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Navigate-and-Seek: a Robotics Framework for
People Localization in Agricultural Environments

Riccardo Polvara∗1, Francesco Del Duchetto∗12, Gerhard Neumann3 and Marc Hanheide1

Abstract—The agricultural domain offers a working
environment where many human laborers are nowadays
employed to maintain or harvest crops, with huge potential
for productivity gains through the introduction of robotic
automation. Detecting and localizing humans reliably and
accurately in such an environment, however, is a prerequisite to
many services offered by fleets of mobile robots collaborating
with human workers. Consequently, in this paper, we expand on
the concept of a topological particle filter (TPF) to accurately and
individually localize and track workers in a farm environment,
integrating information from heterogeneous sensors and
combining local active sensing (exploiting a robot’s onboard
sensing employing a Next-Best-Sense planning approach) and
global localization (using affordable IoT GNSS devices). We
validate the proposed approach in topologies created for the
deployment of robotics fleets to support fruit pickers in a real
farm environment. By combining multi-sensor observations on
the topological level complemented by active perception through
the NBS approach, we show that we can improve the accuracy
of picker localization in comparison to prior work.

Index Terms—Reactive and Sensor-based Planning,
Agriculture Robotics, Localization, Sensor-fusion,
Next-Best-View

I. INTRODUCTION

BEING able to reliably and precisely maintain a
representation of the location of humans is considered

a prerequisite to allow humans and robots to work
collaboratively in a shared environment.

In this paper, we propose a framework that integrates
passive (opportunistic) and active (explorative) sensing using a
variety of sensors (GNSS, LIDAR, and RFID) into a Bayesian
tracking framework operating on a topological representation
of large-scale outdoor environments. The work is motivated by
the sparsely connected topology typically found in many farm
environments, where the movement of humans (and robots)
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Fig. 1: The Thorvald robot is used for transportation in strawberry
production farms.

is largely constrained by the physical structures, i.e., rows
of plant-supporting tables in a so-called poly-tunnel as seen
in Fig. 1. Such sparsely connected topological maps allow
to constrain the movements of hypotheses along the defined
topological edges (see Fig. 2 (bottom)), in order to provide
a more accurate overall localization estimate, compensating
for substantial noise of sensors, as first proposed by Khan et
al [1]. It shall be noted that the benefits of such an approach1

are not limited to agricultural robotics, but can be utilized
in any tracking application that features a sparsely connected
topological map.

The initial work [1] solved the problem employing a
“Topological Particle Filter” (TPF) and focused entirely
on exploiting such sparsely linked topological graphs to
compensate for the noise and inaccuracies of deployed cheap
GNSS IoT sensors or mobile phones carried by human
workers, to allow them to summon a robot to their locations
as part of a robotic in-field logistics solution. This paper
takes this idea and the TPF approach further, making the
following tangible contributions: (i) Generalization of the TPF
framework to support a larger variety of information sources
to be fused, i.e., complementing noise GNSS information with
detections of humans from a robot’s onboard sensing such
as LIDAR-based and RFID identification; (ii) complementing
the opportunistic and passive sensing approach proposed
in [1] with an intelligent decision-making active sensing
approach known as Next-Best-Sense (NBS) [2] to utilize the
onboard sensors of the robotic platforms to further reduce the
uncertainty of humans’ location in the field, i.e., to actively

1The implementation of our TPF framework is released open-source:
https://github.com/pulver22/nbs ros/tree/topologicalMap
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move robots around the environment to systematically reduce
sensing uncertainty; (iii) a comprehensive evaluation of the
proposed integrated approach in a digital twin of the real-world
logistics scenario, in which a fleet of robots is supporting
human fruit pickers in soft-fruit production, by allowing them
to focus on the picking of fruits themselves, while the robotic
fleet automates the transportation of picked fruits from the
human picker to a local storage facility.

The remainder of the article is organized as follows: in
Sec. II we survey the related literature while in Sec. III we
define the problem statement. In Sec. IV and Sec. V we
present the updated formulation of our topological particle
filter and Next-Best-Sense. In Sec. VI we report the results
of experiments performed. Finally, in Sec. VII we summarize
our approach, highlighting the main concepts, its advantages
and limitations, and future works.

II. RELATED WORK

This work focuses on the localization and tracking of fruit
pickers in polytunnel environments and on the planning of an
optimal navigation path that optimizes multiple criteria, such
as localization accuracy and battery usage.

a) People Localization and Tracking: The problem of
people localization and tracking has been studied in the
literature from various angles in different fields. Most of
the time, the problem is characterized by the trade-off
existing between a very high localization accuracy and
very expensive sensors used to obtain such performance.
Examples of expensive devices for accurate tracking
are 3D dense LIDARs [3], high-resolution images, or
”Real-Time-Kinematic” Global Navigation Satellite System
(RTK-GNSS). One of the most cost-effective sensing
approaches relies on color video streams [4] which
unfortunately lacks in providing reliable spatial information.
Such limitation has been compensated by the adoption of
RGBD cameras, which provide depth information in addition
to the traditional color stream. For example, in [5] a small
robot can track people in a cluttered indoor environment solely
based on the images acquired by a Microsoft Kinect. Recently,
many vision-based approaches have yielded promising results
exploiting the power of Deep Learning for detecting and
tracking moving objects [6]–[8]. Devices such as lasers and
cameras cannot often identify a person within a group, even
though some studies [9], [10] presented a Bayesian approach
for addressing this challenge. On the other hand, RFID
antennas, given their ability to recognize uniquely identified
tags, can be deployed to distinguish people in a crowd. In
[11], the authors combined the RFID readings with the human
skeleton extracted by a video stream acquired with an RGBD
camera. The main limitation of this work is that it can only
extract up to six skeletons per frame. To solve this problem,
[12] adopts a multi-tracking learning system based on 3D
LIDARs, unfortunately introducing a consistent number of
false-positives.

Most of the methods described require the robot to be in
close vicinity with the tracked agent to guarantee satisfying
precision. This may work in a scenario of a limited size such as

a supermarket or a hospital but fails in outdoor environments.
In the agriculture domain, [13] proposes an approach to
localize workers in a farm using an ultra-wideband (UWB)
radio-based system requiring, however, expensive specialized
equipment. Here, the adoption of a GNSS-based system still
proves to be the most effective one. In [1], a particle filter
is proposed for localizing humans over a topological map.
Because it relies only on the GNSS signal, the performance is
limited by the bias affecting the GNSS signal itself. Another
limitation of this approach is that particles are only allowed to
move along the topological edges, making the filter unable to
recover from a wrong initialization. The method also assumes
a fixed velocity model of the humans’ dynamics which does
not scale well when people move with different speed and
directions. In the current work, we build from [1] attempting
to solve the above issues by allowing to integrate multiple
sensor modalities (rather than only GNSS), estimating the
velocity of targets alongside their position, and implementing
a mechanism to allow particles to recover from a wrong
initialization.

b) Active Robotic Sensing: The majority of exploration
strategies for initially unknown environments greedily take
decisions and are often called Next-Best-View (NBV)
algorithms. In such systems, the next location for the robot
is chosen to be on the boundary between the already explored
free space and the unknown area. This decision is usually
performed using a utility function. Popular functions are
the traveling cost [14], according to which the next best
observation location is the nearest one, and the information
gain [15], [16], defined as the expected amount of new
information the robot can acquire from the candidate location.
In [17], the two are instead combined with semantic
information. More recently, frontier-based exploration has
been combined with sampling methods to prevent the robot
gets stuck [18]. The limitation of the aforementioned methods
is that they rely on ad-hoc aggregation methods. To provide
more theoretical foundation, Multi-Criteria Decision Making
has been introduced in robotics from the information theory
field [19]. Only more recently we see the adoption of
data-driven approaches for the exploration task. For example,
long-term memory is used in [20] to learn a global map starting
from raw sensory inputs and reactive actions. Imitation [21]
and reinforcement learning [22] are also other new techniques
that seem promising to address the task of interest. They
also make a decision solely based on the partial information
obtained by the robot. However, their use is still limited due to
the large number of samples required for training the model.

III. PROBLEM FORMULATION

We specifically study the problem of accurately tracking
humans using GPS, LIDAR, and RFID sensors. In our
agricultural setting, humans move along polytunnels to harvest
fruits and performing husbandry tasks. By sharing the
environment with the humans, robots need to be aware of
humans’ positions for assisting their operations, similar to
what can be seen in Fig. 2 (top). For example, in a fruit
picking scenario in which the robot serves as a carrier from
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Fig. 2: The Riseholme campus. (Top) A view of the Gazebo
simulation built in Gazebo. (Bottom) The topological map of the
environment used in our study.

the human picker to the farm storage, the robot needs to
know the human position to enter the correct polytunnel and
reach them. A failure in identifying the correct lane means
that the robot must navigate until the end before entering the
correct one, or that the human has to reach the robot. All
of which results in large delays. The limited range of the
sensors onboard requires the robot to get close to the humans
to detect them accurately. Therefore, a navigation strategy
is needed to improve the quality of the sensing operations
while balancing other criteria like the traveled distance and
the battery consumption. Sensing operations are defined as
identifying observations if they uniquely identify a specific
instance of the person tracked. Observations from GPS sensors
are identifying because, to use the technology, people have
to carry with them an IoT GNSS device or a smartphone
which can both be uniquely identified by their MAC addresses.
Similarly, the RFID antenna on the robot can sense RFID
tags in the environment which broadcast a unique ID. LIDAR
sensors, instead, cannot identify the people detected.

The environment structure is represented as a graph, which
we also refer to as topological map. A topological map
is a discrete representation that can be viewed as a tuple
T −→ 〈N ;E〉, where N ∈ R2 is a set of discrete physical
locations in the Euclidean space, i.e. n = 〈x, y〉, n ∈ N ,
called topological nodes. The set E ⊆ N ×N represents the
set of possible edges connecting the topological nodes, where
the element at j-th row and k-th column of E is defined as
ejk = 1, if nj connects to nk, 0 otherwise. In this work, we
approximate the humans’ position on the field with the node
closest to them. We assume that humans move by traversing
the edges to go from one node to another. Nodes and edges
are positioned in the environment to represent the locations
over which humans and robots can navigate, therefore N and

E act as inputs to the TPF to constrain the prediction of
the particles’ movements. The robot pose c is defined by the
topological node n where it is located and by its orientation
θ. The robot can move from node n to any of the nodes n′

connected to it, and perform a sensing operation to locate the
presence of any fruit picker in its surrounding. The problem
of planning a path consists in finding the optimal sequence
of sensing operations 〈((n1, θ1)), ((n2, θ2)), . . . , ((nn, θn))〉
to be performed in order to localize all the fruit pickers in
the environment.

IV. THE TOPOLOGICAL PARTICLE FILTER

The Topological Particle Filter (TPF), introduced in [1] and
extended in this work, is a method for tracking the position of
targets on a map that exploits the structure of the environment
– the topological map – to find the closest node to the targets.
The distribution of particles P over the topology is used to
approximate the probability distribution of the targets on the
map. At timestep t, each particle pit ∈ Pt, for i = 1, 2, ..., |Pt|,
in our updated TPF formulation is characterized by the state

pit =< qit,v
i
t, τ

i
t , T, V >,

where qit ∈ N is the node the particle lies in, vit is the
velocity vector of the particle, τ it is the amount of time
particle pit has been in qit, T is the topology and V is a
fixed window size used to estimate the particle’s velocity. The
definition of the particle uses the Markov assumption, i.e.,
a particle state at time t + 1 depends uniquely on its state
at time t. Differently from [1], we want our filter to work
with different sensors S. Therefore, without loss of generality,
each observation from sensor s ∈ S is passed to the filter
in the form of a likelihood distribution L(N) of the target
over the topological nodes N . Every observation is paired
with a variable ids ∈ {>,⊥} which indicates whether the
observation coming from s identifies the target or not (see
Section III). Upon receiving an observation, the TPF updates
its belief distribution of the target through the sequential
steps of Prediction, Weighting and Resampling, generating the
estimate n∗ for the target position in the topological map.

Typical problems of naively performing the update steps
of the TPF with noisy observations are that of wrong
initialization [1] and false-positive detections, biasing the
distribution of the particles away from the real target position.
To overcome these problems we have implemented two
mechanisms. The first ensures, with a small probability, that
the particles are allowed to jump to nodes not connected by
an edge only when the entropy of the belief is above a certain
confidence threshold. The second re-initializes the belief with
the current identifying observation in case the divergence
between the observation (representing a true positive) and
the belief is too large. The divergence is computed as
the Jensen-Shannon Distance between the nodes distribution
Q(n) =

∑
∀i:qi=n 1/

∑
P of the particles and the distribution

L(n) = L(n)/
∑
L(N) of the observation

JSD =

√
DKL(Q‖A) +DKL(A‖L)

2
,

where A is the point-wise mean between Q and L, and DKL

is the Kullback-Leibler divergence. We preferred the JSD over
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Algorithm 1 TPF update

Require: L(N), the sensor observation; ids, the identifying
variable; Pt, the current set of particles state; prj , the
probability of jumping to non-connected nodes; εJSD and
εH , thresholds for monitoring the distribution of particles.

1: if t = 0 then
2: Pt ← Initialization(L(N), ids)
3: end if
4: Ṕt+1 ← Prediction(Pt)
5: d← JSD(Ṕt+1,L(N)) . Jensen-Shannon Distance
6: if d > εJSD and ids = > then
7: Ṕt+1 ← Initialization(L(N), ids)
8: prj ← 1e−3 . Jumping to non-connected nodes
9: end if

10: W,n∗t+1 ←Weighting(Ṕt+1,L(N))

11: Pt+1 ← Resampling(Ṕt+1,W, prj)
12: hp ← H(Pt+1) . Entropy
13: if hp < εH then
14: prj ← 0 . Only jump to connected nodes
15: end if
16: return Pt+1, n∗t+1, prj

other divergences (e.g., the DKL) because it always assumes
a finite value within the interval [0, 1]. Similarly, the entropy
of the nodes distribution of P is computed as

H = −
|N |∑
i=0

Q(ni) log(Q(ni)).

The overall update function of the TPF is outlined in
Algorithm 1, while the following paragraphs detail the
implementation of the steps in the TPF update.

a) Initialization: The state components of the particles
are initialized with

qt=0 ∼ L(qt=0)/
∑
L(N),

vxt=0, v
y
t=0 ∼ N (µinit, σ

2
init),

τt=0 ∼ U(τ−init, τ
+
init).

(1)

In the case that ids = ⊥, L(N) is artificially set to a uniform
distribution over the entire map to avoid biasing the initial
estimate with a possible false-positive.

b) Prediction: Given the previous particle pt, the next
state update function predicts the state of the current particle
ṕt+1.

The node state of the particle is predicted with a two-stage
process. First, we decide whether the particle should jump
from the current node to one of the nodes in K = {qk ∈
N : etk = 1} connected to it, based on how long the particle
has stayed in qt and the position of the nodes in K. This
probability is defined as

Pr(q́t+1 6= qt | qt,vt, τt,K) =

1∑
k bk

∑
k∈K

bk · (1− exp(λ(qt,qk,vt)·τt)), (2)

where bk is a weighting factor equal to the projection of
the speed of the particle vt on the edge etk, i.e., bk =
max(0, projt,kvt

), with proj being the projection operation. This

factor gives more probability to nodes that are on edges aligned
with vt and assigns null probability to those in the opposite
direction. In the second stage, if a particle has been selected to
jump, we predict which of the nodes connected to qt it should
jump to. The probability is computed as a softmax over the
nodes in K

Pr(q́t+1 | qt,vt, τt,K) =
exp(λ(qt,q́t+1,vt)·τt)∑
k exp(λ(qt,qk,vt)·τt)

. (3)

The function λ depends on the speed of the target and the
distance between the nodes in the topology. It is designed to
have 50% un-normalized probability of jumping to the next
node q́t+1 when the target is at equal distance between the
current node qt and q́t+1, i.e., when the time of particle in
node qt is

τt =
d(q́t+1, qt)

2 ·max(0, projt,t+1
v )

, (4)

we want

exp(λ(qt,q́t+1,vt)·τt) =
1

2
. (5)

Therefore substituting (4) in (5) we get that

λ(qt, q́t+1,v) =
2 · log( 1

2 ) ·max(0, projt,t+1
v )

d(q́t+1, qt)
. (6)

This formulation of λ ensures that the TPF is robust to changes
in topologies and movement patterns of the target, without
having to resort to manually adjusted parameters.

Now, having defined the probability function for the node
state prediction of the particle we can generate the current
predicted state ṕt+1 having the following components

q́t+1 ∼ Pr(q́t+1 | qt,vt, τt, T ),

τ́t+1 =

{
τt + (tst+1 − tst) if q́t+1 = qt,

0 otherwise,

v́t+1 = vt + Pr(q́t+1 | qt,vt, τt, T ) ·
d(q́t+1,qt)
τ́t+1−τt − vt

V
,

(7)

with d(q́t+1, qt) the Euclidean distance between nodes q́t+1

and qt, and tst the time in seconds at step t.
c) Weighting: Upon receiving an observation from a

sensor, we weight each particle ṕt+1 according to how much
its predicted state agrees with what it has been observed. The
weight is the sum of two factors wq and wv which represent
the confidence for the node and speed components of the
particle’s state respectively, i.e.,

wq =γsq · L(q́t+1),

wv =γsv ·
1

4

(
g
µ=‖vs‖,σ=

‖vs‖
2

(‖v́t+1‖)

+
cos (∠(v́t+1,v

s)) + 1

2

)
,

(8)

where gµ,σ(x) is the Gaussian density with mean µ and
variance σ2, γsq and γsv are weighting factors defined for
each sensor s providing observations, and the vector vs is the
velocity of the target which is estimated from the history of
the observations coming from s but, depending on the sensor
capabilities, it can be directly provided by s.
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We can now compute the topological mass of each node in
the topology, i.e.,

Mn =
∑

∀i:q́it+1=n

wi =
∑

∀i:q́it+1=n

wiq + wiv. (9)

Then, the current best estimate of our target location is

n∗t+1 = argmax
n∈N

Mn (10)

d) Resampling: We sample the new set of particles Pt+1,
drawing from Ṕt+1, with a probability distribution fw equal
to the normalized weights

pit+1 ∼ fw(i) =
wi∑|Ṕt+1|

j=1 wj
. (11)

Once the new set of particles has been sampled, we add noise
to their states

qt+1 = qt+1 ∼ U(N), with probability prj ,

vt+1 = vt+1 + εv, εv ∼ N (µnoise, σ
2
noise),

τt+1 = τt+1 + ετ , ετ ∼ U(τ−noise, τ
+
noise).

(12)

V. THE NEXT-BEST-SENSE APPROACH

To further improve the estimate of the TPF, we adopted
a decision-making framework for planning the next robot
position to be the closest to the estimated picker location or
to allow meaningful readings. With this in mind, we chose
to use Next-Best-Sense [2], an iterative exploration algorithm
that executes sensing actions and updates a belief map with
information from the most recent observation. Full details on
the approach are reported in the original publication, we try
now to summarize the most important bits of information. NBS
aims at planning the next robot pose by evaluating multiple
criteria into a single utility function. This is performed by
using the MCDM method [19] and the Choquet Fuzzy Integral
to model relations of redundancy and synergy existing among
the criteria. For the application of the study, it has been decided
to consider four criteria. (i) Travel distance (TD), the distance
between the current robot node and the candidate node. (ii)
Sensing time (ST), the time required for a sensing operation.
(iii) RFID Information gain (RFID), the amount of entropy
in the map after the robot reaches that node. (iv) Battery
Status (BS), the expected battery level after completing the
navigation task. Each criterion is associated with a positive
weight η which defines its relative importance compared to
the others. Being K the set of all criteria, for a given pose
c, we first sort the criteria according to their utility ui such
that u(1)(c) ≤ ... ≤ u(|N |)(c) ≤ 1. Furthermore, we define
the set A(j) = {i ∈ N |u(j)(c) ≤ u(i)(c) ≤ u(|N |)(c)}, the set
of all criteria with utility larger than the utility from kj . The
global utility function f(uc) of a candidate pose c is computed
by a discrete Choquet integral which uses the ranking of the
utilities as well as the sets Aj , i.e.,

f(c) =

|K|∑
j=1

(u(j)(c)− u(j−1)(c))η(A(j)). (13)

After all the nodes have been evaluated, NBS selects the
next robot goal as the node with the highest utility function.

Finding the best set of weights for the criteria is out of the
scope of this paper. Based on the study shown in [2], we
identified a combination of weights working for the current
application and we kept it fixed across all the experiments
reported in the following section.

VI. EXPERIMENTS

To validate the proposed architecture, we designed three
sets of simulated experiments. Unfortunately, no in-field
experimentation has been possible due to the COVID
limitations in the UK. For this reason, we modeled the
University of Lincoln’s Riseholme campus in Gazebo, as
shown in Fig. 2 (top). It consists of two 30 meter long
polytunnels with five rows of raised beds and a storage and
packaging facility nearby. Each row counts ten topological
nodes and, overall, there are 137 nodes on the map. An
overview of the topological map is given in Fig. 2 (bottom).

In our simulation, we have one or more human agents
traversing the polytunnels similarly to how they would do in
the real setting: they enter the tunnels (outlined by black edges
in Fig. 2 (bottom)) from the left side, follow the lane, and,
upon arriving at the other end, they enter in an adjacent one
proceeding in the opposite direction. The humans traverse the
same lane always in the same direction but, at any step, they
have p change chances of changing its direction of motion for
t reverse seconds (see Table I). Each picker is equipped with
a Waveshare SIM7600E-H GNSS unit for geolocalization.
It is a low-cost device that has weaker performance than
RTK-GNSS sensors. We empirically calculated the errors
affecting the GPS signal which are then injected into our
simulations. In particular, we identified the following type of
noise: (i) a constant bias over the Euclidean coordinates of
gps offset; (ii) a Gaussian white noise added to the signal
at every step with variance gps var; (iii) a drifting over
time from the ground truth position of gps drift; and (iv) a
communication blackout of gps off minutes (see Table I). In
addition to the GPS device, a uniquely identified SMARTRAC
Frog 3D RFID tagis assigned to each picker. The robot used in
this study is the Thorvald robot, shown in Figure 1, equipped
with two Hokuyo 2D laser scanners located at opposite
platform’s corners, and an RFID antenna. The laser scanners
are used for people perception, employing the off-the-shelf
leg detector ROS package, and for robot self-localization
and obstacle avoidance. In the experiments performed, we
considered two metrics for assessing the performance of our
solution in localizing the fruit pickers: the topological error
and the Euclidean error. The first represents the number of
nodes in the shortest path in the graph (i.e., the topological
map) between the estimated node and the closest node to
the real position of the fruit pickers (highlighted in Fig. 3).
The Euclidean error is the Euclidean distance between the
estimated node projected on a metric map and the ground
truth position of the picker. It’s important to notice that, given
the topology of the map constraining the robot’s movements
only along edges connecting two nodes, a smaller Euclidean
error does not always correspond to a small topological error.

For all the experiments presented in the following sections,
we used fixed parameters for the NBS algorithm and the
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TABLE I: Parameters used in all the experiments performed. They
are divided in (top) NBS criteria’s weights; (center) TPF parameters
(see Section 1 for full description); (bottom) environmental
parameters affecting human motion and GPS signal.

Next-Best-Sense
η(TD) = 0.3 η(ST ) = 0.1
η(RFID) = 0.35 η(BS) = 0.25

Topological Particle Filter
εH = 0.6 εJSD = 0.975
µinit = 0.0 µnoise = 0.0
σ2
init = 5e−2 σ2

noise = 5e−4
τ−init = 0.0 τ+init = 1.0
τ−noise = -0.1 τ+noise = 0.1
γLIDAR
n = 0.25 γRFID

n = 1
γGPS
n = 1 γLIDAR

v = 0
γRFID
v = 0 γGPS

v = 1
Environmental parameters

p reverse = 0.1 t reverse = 60[s]
gps offset {x/y} ∼ U(0.0, 3.5)[m] gps var = 0.1[m]
gps drift ∼ N (0.0, 2.5)[m] gps off ∼ U(0.5, 1)[min]

Fig. 3: A robot which, after reaching a picker in the wrong tunnel,
has to re-plan a path going out of the current tunnel first to enter in
the correct one.

TPF, which are reported in Table I for clarify. We initialize a
TPF model for each simulated human to track their position.
Each TPF receives observations from all the sensors and,
in the absence of them, performs predictions at a rate
prediction_rate:= 1

4 Hz to update the picker tracking.
The velocity vector of the GPS data vGPS is estimated with
a simple average over the last 10 poses received from the
sensor. Each GPS and RFID detection from the sensor is sent
to the corresponding TPF as an identifying observation (see
Section III); LIDAR detections are instead sent to all the filters
indistinctly given they cannot uniquely identify a person.

A. Single picker tracking

In the first batch of simulations, we compare our new
formulation against [1] that relied only on a noisy GPS signal.
For this reason, no robot is used in [1] because it doesn’t add
any significant information. Because our method integrates
multi-modal data, we show results obtained by mounting a
2D LIDAR and an RFID antenna on a moving robot.

We identified five different methods to compare: (i) Khan
et al. [1]-connected, in which the particle can only move
between connected nodes; (ii) Khan et al. [1]-unconnected,
in which the particles are allowed to move to nodes
that are not directly connected with a small probability;
(iii) LIDAR+GPS, in which a leg detector is combined
with the GPS signal by the TPF; (iv) RFID+GPS, the
TPF obtains observations from a GPS device and an RFID
antenna; (v) RFID+LIDAR+GPS(ours), in which all the three
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Fig. 4: (Top) Euclidean Error (Top) and topological error (Bottom)
- expressed as mean and standard deviation - while comparing our
method and Khan et al. [1] in tracking a single fruit picker.

previously mentioned sensors provide observations to the TPF.
In order to provide more reliable results, for each method

we performed ten runs and we averaged the results. These,
expressed as mean and standard deviation, are reported in
Figure 4 showing, despite all the methods are affected by a
comparable Euclidean error, our solution combining RFID,
LIDAR, and GPS signal outperforms all the others when
considering the topological error. For the task at hand, this is
a very significant result because a miss-prediction of where
the picker is located would make the robot leave the row
where it is currently located and traversing a long distance
before reaching the human. Quantitative results are reported
in Table II, showing Euclidean and topological errors as
mean absolute error along with the entire recorded task. Our
method in the formulation using all the sensors proves to be
more accurate than the compared ones, with an error of only
0.95(0.5) meters on a metric map and 3.89(1.42) nodes on the
topological one. The latter result represents an improvement
of 4.7× compared to [1], which has a topological error of
18.42(2.81) nodes. This can be interpreted such that, on
average, there are eighteen nodes between the real position
of the pickers and the robot, making the robot leave the
row in which it is currently located in order to re-enter in
the correct one. We identify the ability of our TPF to adapt
to variable target’s speed as the main reason for its success
against [1] in which the authors identified empirically a fixed
λ = 0.1 (see Eq. 6), assuming all the tracked agents move at a
constant speed. In addition to this, the ability of our method to
fuse together multi-modal data coming from different sensors
allows overcoming any noise and bias affecting the GPS signal
and limiting [1]’s localization accuracy.

B. An intelligent robotic navigation framework

The second experiment we present shows the benefit
of using an intelligent decision-making framework such as
Next-Best-Sense to improve the fruit-pickers localization
performance. Therefore, we compare NBS against a simpler
policy, which is the one currently adopted in the real setting.
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TABLE II: Performance for each methods in all the experiments
performed. Results are reported as mean and standard deviation. The
best method is in bold.

Method Euclidean
Error[m]

Topological
Error[nodes]

Single picker
Khan et al.[1]-unconnected 2.21(0.44) 18.42(2.81)
Khan et al.[1]-connected 1.82(0.45) 17.59(2.46)
LIDAR+GPS 2.08(0.82) 8.89(3.5)
RFID+GPS 2.02(0.5) 18.86(3.57)
RFID+LIDAR+GPS(ours) 0.95(0.5) 3.89(1.42)

Navigation Strategy
EstimatedNode 2.21(1.96) 12.03(14.02)
Next-Best-Sense [2] 0.95(0.5) 3.89(1.42)

Multiple pickers
Dondrup et al. [23] 1.66(1.2) 17.37(13.89)
RFID+LIDAR+GPS(ours) 1.94(2.34) 9.82(12.57)
NoMonitor 3.48(4.23) 15.10(17.44)
CostantSpeed 2.43(1.98) 13.62(14.94)

0

1

2

3

4

5

6

7

Eu
cli

da
n 

Er
ro

r[m
]

Next-Best-Sense[2] EstimatedNode

0 1 2 3 4 5 6 7 8 9
Minutes

0

5

10

15

20

25

To
po

lo
gi

ca
l E

rro
r[n

od
es

]

Fig. 5: Comparison between Next-Best-Sense [2] and EstimatedNode
navigation strategies in localizing a single picker.

More specifically, when a fruit picker calls a robot, the
latter navigates towards the node estimated by the particle
filter despite the filter’s prediction accuracy. We call this
policy EstimatedNode. We recall that NBS combines instead
multiple criteria in a single utility function and selects the
next robot position greedily. The experimental setting is the
same already discussed in subsection VI-A, with a single
picker traversing the polytunnels. The performance is shown
in Figure 5 and is reported in Table II, in which it is possible
to see NBS outperforms EstimatedNode for both the metrics
considered. In particular, NBS is 2.32× and 3.09× more
accurate than EstimatedNode concerning the Euclidean error
and the topological error, respectively. We recall that, in this
scenario, accuracy is associated with a smaller probability to
estimate the wrong lane in the polytunnel, leading the robot to
re-plan a path with a noticeable expense of time and resources,
similarly to what can be seen in Figure 3.

C. Multi-pickers tracking

In the last batch of experiments, we present a more complete
scenario in which a single robot serves multiple fruit pickers.
We place 3 fruit-pickers in our simulated world, each of
them characterized by his motion and independent noise, as
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Fig. 6: Comparison between the proposed method with Dondrup et
al. [23] in localizing and tracking three pickers. Vertical bars indicate
that a picker is a the entrance (pink) or end (orange) of a tunnel and
it is switching lane (and direction).

described in Sec. VI. Here, differently from the single picker
scenario, false-positive detections from the LIDAR can easily
mistake one person for another, especially if they are in a
nearby tunnel and/or the GPS error is very large. Moreover, the
short-range sensors on the robot cannot detect all the pickers
around the field at each given moment; therefore, the ability to
predict from sparse observations is here more important than
in the single-picker case.

In this experiment, we offer a comparison with a
state-of-the-art human tracking system, the bayesTracker
library presented in [23]. Similar to our approach,
bayesTracker is a mobile robotics framework able to track
the position of multiple people moving in the environment
and it is based on multiple sensor observations. This method
works at the metric level and does not exploit the topological
structure of the environment, as our proposed approach
does. It combines the GPS signal and the LIDAR’s based
leg detector via an Unscented Kalman Filter and a constant
velocity model to estimate and track the people’s location.
However, its use is limited to pose-like input data and does
not accept the likelihood distributions provided by the RFID
sensor, unlike our TPF. The bayesTracker outputs a list of
tracked people identified by UUIDs to maintain the tracking
consistency over time. However, at times it can return more
than one tracking UUID for each person – e.g., when it is
not able to match the detections from the different sensors –
or less than one – e.g., when the GPS signal is not available
for a certain time. To compare with the results of our TPF,
the output from bayesTracker is parsed to obtain at most one
tracking for each picker at each given time. Each GPS ID,
which uniquely identifies the pickers, is initially associated
with the closest (in Euclidian distance) bayesTracker’s UUID,
and the association is maintained until the tracked UUID is
lost. At this point, it gets associated with the closest of the
UUIDs not already assigned to other pickers.

To study the contributions of each improvement to the TPF
introduced here, compared to [1], we show an ablation study
of our proposed method. In particular, the method named
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CostantSpeed does not estimate the particles velocity but
uses a constant value, similar to [1]. The method NoMonitor,
instead, is stripped of the dual mechanism monitoring
the divergence from observations and the entropy of the
distribution of the particles (see Section IV).

We plotted the average errors among 3 pickers for 10 runs
in Fig. 6, while numerical data are reported in Table II.
Not surprisingly, [23] leads to the smallest Euclidean error,
while, at the same time, the largest topological error. This is
somewhat justified by the fact that this method largely depends
on the noisy GPS signal. The bayesTracker predictions can
be relatively close to the ground truth on the metric map
but in the wrong lane of the polytunnel, resulting in a very
large topological error. Our proposed method achieves the
best overall performance, reporting metric errors very close
to [23] (less than 0.3m) despite being designed to work on
topological maps. Both the ablated methods perform worse
than the proposed approach. From Fig. 6 we can observe
how NoMonitor’s Euclidean error increases significantly in
the second half of the plot, where the pickers are returning
near the entrance of the tunnels. Here, without our monitoring
mechanism, the particles spread more easily with the increased
connectivity between nodes. Moreover, the topological error
of ConstantSpeed increases in the second half of the plot
when the pickers are changing their direction of movement,
whereas the complete method can maintain a low error. The
observations suggest that the method’s performance can be
susceptible to the structure of the topology, particularly in
terms of the connectivity between nodes.

VII. DISCUSSION AND CONCLUSION

In this paper, we present a robotic framework for localizing
and tracking people in a structured environment. It combines
an improved formulation of the topological particle filter
(TPF) with a multi-criteria optimization path planner such as
Next-Best-Sense (NBS) [2]. NBS is used to identify new robot
positions which can lead to obtaining meaningful observations
for improving the TPF estimate on the people’s location.
Compared to the previous work [1], our revised TPF allows
to integrate multi-modal sensors readings, and it estimates
the velocity of the tracked people allowing us to localize
targets moving at a variable speed under noisy observations.
We adopted a mechanism to monitor the distribution of the
particles with the goal of preventing it from diverging from
the true target position. The improvements we introduced lead
to an increase in localization accuracy equal to 4.7× compared
to [1]. We also show how planning intelligent robot sensing
poses over the topological map can further improve the results
compared to a more straightforward navigation policy such as
moving towards the estimated node. Although our approach
performance is limited by the lower bound set by the average
length of the edges connecting the nodes in the topology,
we show that in a polytunnel-like structured environment
it is more effective than approaches based on continuous
space tracking [23] at estimating the location of humans.
In future work, we plan to assess how the performance is
affected by other topologies – rather than only polytunnels –

and to validate the approach in the real-world setting in the
polytunnels at the University of Lincoln. Moreover, we aim to
integrate the targets’ identities in the particles state to allow
tracking multiple people more efficiently.
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