyuanli Chen Shijie Li Benedikt Mersch Louis Wiesmann Jürgen Gall Jens Behley Cyrill Stachniss

Abstract—The ability to detect and segment moving objects
in a scene is essential for building consistent maps, making
future state predictions, avoiding collisions, and planning. In this
paper, we address the problem of moving object segmentation
from 3D LiDAR scans. We propose a novel approach that
pushes the current state of the art in LiDAR-only moving
object segmentation forward to provide relevant information for
autonomous robots and other vehicles. Instead of segmenting
the point cloud semantically, i.e., predicting the semantic classes
such as vehicles, pedestrians, roads, etc., our approach accurately
segments the scene into moving and static objects, i.e., also
distinguishing between moving cars vs. parked cars. Our pro-
posed approach exploits sequential range images from a rotating
3D LiDAR sensor as an intermediate representation combined
with a convolutional neural network and runs faster than the
frame rate of the sensor. We compare our approach to several
other state-of-the-art methods showing superior segmentation
quality in urban environments. Additionally, we created a new
benchmark for LiDAR-based moving object segmentation based
on SemanticKITTI. We published it to allow other researchers
to compare their approaches transparently and we furthermore
published our code.

Index Terms—SLAM, Deep Learning Methods

I. INTRODUCTION

THE ability to identify which parts of the environment
are static and which ones are moving is key to safe and

reliable autonomous navigation. It supports the task of predict-
ing the future state of the surroundings, collision avoidance,
and planning. This knowledge can also improve and robustify
pose estimation, sensor data registration, and simultaneous
localization and mapping (SLAM). Thus, accurate and reliable
moving object segmentation (MOS) in sensor data at frame
rate is a crucial capability supporting most autonomous mobile
systems. Depending on the application domain and chosen
sensor setup, moving object segmentation can be a challenging
task.

In this work, we address the problem of moving object
segmentation in 3D LiDAR data at sensor frame rate in urban
environments. Instead of detecting all theoretically movable
objects such as vehicles or humans, we aim at separating the
actually moving objects such as driving cars from static or non-
moving objects such as buildings, parked cars, etc. See Fig. 1
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Fig. 1: Moving object segmentation using our approach. Our method
can detect and segment the currently moving objects given sequential
point cloud data exploiting its range projection. Instead of detecting
all potentially movable objects such as vehicles or humans, our
approach distinguishes between actually moving objects (labeled in
red) and static or non-moving objects (black) in the upper row. At the
bottom, we show the range image and our predictions in comparison
to the ground truth labels.

for an example scene and our segmentation. Moving objects
are colored in red. We propose a novel approach based on
convolutional neural networks (CNNs) to explicitly address
the MOS problem for 3D LiDAR scans. We exploit range
images as an intermediate representation, which is a natural
representation of the scan from a rotating 3D LiDAR such
as a Velodyne or Ouster sensors. Based on this compara-
bly light-weight representation, we can directly exploit the
existing range-image-based semantic segmentation networks
as proposed by Milioto et al. [19], Cortinhal et al. [8], and
Li et al. [16] to tackle the MOS problem. Most of such
existing LiDAR-based semantic segmentation networks predict
the semantic labels of a point cloud, e.g. vehicle, building,
road, etc. They do not distinguish between actually moving
objects, like moving cars, and static objects, like parked cars
and also buildings, etc. We are making this distinction and are
exploiting sequences of range images, allowing for an effective
moving object segmentation targeted to autonomous vehicles.
Our main application focus is perception for self-driving cars
in outdoor scenes, but the method itself is not restricted to this
domain.

This paper’s main contribution is a novel method based on
CNNs using range images generated from 3D LiDAR scans
together with the residual images generated from past scans as
inputs and outputs for each range measurement in the current
frame a label indicating if it belongs to a moving object or
not. By combining range images and residual images our
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network exploits the temporal information and can differen-
tiate between moving and static objects as shown in Fig. 1.
For training, we reorganize the SemanticKITTI [3] dataset
and merge the original labels into two classes, moving and
static, by exploiting the existing annotations of moving traffic
participants. Furthermore, our approach runs faster than the
sensor frame rate, i.e., 10 Hz for a typical rotating 3D LiDAR
sensor. Comparisons with multiple existing methods suggest
that the proposed approach leads to more accurate moving
object segmentation. In sum, we make two key claims: First,
our approach is able to achieve moving object segmentation
using only 3D LiDAR scans and runs faster than the sensor
frame rate of 10 Hz. Second, it improves the moving object
segmentation performance by incorporating residual images in
addition to the current scan and outperforms several state-of-
the-art networks. To allow for as easy as possible comparisons
and support future research, we propose and release a moving
object segmentation benchmark 1, including a hidden test set,
based on the SemanticKITTI dataset and we release the
source code of our approach 2. We also provide a short video3

illustrating the capabilitiy of our method.

II. RELATED WORK

While there has been a large interest in vision-based [18],
[2], [21], radar-based [1] and vision and LiDAR com-
bined [32], [23] moving object segmentation approaches, we
concentrate here on approaches using only LiDAR sensors.
Below, we distinguish between map-based and map-free ap-
proaches.

Map-based approaches. Most of the existing LiDAR-
based approaches target the cleaning of a point cloud map.
These methods mostly run offline and rely on a prebuilt map.
Some methods use time-consuming voxel ray casting and
require accurately aligned poses to clean the dense terrestrial
laser scans [13], [25]. To alleviate the computational burden,
visibility-based methods have been proposed [22], [31]. These
types of methods associate a query point cloud to a map
point within a narrow field of view, e.g. cone-shaped used
by Pomerleau et al. [22]. Recently, Pagad et al. [20] propose
an occupancy map-based method to remove dynamic points in
LiDAR scans. They first build occupancy maps using object
detection and then use the voxel traversal method to remove
the moving objects. Kim et al. [15] propose a range-image-
based method, which exploits the consistency check between
the query scan and the pre-built map to remove dynamic points
and uses a multi-resolution false prediction reverting algorithm
to refine the map. Even though such map-based methods can
separate moving objects from the background, they need a pre-
built and cleaned map and therefore usually can not achieve
online operation.

Map-free approaches. Recently, LiDAR-based semantic
segmentation methods operating only on the sensor data have
achieved great success [19], [8], [16]. Wang et al. [29] tackle
the problem of segmenting things that could move from 3D

1http://bit.ly/mos-benchmark
2https://github.com/PRBonn/LiDAR-MOS
3https://youtu.be/NHvsYhk4dhw

laser scans of urban scenes, e.g. cars, pedestrians, and bicy-
clists. Ruchti and Burgard et al. [24] also propose a learning-
based method to predict the probabilities of potentially mov-
able objects. Dewan et al. [10] propose a LiDAR-based scene
flow method that estimates motion vectors for rigid bodies.
Based on that, they developed both semantic classification
and segmentation methods [11], [9], which exploit the tem-
porally consistent information from the sequential LiDAR
scans. Bogoslavskyi and Stachniss [5] propose a class-agnostic
segmentation method for 3D LiDAR scans that exploits range
images to enable online operation and leads to more coherent
segments, but does not distinguish between moving and non-
moving objects.

Semantic segmentation can be seen as a relevant step
towards moving object segmentation. Most existing semantic
segmentation methods, however, only find movable objects,
e.g. vehicles and humans, but do not distinguish between actu-
ally moving objects, like driving cars or walking pedestrians,
and non-moving/static objects, like parked cars or building
structures. The most similar work to ours is the one by Yoon
et al. [33], which also detects dynamic objects in LiDAR
scans without using a pre-built map. It exploits heuristics, e.g.
the residual between LiDAR scans, free space checking, and
region growing to find moving objects. There are also multiple
3D point cloud-based semantic segmentation approaches [28],
[27], [26], which also perform well in semantic segmentation
tasks. Among them, Shi et al. [26] exploit sequential point
clouds and predict moving objects. However, based on net-
works operating directly on point clouds, these methods are
usually heavy and difficult to train. Furthermore, most of them
are both time-consuming and resource-intensive, which might
not be applicable for autonomous driving.

Our method is also based on neural networks and we
investigate the usage of three recent range projection-based se-
mantic segmentation methods proposed by Milioto et al. [19],
Cortinhal et al. [8], and Li et al. [16] to tackle MOS with
the prospect of real-time capability and operation beyond
the frame rate of the LiDAR sensor. Our method does not
rely on a pre-built map and operates online, i.e., uses only
LiDAR scans from the past. We exploit residuals between
the current frame and the previous frames as an additional
input to the investigated semantic segmentation networks to
enable class-agnostic moving object segmentation. Note that
the proposed architecture does not depend on a specific
range projection-based semantic segmentation architecture. By
training the network with proposed new binary masks, our
method distinguishes between moving cars and parked cars in
an end-to-end fashion.

III. OUR APPROACH

The goal of our approach is to achieve accurate and fast
moving object segmentation (MOS) for LiDAR scans to enable
autonomous mobile systems to make decisions in a timely
manner. Fig. 2 shows a conceptual overview of our proposed
method. To achieve online MOS, we first project the point
clouds into range image representation (see Sec. III-A). To
separate moving and non-moving objects, we then exploit
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Fig. 2: Overview of our method. We use the range projection-based representation of LiDAR scans to achieve online moving object
segmentation. Given the current scan S0, we generate residual images from previous scans {Si}Ni=1 to explore the sequential information.
This is by transforming them to the current viewpoint with a homogeneous transformation matrix T 0

i estimated from a SLAM or sensor-based
odometry, projecting them to the range representation with a mapping Π and subtracting them from the current scan’s range image. The
residual images are then concatenated with the current range image and used as input to a fully convolutional neural network. Trained with
the binary labels, the proposed method can separate moving and static objects.

sequential information (see Sec. III-B) computing residuals
between the current and the previous scans (see Sec. III-C). We
finally concatenate them together with the range information as
the input for a segmentation CNN (see Sec. III-D). In addition,
we propose a novel MOS benchmark based on SemanticKITTI
(see Sec. III-E) to train and evaluate MOS methods.

A. Range Image Representation
In line with prior work [19], [16], [7], we use a range

projection of a point cloud to generate an image representation.
Specifically, we convert each LiDAR point p = (x, y, z) via
a mapping Π : R3 7→ R2 to spherical coordinates, and finally
to image coordinates, as defined by(

u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
w[

1−
(
arcsin(z r−1) + fup

)
f−1
]
h

)
, (1)

where (u, v) are image coordinates, (h,w) are the height
and width of the desired range image representation,
f = fup + fdown is the vertical field-of-view of the sensor, and
r = ||pi||2 is the range of each point. This procedure results
in a list of (u, v) tuples containing a pair of image coordinates
for each pi. Using these indices, we extract for each pi, its
range r, its x, y, and z coordinates, and its remission e, and
store them in the image. Thus, each pixel can store more
than only a range. Consequently, we can easily exploit extra
information and add this as extra channels. Therefore, we can
directly feed this information to existing networks without
changing the architectures, which makes our method easily
transferred to other new architectures. To show this capability,
we test our method with three different segmentation networks
in this paper.

B. Sequence Information
We aim at segmenting moving objects online, i.e., only

using the current and recent LiDAR scans, such that one

can exploit the information for odometry estimation in a
SLAM pipeline and potentially remove dynamics from a
map representation. We assume that we are given a time
series of N LiDAR scans in the SLAM history, denoted by
Sj = {pi ∈ R4} with M points represented as homogeneous
coordinates, i.e., pi = (x, y, z, 1). We denote the current
LiDAR scan by S0 and the sequence of N previously scans
by Sj with 1 < j < N . The estimated N consecutive
relative transformations from the SLAM / odometry approach,
TN−1

N , . . . ,T 0
1, between the N+1 scanning poses, represented

as transformation matrices, i.e., T l
k ∈ R4×4, are also assumed

to be available. Given the estimated relative poses between
consecutive scans, we can transform points from one viewpoint
to another. We denote the kth scan transformed into the lth

scan’s coordinate frame by

Sk→l = {T l
kpi|pi ∈ Sk}, (2)

with T l
k =

∏l+1
j=k T

j−1
j .

C. Residual Images

Inspired by Wang et al. [30], who exploit the difference
between RGB video frames for action recognition, we propose
to use LiDAR-based residual images together with pixel-
wise binary labels on the range image to segment moving
objects. Combining the current sensor reading and residual
images, we can employ existing segmentation networks to
distinguish between pixels on moving objects and background
by leveraging the temporal information inside the residual
images.

To generate the residual images and later fuse them into
the current range image, transformation, and re-projection are
required. To realize this, we propose a three-step procedure:
First, we compensate for the ego-motion by transforming the
previous scans into the current local coordinate system given
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Fig. 3: Residual images, where j means the residual image generated
between the current frame and the last j-th frame. We can see the
continuous discrepancy in the residual images due to the motion of
the moving car.

the transformation estimates as defined in Eq. (2). Next, the
transformed past scans Sk→l are re-projected into the current
range image view using Eq. (1). We compute the residual
dlk,i for each pixel i by computing the normalized absolute
difference between the ranges of the current frame and the
transformed frame by

dlk,i =
|ri − rk→l

i |
ri

, (3)

where ri is the range value of pi from the current frame
located at image coordinates (ui, vi) and rk→l

i is the corre-
sponding range value from the transformed scan located at
the same image pixel. We only calculate the residual for the
valid pixels that contain measurements and set the residual to
zero for the invalid pixels. Examples of such residual images
are depicted in Fig. 3. We can see that due to the motion of
objects in the scene, e.g. the moving car, the displacement
between these points in the common viewpoint is relatively
large compared to the static background. However, there are
ambiguities, since the large residual patterns appear twice for
one moving object, while for the slowly moving objects the
residual patterns are not obvious. Therefore, directly using
residual images for moving object segmentation does not lead
to a great performance. It, however, provides a valuable cue for
moving objects and can guide the network to separate moving
and non-moving objects.

In the end, the residual images are concatenated with the
current range image as extra channels where range image
provides spatial information and residual image encodes tem-
poral information. Each pixel (ui, vi) in the fused range
image then contains a vector of different types of informa-
tion (xi, yi, zi, ri, ei, d

0
1,i, ..., d

0
j,i, ..., d

0
N−1,i), where d0j is the

residual image calculated between the last jth frame and the
current frame.

D. Range Projection-based Segmentation CNNs

In this paper, we do not design a new network architecture
but reuse networks that have been successfully applied to
LiDAR-based semantic segmentation in the past. We adopt
and evaluate three popular networks, namely SalsaNext [8],
RangeNet++ [19], and MINet [16], for MOS. SalsaNext and

RangeNet++ are encoder-decoder architectures with a solid
performance and MINet uses a light-weight and efficient multi-
path architecture. After the segmentation, a fast GPU-based
k-Nearest-Neighbor search over the point cloud is used to
remove artifacts produced by the range projection [19]. All
methods are state-of-the-art range projection-based LiDAR
semantic segmentation networks, comparably light-weight,
and can achieve real-time operation, i.e., run faster than the
frame rate of the employed LiDAR sensor, which is 10 Hz
for common Ouster and Velodyne scanners. For more detailed
information about each network, we refer to the original
papers [19], [8], [16].

Instead of changing the architecture of these segmentation
networks, we directly feed them with the fused range images
plus the residual information, retrain the network and eval-
uate their performance with our MOS benchmark proposed
in Sec. III-E. Using our proposed residual image approach, all
segmentation networks show a large improvement in moving
object segmentation as shown in Sec. IV-A. For training, we
use the same loss functions as used in the original segmen-
tation methods, while mapping all classes into two per-point
classes, moving and non-moving.

E. Moving Object Segmentation Benchmark

Large datasets for LiDAR-based odometry, object detec-
tion, and tracking, like the KITTI Vision Benchmark [14],
and semantic segmentation, panoptic segmentation, and scene
completion like SemanticKITTI [3] are available and widely
used. There are, however, not many datasets and benchmarks
available for 3D LiDAR-based moving object segmentation.
With this work, we also aim at covering this gap with a novel
benchmark task for MOS.

Our proposed MOS benchmark is based on SemanticKITTI.
It uses the same split for training and test set as used in the
original odometry dataset, where sequences 00 to 10 are used
for training and sequences 11 to 21 are used as a test set.
SemanticKITTI contains in total 28 semantic classes such as
vehicles, pedestrians, buildings, roads, etc. and distinguishes
between moving and non-moving vehicles and humans. In the
proposed MOS benchmark, we manually reorganize all the
classes into only two types: moving and non-moving/static
objects. The actually moving vehicles and humans belong
to moving objects and all other classes belong to the non-
moving/static objects.

For quantifying the MOS performance, we use the com-
monly applied Jaccard Index or intersection-over-union (IoU)
metric [12] over moving objects, which is given by

IoU =
TP

TP + FP + FN
, (4)

where TP, FP, and FN correspond to the number of true
positive, false positive, and false negative predictions for the
moving class.

IV. EXPERIMENTAL EVALUATION

This paper focuses on moving object segmentation from
3D LiDAR scan sequences. We present our experiments to
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show the capabilities of our method and to support our
key claims, that our approach: (i) achieves moving object
segmentation using only 3D LiDAR scans and runs faster than
the sensor frame rate of 10 Hz and (ii) improves the moving
object segmentation performance by using residual images,
and outperforms several state-of-the-art networks.

We evaluate all the methods on our proposed MOS
benchmark. We use the odometry information provided by
SemanticKITTI, which are estimated with a LiDAR-based
SLAM system, SuMa [4]. Aiming at an easy-to-integrate
algorithm, we stick to the original setup while only changing
the input and the output of the classification head into the pro-
posed binary labels. We train each network using their specific
training hyperparameters over 150 epochs on sequences 00-07
and 09-10 and keep sequence 08 as the validation set. For more
details on the training regime for each network, we refer to
the original papers [19], [8], [16].

A. Ablation Study on Input and Architecture

The first ablation study presented in this section is designed
to support our claim that our approach is able to achieve
moving object segmentation using only 3D LiDAR scans. All
the experiments in this section are evaluated on the validation
set, i.e., sequence 08.

We test three different setups with three different networks,
RangeNet++, SalsaNext, and MINet, for moving object seg-
mentation as shown in Tab. I. The first setup is to train the
three range projection-based networks directly with the labels
for moving and non-moving classes. The second setup is to
attach the previous frames to the current frame as the input
of the network resulting in 2 × 5 input channels, as each
image contains the coordinates (x, y, z), the range r, and the
remission e for each pixel. The third setup is to concatenate
the proposed residual images to the current frame as the input
of the network and therefore the input size is 5+N , as detailed
in Sec. III-C.

As can be seen in Tab. I, RangeNet++ and SalsaNext show
a basic performance while MINet fails when training the net-
work together with the binary labels and no additional inputs.
Overall, the performance has space for improvements. This is
probably due to the fact, that from one frame, the semantic
segmentation networks cannot distinguish well between the
moving and static objects from the same general class, but
may learn some heuristics, e.g. that cars on the road are usually
moving while those on parking lots are static, which can also
be seen in the qualitative results Fig. 5. A reason why MINet
fails may be due to the lightweight architecture that is not
capable of learning such heuristics.

In the second setup, we directly combine two frames. Here,
the networks can already gain some improvements in MOS,
since they can obtain the temporal information from two
scans. In this setting, MINet is also capable of predicting
moving objects. In the third setup, the best MOS performance
is achieved. We hypothesize that it is advantageous to give
direct access to the residual information instead of the full
range views. Given that most of the points are redundant
in two successive frames and the input is large due to the

TABLE I: Evaluating our method with three different networks

Input RangeNet++ MINet SalsaNext

One frame 38.9 9.1 51.9
Two frames 40.6 35.0 56.0
Residual frames (N=1) 40.9 38.9 59.9

Fig. 4: Ablation studies. The left figure shows the ablation study on
the MOS performance vs. the number of residual images N . The
right figure shows the ablation study on the MOS performance vs.
the number of added noise units to the poses during the inferring.

concatenation, the networks need less time to extract the
temporal information if the residuals are provided directly.
While a large enough network should be able to learn concepts
as the difference between frames given enough time, it is
generally advantageous to directly provide this information as
also shown by Milioto et al. [19].

As shown in Fig. 4, we provide two further ablation studies
using SalsaNext as the segmentation network. The left figure
shows an ablation study on the number of residual images
used for MOS Both ablation studies use SalsaNext as the
segmentation network. We can see that N = 1 residual
image attains the biggest improvement in terms of MOS
performance, while adding more residual images improves the
MOS performance further with diminishing returns for N > 8
residual images. The figure on the right shows an ablation
study on the MOS performance vs. the amount of noise added
to the relative odometry poses used to generate the residual
images. We manually add noise to the the poses estimated
by SLAM in (x, y, yaw) with a unit of (0.1m, 0.1m, 1◦) to
see how the pose estimations influence our method during
inferring. As can be seen, the MOS performance will drop
due to the noisy poses. However, when the added noises are
larger than 20 units, (2m, 2m, 20◦), the network may ignore
the noisy residual images and the MOS performance will not
become worse.

B. MOS Performance and Comparisons

The experiment presented in this section investigates the
MOS performance of our approach. It supports the claim that
our approach improves the MOS performance by using resid-
ual images and outperforms several state-of-the-art networks.
Since there are not many existing implementations for LiDAR-
based MOS available, we choose several methods that have
been used in similar tasks, e.g., semantic segmentation and
scene flow, and modify them to achieve LiDAR-based MOS.
All the methods are evaluated on the test data of the proposed
benchmark, i.e., sequences 11-21.
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TABLE II: MOS performance compared to the state of the art.

IoU

SalsaNext (moveable classes) 4.4
SalsaNext (retrained) 46.6

Residual 1.9
Residual + RG 14.1
Residual + RG + Semantics 20.6

SceneFlow 4.8
SceneFlow + Semantics 28.7

SqSequence 43.2
KPConv 60.9

Ours (based on SalsaNext/N = 1) 52.0
Ours (based on SalsaNext/N = 8 + Semantics) 62.5

We analyze multiple alternative approaches. We start using
an existing semantic segmentation network, e.g. SalsaNext [8],
directly and label all the movable objects, e.g. vehicles and
humans, as moving objects while labeling other objects as
static. We name this method as SalsaNext (movable classes).
Here, we also show the results generated by the retrained
SalsaNext with the proposed binary labels, named as SalsaNext
(retrained). Since the residual images can already point out
rough positions of moving objects, here we also take it as a
simple heuristic-based baseline, named as Residual. Inspired
by Yoon et al. [33], we also re-implement the pure geometric
heuristic-based method using residual information together
with free space checking and region growing, named as
Residual+RG.

We furthermore compare our method also to the state-of-
the-art scene flow method, FlowNet3D [17], referred to as
SceneFlow, which is a network estimating the translational
flow vector for every LiDAR point given two consecutive scans
as input. We set a threshold on the estimated translation of
each point to decide the label for each point, i.e., points with
translations larger than the threshold are labeled as moving.
We fix the threshold based on the best MOS performance on
the validation set. We also compare our method to the state-
of-the-art multiple point cloud-based semantic segmentation
methods [28], [26], since they can also distinguish between
moving and non-moving classes.

For the non-semantic-based methods, we additionally add
semantic information by checking if the predicted moving
objects are movable or not, and only label a point as moving
if it is both predicted as moving by the original method
and at the same time assigned to a movable object, e.g.
vehicles and humans. The semantic information is generated
using SalsaNext with the pre-trained weights provided by the
original paper. We identify the semantic-enhanced methods by
adding +Semantics.

We compare two setups of our method to all the above-
mentioned methods. For our methods, we choose SalsaNext
as the base network as it shows the best performance in our
ablation study. In the first setup, we use only one residual
image, N = 1, to obtain the temporal information, and in the
other setup, we use our best setup fixed on the validation se-
quence with N = 8 residual images and semantic information
to see the best performance of our method.

As shown in Tab. II, our residual image-based method with

TABLE III: KITTI Odometry Benchmark Results

Split
Approach

SuMa SuMa++ SuMa+MOS

Train (Seq. 00-10) 0.36/0.83 0.29/0.70 0.29/0.66
Test (Seq. 11-21) 0.34/1.39 0.34/1.06 0.33/0.99

Relative errors averaged over trajectories of 100 to 800m length: relative
rotational error in degrees per 100m / relative translational error in %.

N = 1 already outperforms most baselines, while being worse
than KPConv, which is a dense multiple point clouds-based
semantic segmentation method. Due to heavy computation
burden, it cannot achieve real-time performance. When our
method uses multiple residual images (N = 8) together
with semantic information, our method outperforms all other
methods.

Fig. 5 and Fig. 6 show the qualitative results on range
images and LiDAR scans respectively in a very challenging
situation, where the car is at the intersection and there are
both a lot of moving objects and static objects. Our method
can distinguish moving and static points even when some of
the moving objects are moving slowly and other methods fail
to detect this.

C. Applications

Two obvious applications of our proposed method are
LiDAR-based odometry/SLAM as well as 3D mapping. Here,
we show the effectiveness of our method by using the MOS
predictions as masks for the input LiDAR scans, which re-
moves effectively all points belonging to moving objects. No
further tweaks have been employed. We use our best setup for
the MOS, i.e., our approach extending SalsaNext with N = 8
residual images and semantics.

1) Odometry/SLAM: For the LiDAR-based odometry ex-
periments, we use an off-the-shelf SLAM approach [4] and
apply our MOS method before feeding the point cloud into the
SLAM pipeline. We compare the improved odometry results
to both the original approach, called SuMa, and our semantic-
enhanced approach, SuMa++ [6]. We evaluate these odometry
methods, SuMa, SuMa++, and SuMa+MOS on the KITTI
odometry benchmark [14].

The quantitative results are shown in Tab. III. We can
see that, by simply applying our MOS predictions as a pre-
processing mask, the odometry results are improved in both
the KITTI training and test data and even slightly better than
the well-designed semantic-enhanced SuMa.

2) 3D Mapping: As shown in Fig. 7, we compare the
aggregated point cloud maps (a) directly with the raw LiDAR
scans, (b) with the cleaned LiDAR scans by applying our
MOS predictions as masks. We use the Open3D library [34]
to visualize the mapping results. As can be seen, there are
moving objects present that pollute the map, which might
have adversarial effects, when used for localization or path
planning. By using our MOS predictions as masks, we can
effectively remove these artifacts and get a clean map. Note
that, here we show two direct use cases of our MOS approach
without any further optimizations employed.
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Range Image

SalsaNext (moveable classes)

SceneFlow + Semantics

Diff+RG + Semantics

Ground Truth Labels

SalsaNext (retrained)

SalsaNext + N = 1 (Ours)

SalsaNext + N = 8 + Semantics (Ours)

Fig. 5: Qualitative results with range projections, where red pixels correspond to moving objects.

(a) Raw Point Cloud (b) Ground Truth Labels

(c) SalsaNext (retrained) (d) SalsaNext+ N = 8 + Semantics (Ours)

Fig. 6: Qualitative results shown as point clouds. (a) shows the raw point cloud with points colored depending on the range from purple
(near) to yellow (far). (b) shows the ground truth, and (c,d) prediction results, where red points correspond to the class moving.

D. Runtime

The runtime is evaluated on sequence 08 with an Intel i7-
8700 with 3.2 GHz and a single Nvidia Quadro P6000 graphic
card. It takes around 10 ms on average to estimate the odome-
try and generate the residual image. Since we only change the
input of each network while keeping the architecture the same,
the inference time is nearly the same as before, specifically
75 ms for RangeNet++, 42 ms for SalsaNext, and 21 ms for
MINet. In case of using semantics for the MOS, we can run
a second full semantics network in parallel.

As the odometry history for the SLAM is available, we need
to estimate the pose and generate the residual images only
once for every incoming frame. In sum, using our method for
LiDAR-based odometry takes approx. 51 ms per scan (=20 Hz)
using SalsaNext, which is faster than the frame rate of a typical
LiDAR sensor, i.e., 10 Hz.

V. CONCLUSION

In this paper, we presented a novel and effective approach to
achieve LiDAR-based moving object segmentation in an end-
to-end online fashion. Our method exploits neural networks
and sequential information, which allows our approach to
successfully distinguish between moving and static objects.
Our method is based on range projections and thus fast and
can directly improve existing SLAM and mapping systems.
The experiments suggest that our method achieves good per-
formance on MOS and outperformed several state-of-the-art
approaches. We also propose a new benchmark for LiDAR-
based MOS and used it to evaluate our approach, also allowing
further comparisons with future MOS systems.
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(a) Raw point clouds (b) Point clouds with moving segments removed

Fig. 7: Mapping Results on Sequence 08, Frame 3960-4070, where we show the accumulated point cloud (a) without removing segments
and (b) when we remove the segments predicted as moving.
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