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Uncertainty-Aware Self-Supervised Learning of
Spatial Perception Tasks

Mirko Nava , Antonio Paolillo , Jérôme Guzzi , Luca Maria Gambardella, and Alessandro Giusti

Abstract—We propose a general self-supervised learning ap-
proach for spatial perception tasks, such as estimating the pose of
an object relative to the robot, from onboard sensor readings. The
model is learned from training episodes, by relying on: A contin-
uous state estimate, possibly inaccurate and affected by odometry
drift; and a detector, that sporadically provides supervision about
the target pose. We demonstrate the general approach in three
different concrete scenarios: a simulated robot arm that visually
estimates the pose of an object of interest; a small differential
drive robot using 7 infrared sensors to localize a nearby wall; an
omnidirectional mobile robot that localizes itself in an environment
from camera images. Quantitative results show that the approach
works well in all three scenarios, and that explicitly accounting for
uncertainty yields statistically significant performance improve-
ments. Videos, datasets, and code to reproduce our results are
available at: https://github.com/idsia-robotics/uncertainty-aware-
ssl-spatial-perception.

Index Terms—Deep learning for visual perception, deep learning
methods.

I. INTRODUCTION

MANY robot perception tasks consist of interpreting sen-
sor readings to extract high-level spatial information [1],

such as the pose of an object of interest (OOI) with respect to the
robot, or the pose of the robot itself in the environment. When
sensors produce noisy, high-dimensional data that is difficult
to interpret (e.g. cameras or lidars), a common solution is to
rely on supervised learning [2]. In many real-world scenarios,
collecting the necessary training sets is a fundamental problem;
self-supervised learnings (SSLs) in robotics aims at equipping
robots with the ability to acquire their own training data, e.g. by
using additional sensors as a source of supervision, without any
external assistance. In some cases, this allows robots to acquire
training data directly in the deployment environment.

In this context, a state estimator, such as a robot’s odometry,
can be a rich source of information. Odometry allows a robot

Manuscript received February 24, 2021; accepted June 22, 2021. Date of
publication July 7, 2021; date of current version July 21, 2021. This letter was
recommended for publication by Associate Editor J. McDonald and Editor C.
Cadena Lerma upon evaluation of the reviewers’ comments. This work was
supported by the Swiss National Science Foundation (SNSF) through the NCCR
Robotics. (Corresponding author: Mirko Nava)

The authors are with the Dalle Molle Institute for Artificial In-
telligence (IDSIA), USI-SUPSI, 6928 Lugano, Switzerland (e-mail:
mirko@idsia.ch; antonio.paolillo@supsi.ch; jerome@idsia.ch; luca@idsia.ch;
alessandrog@idsia.ch).

This letter has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3095269

to estimate its own motion in the environment according to its
kinematics (e.g. by integrating over time the motion of its wheels
as measured by wheel encoders), often with some uncertainty
and accumulating errors. Consider for example a robot capable
of odometry, equipped with a camera and a collision detector [3];
after bumping into an object, the robot could reconsider the
camera observations from the timesteps preceding the colli-
sion; assuming a static obstacle, the camera image acquired
when the robot was (according to its odometry) 1m behind
the place of collision, would depict an obstacle at a distance
of 1m. This piece of information was acquired by the robot
without any explicit external supervision, and can be used for
training machine learning models that map acquired images to
the spatial position of obstacles. The role of odometry is to
leverage sparse information from a simple detector – which
provides relevant information only for a few timesteps in a
training sequence – to generate an informative labeled training
set.

In this paper we generalize and extend this basic idea: we
consider a generic robot that has a spatial perception task (e.g.,
estimating the pose of an OOI in the environment), is capable of
state estimation, possibly affected by accumulating uncertainty
due to errors (e.g. odometry), and is equipped with one or more
sensors, whose outputs we want to use to estimate the target
pose. Furthermore, the robot is equipped with a detector that,
for at least a small fraction of timesteps, produces ground-truth
information about the target pose (possibly uncertain). Given
training sequences, we want to learn a stateless model that, given
the sensor readings, estimates the target pose.

After reviewing the related work in Sec. II, we illustrate our
main contribution in Sec. III: a formalization of this problem and
a general solution based on deep learning, that: i) learns from
sporadic supervision given by a detector and a possibly uncertain
state estimator; ii) can explicitly account for uncertainty in the
state estimates and in the supervision using a Monte Carlo
approach; iii) integrates a recently proposed state-consistency
loss [4] to further improve results, even with the hurdle of
uncertainty. In Sec. IV we investigate the generality of our
contribution by instantiating it in three different applications
(more details in Table I):
� Estimating the relative 3D pose of an OOI from a camera

mounted on a robotic arm manipulator.
� Estimating the heading of a differential drive robot in the

vicinity of a straight wall, using data from 7 sensors that
measure the amount of infrared light reflected from the
environment.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3736-0419
https://orcid.org/0000-0001-5483-1254
https://orcid.org/0000-0002-1263-4110
https://orcid.org/0000-0003-1240-0768
https://github.com/idsia-robotics/uncertainty-aware-ssl-spatial-perception
mailto:mirko@idsia.ch
mailto:antonio.paolillo@supsi.ch
mailto:jerome@idsia.ch
mailto:luca@idsia.ch
mailto:alessandrog@idsia.ch
http://ieeexplore.ieee.org


6694 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

TABLE I
PLATFORMS AND SENSORY EQUIPMENT USED IN THE PERCEPTION TASKS

� Estimating the 2D pose of a docking station, using images
from a camera mounted on a mecanum robot.

Sec. V experimentally evaluates the approach on the three
applications and quantifies the improvements due to explicitly
modeling uncertainty and enforcing state-consistency; while
conclusions are drawn in Sec. VI.

II. RELATED WORK

A. Self-Supervised Learning

SSL refers to approaches that utilize a subset of the available
features, or an elaboration of those, as supervisory informa-
tion [1]. In robotics, the term is also used to denote an au-
tonomous, unattended robot that collects data, from which both
input features and supervisory labels are extracted. While many
SSL approaches focus on specific systems to extract the target
variable [3], [5]–[12], no explicit notion of a general detector is
present. In navigation, supervisory information is extracted from
the knowledge that at time t = 0 a vehicle is on the road [5], from
letting a drone roam the environment until a crash happens [3],
or by continuously measuring the distance from the surround-
ings [6]. Similar to our approach, Lieb et al. [5] and Gandhi et
al. [3] reconstruct the ground-truth from a small subset of data,
respectively at the beginning and at the end of each episode;
while Kouris et al. [6] utilize a dense ground-truth estimate
generated from three laser sensors. In grasping, supervision is
derived from measuring the force perceived on the end effector
before and after a grasp attempt [7] or by iteratively refining the
3D pose prediction of known objects [9]. Pinto et al. [7] predict
the probability of grasping an object from 18 possible angles
using images. Ground-truth information is generated once per
each grasping attempt; while Deng et al. [9] utilize a pre-trained
convolutional neural network (CNN) to serve as a continuous
source of ground-truth information. The model learns online,
and by grasping and moving objects produces more data, re-
peating the cycle. In traversability estimation, a dense detector
is derived from future or past sensors readings [10]–[12]. Nava

et al. [10] learn a robot-centric obstacle map composed of
traversable and obstacle cells. Labels are generated for each
timestep considering proximity sensors’ readings collected over
a sliding time window. Both sensors’ readings and odometry are
assumed to be ideal, while in our work we deal with uncertain
(noisy) information. Wellhausen et al. [11] predict terrain class
and a traversability score by relating the future torque measured
on the legs of the ANYmal quadruped, to image space footholds
perceived currently. Similarly, Zürn et al. [12] learn to clas-
sify the terrain from images, using as supervision the Fourier
transform of sound captured near the wheels of a ground robot.
In the visual odometry field, self-supervised approaches extract
ground-truth information directly from ego motion, learning
the relative transformation between two images collected by
a camera [13], [14], or from inverse warping images collected
at time t+ 1 and t− 1 with respect to the current image [15].
Iyer et al. [14] propose a geometric consistency term, aimed
at improving the performance of the visual odometry module:
they enforce the concatenation of relative motions from time t
to t+ n to be close to the motion of t+ n with respect to t. In
contrast, the state-consistency loss [4] adopted in this work, is
not limited to ego-motion information and enforces consistency
on a general model’s prediction (i.e., can be applied to pose
estimation of the robot itself or other objects in the environment).
Additionally, [14] require the use of ad-hoc SE(3) Layers in
the neural network (NN), which represent the pose as a 3D
rigid body transformation matrix, while the proposed work does
not require any specific NN architecture, nor a particular pose
representation and associated distance function.

B. Noisy Data in Regression

In real world scenarios, especially when data is collected di-
rectly by robots, noise present in the labels can severely degrade
the performance of learned models [2]. Most approaches that
do regression from noisy data focus on estimating the uncer-
tainty associated with predictions. These approaches fall under
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the category of Bayesian learning: some apply an uncertainty
estimation model on an existing regressor [16], while others
design ad-hoc architectures, casting the problem as learning the
distribution of the model weights [17]–[19].

Loquercio et al. [16] estimate the uncertainty associated with
model predictions by fitting a Bayesian belief network. Dropout
is used during multiple forward passes of the network to approxi-
mate the uncertainty of the prediction in a Monte Carlo sampling
fashion. Similarly, Gal et al. [18] propose to approximate the
true uncertainty by utilizing dropout Monte Carlo samples. In
contrast to [16], they require to alter the network architecture by
placing dropout layers after each non-linearity. By keeping the
dropout functionality active during inference, they compute the
uncertainty as the variance of the produced samples. Blundell et
al. [17] propose to model NN weights with a zero-centered Gaus-
sian distribution. Learning is then casted as a variational infer-
ence problem, where the true target distribution is approximated
by the learned model conditioned on input data. By noting that
commonly used weight distributions are symmetric and indepen-
dent, Yeming et al. [19] improve the ideas of [17] by decompos-
ing the forward pass into the multiplication of input and weight
means by independently sampled sign matrices [19, eq. (4)],
resulting in faster computation and less variance in the gradients.

In contrast, our approach tackles the different problem of
learning from noisy data, without delving into the estimation
of the uncertainty associated with predictions.

C. Related Case Studies

We demonstrate the generality of our approach by solving
common tasks in the robotics field: OOI pose estimation with a
robotic arm, and localization of mobile ground robots.

Zeng et al. [20] use SSL to collect RGB-D images of single
objects from different points of view, then segmented by a back-
ground removal algorithm. Labels are then extracted by fitting
the 3D model of the object in the corresponding image using an
iterative closest point (ICP) algorithm. Deng et al. [9] iteratively
refine the performance of a NN tasked to predict the pose of
known objects from RGB data with online self-supervision:
initially the network is trained on simulated data; it is then
deployed in a real-world scenario where a camera-equipped
robotic arm moves by pushing or grasping the objects around,
generating new data used to improve the pose estimation. Both
approaches rely on 3D models of the objects, used during the
learning process to refine the prediction, overlaying the 3D
object on top of the image and measuring the difference. Instead,
our approach does not require prior knowledge of the object and
relies solely on a detector capable of recognizing the object, or
a fiducial marker attached to it.

Ratz et al. [21] localize the robot within an environment from
LiDAR scans and camera frames. A NN fuses together the two
sensors and produces a multi-modal descriptor. Localization is
done in a one-shot fashion by matching the descriptor with a
pre-computed database. In our case studies, the approach utilizes
only camera images and directly learns to localize, internally
learning a discriminative feature space for the environment
where data are collected.

III. MODEL

A. Definitions

We aim to train a model that, given readings x(t) collected
by onboard sensors, predicts a target variable y(t), which is a
pose in SE(3) of the frame Fi of an OOI, relative to the moving
robot frame Fr. The sensor readings x(t) do not need to have
an explicit geometric interpretation, might be high-dimensional
(e.g. an uncalibrated image), and could potentially represent the
concatenated outputs from multiple heterogeneous sensors.

To train the model, we use data collected in one or more
training episodes. During each episode, the OOI is static (i.e.
y does not change when expressed in a fixed reference frame)
while the robot moves in the environment. Let T be the set of
all timesteps in a given training episode.

We assume that a black-box detector provides temporally
sparse estimates of y(t):

d(t) =

{
ỹ(t) if t ∈ Td,
undefined otherwise

(1)

where Td ⊆ T denotes the set of timesteps in which the detector
module provides an output, and the tilde over y denotes the fact
that this is a potentially inaccurate estimate of the true value of
the target variable.

Finally, we assume that an odometry module outputs for every
t ∈ T a (potentially inaccurate) estimate p̃(t) of the robot pose
p(t) in a fixed inertial frame F0. Given two timesteps t, u ∈ T ,
we denote with p̃(t, u) the odometry’s estimate of the pose of
the robot at uwith respect to its pose at t. In particular, p̃(t, u) =
�p(t)⊕ p(u), where ⊕ denotes the pose composition operator,
and the unary operator � denotes pose inversion [22].

For each training episode, we collect the set of samples

{x(t),p(t),d(t)|t ∈ T } ; (2)

and use data from all training episodes to learn a mapping from
x to y. The mapping is implemented by a NN model m(x|θ)
parametrized by θ. Training is performed by minimizing a loss
function

L = Ltask + λscLsc, (3)

composed by a task loss Ltask and a state-consistency loss Lsc;
the latter is scaled with a factor λsc.

We first describe these two terms in case the detector and
odometry return point-wise estimates; then, we extend the dis-
cussion to the case in which their uncertainty can be modeled
with a probability distribution, see Fig. 1 and Fig. 2.

B. Task Loss

Consider two timesteps t, u in the same episode, such that t /∈
Td and u ∈ Td. The task loss enforces that the model, when fed
with x(t) returns a pose that is consistent with d(u), accounting
for the pose transform measured between t and u by the robot
odometry, i.e. p̃(t, u).

More specifically, d(u) is an estimate of the target variable
with respect to the robot frame at time u; it follows that ỹ(t) =
p̃(t, u)⊕ d(u) is an estimate of the target variable at t. Thus,
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Fig. 1. Illustration of the task loss in case the detector and odometry are ideal
(left), inaccurate (center), or with a known uncertainty model (right). Black
color denotes the true poses for the robot (arrowhead) and OOI (diamond);
blue color denotes the OOI pose as returned by the detector; orange denotes
model predictions, obtained from data (red) sensed at time u. Gray denotes
robot odometry. See text for details.

Fig. 2. Illustration of the state-consistency loss in case the odometry is ideal
(left), inaccurate (center), or with a known uncertainty model (right); black color
denotes the true poses for the robot (arrowhead) and OOI (diamond). Orange
denotes the outputs of the model at times t and u, which depends on sensed data
(red). The state consistency loss (violet) forces the model to output consistent
estimates, accounting also for odometry (gray) and its uncertainty, if known.

the task loss is defined as

Ltask =
∑

t∈Td,u∈T
ΔSE3(p̃(t, u)⊕ d(u),m(x(t)|θ)), (4)

where the function ΔSE3(·, ·) is a measure of the distance be-
tween two poses in SE(3) and defined as

ΔSE3(pa,pb) := λo ‖oa − ob‖+
1

π
Δquat (qa, qb) , (5)

wherepa andpb are two generic poses, composed of the position
components oa,ob ∈ R3, and the rotation components repre-
sented as quaternionsqa, qb ∈ H, being H the non-commutative
ring of the quaternions. In (5), Δquat(·, ·) denotes the quater-
nionic distance [23, eq. (4)]. Note that the rotational term of
the distance is bound in [0, 1] while the positional term has no
upper bound. The parameter λo is introduced as a scaling factor
to weigh the two terms.1

This definition of the task loss uses odometry to propagate the
estimate of y (produced by the detector in a timestep u ∈ Td),
to any other timestep t in the same episode. If both the detector
and the odometry are ideal (i.e. error-free), using any u ∈ Td
yields the same value of ỹ(t) = p̃(t, u)⊕ d(u). Otherwise, if
the detector and/or the odometry are not ideal, every different
choice of u yields a different estimate of ỹ(t). In practice, this
is expected to mitigate inaccuracies as errors are averaged out
during training.

1In principle, other options for representing poses and their distance [24], [25]
might be adopted, as long as the distance function is continuous and derivable.

C. State-Consistency Loss

Consider two timesteps t, u in the same sequence, and as-
sume that t, u /∈ Td. The state-consistency loss enforces that the
predictions of the model at t and u are consistent with each
other [4], accounting for the robot’s odometry between t and u.
More specifically,

Lsc =
∑
t,u∈T

ΔSE3(p̃(t, u)⊕m(x(u)|θ),m(x(t)|θ)). (6)

Consider the following example; givenx(t), the model returns
an estimated pose for an OOI 1.5m in front of the robot; after
the robot advances 1m, at time u, the model given x(u) should
return a pose that is 0.5 m in front of the robot. The state-
consistency loss ensures that predictions ŷ(t) = m(x(t)|θ) and
ŷ(u) = m(x(u)|θ) match this expectation.

D. Dealing With Uncertainty

Our approach relies on two sources of information, namely
the detector d̃(t) and the odometry p̃(t, u), both of which are
possibly affected by measurement errors (instantaneous for the
detector, accumulated over time for the odometry). If such errors
can be modeled, we can explicitly account for them in our
approach.

In particular, we represent the uncertainty of d(t) by consid-
ering that the detector’s output is, instead of a pointwise estimate
of the target pose, a probability distribution over poses, defined
in SE(3). We denote such probability distribution as D(t).

Similarly, for odometry we define P (t, u) as the probability
distribution of the relative pose of p(t, u); this also accounts for
the fact that odometry errors accumulate over time, and therefore
are not independent for different times.

This representation allows to reformulate the task loss as

Ltask =
∑
t∈Td
u∈T

E

[
ΔSE3 (p(t, u)⊕ d(t),m(x(u)|θ))

]
, (7)

and similarly, the state-consistency loss can be rewritten as

Lsc =
∑
t,u∈T

E

[
ΔSE3 (p(t, u)⊕m(x(u)|θ),m(x(t)|θ))

]
(8)

where p(t, u) ∼ P (t, u) and d(t) ∼ D(t).
In practice, when implementing the losses we approximate the

expectation as the average over a finite number of realizations, in
whichd(t) andp(t, u) are Monte Carlo samples of the respective
distributions.2

IV. EXPERIMENTAL SETUP

This section validates our approach with three applications
that differ in complexity and input dimensionality: (i) pose
estimation of an OOI with a robotic arm; (ii) robot heading
estimation using infrared sensors; and (iii) indoor localization
of a ground robot.

2In a straightforward implementation, this multiplies the number of training
samples by a factor equal to Nmc, and yields a correspondingly longer training
time; in contrast, no additional computation is needed during inference.
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A. Object of Interest Pose Estimation With a Robotic Arm

We consider the robotic manipulator Panda by Franka Emika,
equipped with an Intel RealSense D435 sensor [26] at its end-
effector, simulated with Gazebo [27], see Table I. The task is
to estimate the 3D pose of an OOI, i.e. a colored mug, which
is equipped with a small visual fiducial marker that is visible
only when the cup is observed from a specific viewpoint. The
frames F0 and Fr are placed at the base of the robot and at its
end-effector respectively; while the frame Fi of the OOI is in
the center of the mug. The end-effector pose p(t) is given by the
robot forward kinematics. The input x(t) is a 160× 120 pixel
RGB image acquired from the RealSense camera. The estimates
d(t) are generated by the AprilTag [28] off-the-shelf fiducial
marker detector operating on x(t); only when the marker is
clearly visible in the frame, the detector returns a noisy estimate
of the 3D pose of the marker w.r.t. Fr

3.
As shown in Table I, the environment consists of a flat table of

90×90 cm with different objects, some textured and some others
having a solid color, besides the mug. In each training episode,
the table and objects color, the position of the objects, and the
direction of the light illuminating the scene are randomized
to generate different environments. For each environment, the
robot moves the end-effector in order to reach a total of 32
goal poses using the ROS MoveIt [29] implementation of the
RRT planner. Each goal position is sampled from a semi-sphere
having a radius of 55 cm placed at a height of 35 cm from
the table; the goal orientation is set to make the camera look
towards a random point lying 5 cm above the table. For each
environment, the end-effector pose is initialized at the center of
the semi-sphere.

The collected data amounts to 237 k tuples (of which only 78 k
have the mug visible), corresponding to 157 environments and 5
simulated hours. The data is finally split into a training set (119
environments), a validation set (18 environments), and a testing
set (20 environments). Training is performed with a λo = 10,
striking a balance between the positional and rotational errors.

B. Robot Heading Estimation Using Infrared Sensors

For this application, we use a Thymio [30], a small differential
drive robot equipped with 7 infrared sensors: 5 mounted at the
front and 2 at the rear of the robot body. Each sensor measures the
amount of infrared light reflected from the environment, which
is related in some unknown way to the distance and orientation
of the sensor with respect to an obstacle. The input of the model
x(t) consists in the uncalibrated readings of the 7 sensors at
time t, while y(t) is the angle of the wall w.r.t the robot. Note
that we can still adopt ΔSE3, setting λo = 0, thus considering
only the heading. The robot odometry p̃(t), derived from the
wheel encoders, provides the 2D transformation of the robot
frameFr w.r.t. the inertial frameF0. The scenario, along with an
illustrative schematic of the sensor readings, is shown in Table I.

3The rigid transformation between the end-effector and the camera frame is
assumed to be known, e.g., through a calibration procedure. Similarly, the offset
between the origin of Fi and the center of the marker is taken into account in
our computations.

Episodes are collected by teleoperating the robot along tra-
jectories in the proximity of the wall. During each episode, the
robot true pose is tracked by a fixed tracking infrastructure
(12 Optitrack cameras), which is used as a comparison for
experiments. At the beginning of each episode, the robot touches
the wall with its rear side, thus the inertial frame F0 coincides
with the robot frame Fr at this instant in time. This piece of
information also acts as a virtual detector, whose output d̃(t) is
available only in the first timestep of each episode.

Information about the rotation of each wheel is computed by
the robot’s firmware by measuring the current flowing through
each motor – an inaccurate approach whose errors we model to
compute the robot’s uncertain odometry.

A total of 16 distinct episodes are recorded, each lasting on
average 34 seconds, during which samples are collected at 10
Hz (a total of 5453 samples). Episodes are split into training and
validation sets for experiments using a leave-one-episode-out
cross-validation scheme.

C. Indoor Localization of a Ground Robot

We consider a wheeled ground robot, the DJI RoboMaster EP,
equipped with an onboard camera and omnidirectional motion
capabilities using Swedish wheels, see Table I. We consider a sit-
uation in which the robot navigates a given indoor environment
and, when required, needs to come back to a fixed docking station
(e.g. to recharge the batteries). In our setting, the docking station
is represented by a mark on the floor. The inputx(t) is the camera
stream, downsampled to a resolution of 160× 120 pixels; the
perception task consists in predicting the pose of the docking
station relative to the robot frame Fr, given an image x(t)
acquired at a generic pose. Note that, since the docking station
is fixed in the environment, this problem is equivalent to robot
localization; it differs from the object localization task presented
in Sec. IV-A because the docking station does not need to be
visible in the input image for successful estimation.

The robot onboard odometry module provides p̃(t) w.r.t. the
inertial frame F0, which coincides with Fr at the beginning of
the acquisition. Figure 3 visualizes the inaccurate robot odome-
try as measured, and 50 realizations accounting for uncertainty,
for the first minute of a training episode.

Furthermore, at time t = 0 the robot undocks from the dock-
ing station; similarly to the previous case, we use this infor-
mation as a detector. In this case study, the OOI is the docking
station and its frameFi coincides with frameF0, as in Sec. IV-B.

We collect 20 episodes recording data at 15 Hz, for a total
of 70 k samples in 80 minutes (4 minutes per episode). Each
episode begins with the robot attached to the docking station;
the robot is then teleoperated to explore the environment. Data
from different episodes are split into a training set (40 k samples,
10 episodes), a validation set (15 k samples, 5 episodes), and a
testing set (15 k samples, 5 episodes). Training is performed
with λo = 10, similarly to Sec. IV-A.

D. Model Training

In all case studies, a NN is trained using Adam [31] as
optimizer with a learning rate of 1e−3; early stopping is used to
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Fig. 3. Visualization of measured inaccurate odometry (black), and 50 real-
izations of the uncertain odometry, for the first minute of a training episode of
the RoboMaster robot.

determine when to conclude the training process. An architecture
based on MobileNet-V2 [32] with a total of 1 million parameters
is used for the case studies in Sec. IV-A and Sec. IV-C; it maps
a 160× 120 RGB image to an output vector representing a 3D
pose (composed of 7 elements, 3 for the position and 4 for the
quaternion). In these two use cases, we artificially increase the
amount of data used for the training, by adopting the following
data augmentation techniques on the input images: blurring,
multiplicative Gaussian noise, random brightness and contrast,
random resized cropping.

In the case study detailed in Sec. IV-B, we use a simpler NN ar-
chitecture composed of four linear layers with a total of 1000 pa-
rameters, mapping the 7 infrared sensors’ readings to a 3D pose.

V. RESULTS AND DISCUSSION

A. Object of Interest Pose Estimation With a Robotic Arm

For the scenario described in Sec. IV-A, we first evaluate the
trained model on the testing set, by comparing the predicted
poses ŷ to the corresponding ground-truth y. Predictions oc-
cur independently for every frame; no information from state
estimation or the detector is used in the process.

For the position component, the model achieves a Root Mean
Squared Error of 39.9mm, and a coefficient of determination
R2 of 0.962, 0.960 and 0.866 on the x, y and z components,
respectively. The coefficient of determination is an adimensional
measure of the quality of a regressor, which quantifies the
amount of variance in the target variable that is explained by the
model; an ideal regressor yields R2 = 1, whereas a dummy re-
gressor estimating the mean of the target variable yieldsR2 = 0;
we observe that, while all components are estimated well, the
z coordinate, i.e. the distance of the OOI w.r.t. the camera, is
estimated with lower accuracy; this is expected, since estimating
distances is hard from low-resolution monocular images. The
rotational component is estimated with an average rotational
error Δquat = 0.1417, corresponding to an angle of about 25◦.

As a comparison, we also trained a supervised model using
ground-truth poses of the OOI instead of the detector outputs:

Fig. 4. Prediction of the OOI pose with a robotic arm on the testing set (a); input
images (b), ground-truth and predictions (c) relative to the additional testing
scenario. In (b-c) a mug is placed on top of a rotating disk support. Grayed-out
areas indicate time intervals in which the mug is not visible.

the resulting prediction performance is the same as with the
self-supervised approach. In fact, in the considered simulated
environment the detector is very accurate and state estimation
is ideal, which makes the self-supervised labels almost identical
to ground-truth labels. This is not the case for the experiment in
Section V-B.

Fig. 4(a) shows a sequence of camera frames from the testing
set with an overlay of the model’s prediction and the ground-
truth. We observe that the model correctly identifies the object
and accurately estimates its pose, even when the OOI is only
partially visible or occluded, and independently on the visibility
of the fiducial marker used during training. When the object
is not visible at all on the image, the model tends to confuse
it with other objects that are visually similar; this highlights a
limitation of our approach: we do not explicitly handle aliasing,
i.e. the case in which x does not contain enough information to
estimate y.

To demonstrate the fact that the model, once trained, can
be used in dynamic environments, we consider an additional
testing scenario: the mug is placed on a rotating disk support
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Fig. 5. Mean absolute angle error (lower is better) in the heading estimation
task. ∗ p = 0.0003; ∗∗ p = 0.0008; n.s. means not significant (p = 0.029).

and observed while the robot also moves. Fig. 4(b) shows a
sequence of camera frames captured during the experiment.
Fig. 4(c) compares the model prediction to AprilTag detections,
and to ground-truth. For the sake of clarity, the target has been
transformed in the frame F0, along with the model predictions.
The model (green in the plots) manages to predict a consistent
pose (it well overlaps the blue dashed line of the ground-truth),
outperforming the AprilTag detection (red line), which provides
a measure for a small fraction of frames in which the tag
is visible, while our model runs at 25 Hz on a GPU Nvidia
Quadro P2000. The model produces good estimates of the mug
pose from most points of view, even when it appears upside
down. Occasional failures occur when the mug is seen from
a point of view that does not provide any reference to infer
its actual rotation around the vertical axis – i.e., when both
the marker and the handle of the mug are not visible. While
it is robust to partial occlusions of the mug, the model fails
to estimate the mug’s pose when a very small portion of it is
visible, or when it is totally invisible; time intervals in which
the mug is not visible are depicted with a gray shadow in
Fig. 4(c).

B. Robot Heading Estimation Using Infrared Sensors

For the scenario described in Sec. IV-B we consider three
possible sources of odometry: exact odometry, where p̃(t, u) =
p(t, u), as measured by the optitrack system, acting as an up-
per bound of the achievable performance; pointwise odometry,
where the relative pose p̃(t, u) is computed according to the
known robot kinematics and the readings of the wheel rotation
sensors between timesteps t and u; uncertain odometry, where
the probability distribution P̃ (t, u) is approximated by Nmc =
50 realizations of the odometry between timesteps t and u,
obtained by corrupting the readings of the wheel rotation sensors
with white Gaussian noise, whose variance matches the known
uncertainty of the sensor.

Fig. 5 reports the Mean Absolute Error between the pre-
dicted angle of the robot pose with respect to the wall, against
the ground-truth angle as measured by the optitrack system;
this metric is reported for four models trained with different
odometry sources, with (λsc = 1) or without (λsc = 0) the state-
consistency loss. Each of the four models is trained and evaluated
16 times according to the leave-one-episode-out cross-validation
scheme. We observe that: i) using uncertain odometry instead of
pointwise odometry improves the prediction performance of the

Fig. 6. Robot localization task on testing data.

resulting model;4 ii) additionally enforcing the state-consistency
loss (λsc = 1) further improves performance, even though the
incremental improvement over the uncertain model with λsc = 0
is not statistically significant; iii) compared to the model trained
with exact odometry, serving as a supervised learning upper-
bound, the performance gap of our best model is less than half of
the performance gap of the baseline model (pointwise λsc = 0),
i.e. 0.57◦ vs 1.20◦.

C. Indoor Localization of a Ground Robot

For the scenario described in Sec. IV-C, we report one quali-
tative and one quantitative experiment.

In the qualitative experiment, we train a model using uncertain
odometry (Nmc = 50) and λsc = 1, then apply the trained model
independently on each frame of a testing episode. Fig. 6 shows
the position component of the predicted poses (green), compared
to the poses returned by the robot’s odometry (blue) for the
same trajectory; despite the short duration of the testing episode
(about 4 minutes), the drift of the odometry trajectory is apparent
(e.g. the blue trajectory passes through a wall on the left); in
comparison, the poses predicted by our approach are locally
noisy but not affected by accumulating error. The figure also
depicts the predicted pose at the end of the trajectory for each
of the two methods; our model correctly predicts that the robot
is back at the docking station, whereas the odometry has drifted
by about 0.5m and 20◦.

In the quantitative experiment, we consider four timesteps
t ∈ t1, t2, t3, t4 of the testing episode, whose ground-truth poses
p(t) have been manually measured with respect to the docking
station. For each of the four timesteps, we measure the positional
and rotation components of the error against such ground-truth,
for: i) the pose p̃(t) estimated by the robot odometry; ii) the poses
estimated by each of four models. In particular, we consider
models trained with pointwise or uncertain odometry, with or
without using the state-consistency loss. Table II shows that:
using the state-consistency loss improves both positional and
rotational errors; using uncertain odometry during training con-
sistently outperforms pointwise odometry.

4We use the non-parametric Wilcoxon signed-rank test between matched
samples, i.e. the performance of two models on the same cross-validation fold
(p = 0.0003).
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TABLE II
QUANTITATIVE PERFORMANCE ON THE INDOOR LOCALIZATION TASK

VI. CONCLUSION

We presented a general self-supervised learning approach for
spatial perception tasks, and instantiated it on three different
case studies. The approach is general enough to be applicable
to different robots and sensor apparatus, requiring only a possi-
bly uncertain odometry and a detector that sparsely produces
a ground-truth estimate. A novel loss allows us to evaluate
the model outputs also for timesteps in which no supervision
is available, by propagating such supervision from different
timesteps using uncertain state estimates. Furthermore, the loss
formulation enforces consistency among predictions at different
timesteps, which further improves performance. Results show
consistent and statistically significant improvements of models
learned with the uncertainty-aware version of the loss compared
to the baseline.
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