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Fig. 1: Top: abdominal cavity reconstruction and camera trajectory (green line) estimation by Endo-Depth-and-Motion
from a monocular sequence from video #22 of the Hamlyn dataset. Bottom: four sample images from the video.

Abstract— Estimating a scene reconstruction and the camera
motion from in-body videos is challenging due to several factors,
e.g. the deformation of in-body cavities or the lack of texture.
In this paper we present Endo-Depth-and-Motion, a pipeline
that estimates the 6-degrees-of-freedom camera pose and
dense 3D scene models from monocular endoscopic sequences.
Our approach leverages recent advances in self-supervised
depth networks to generate pseudo-RGBD frames, then tracks
the camera pose using photometric residuals and fuses the
registered depth maps in a volumetric representation. We
present an extensive experimental evaluation in the public
dataset Hamlyn, showing high-quality results and comparisons
against relevant baselines. We also release all models and code1

for future comparisons.

I. INTRODUCTION

Estimating a 3D reconstruction of a scene from a set
of images, together with the poses of the cameras that
captured them, is most of the times thought of as a mature
technology. The scientific literature has shown impressive
results in a wide variety of settings: we can differentiate for
example between offline [1] and online [2] approaches; and
among the online ones, feature-based [2], semi-dense [3],
hybrid [4] or fully dense ones [5]. Such impressive results,
however, rely on several assumptions frequently overlooked,
namely a sufficiently rigid and textured scene, sufficient
and stable illumination, and a sufficiently large camera
translation –but not so large that finding correspondences

1https://davidrecasens.github.io/EndoDepthAndMotion/
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becomes problematic. The application of state-of-the-art 3D
vision algorithms becomes challenging in certain real-world
applications where these assumptions do not hold.

A particularly challenging case are medical images,
and our specific application of monocular recordings from
endoscopic procedures. See Fig. 1 and notice the insufficient
and unstable illumination or the lack of texture. However,
it is of high relevance and interest creating 3D models
of the human cavities and localizing a camera inside it
to enable, among others, virtual augmentations in surgical
procedures [6], assistance in polyp detection [7], [8] and
in-body autonomous robot navigation [9]. In this paper
we target dense reconstructions of in-body cavities and
accurate ego-motion from monocular endoscopic sequences.
Specifically, we leverage depth convolutional networks to
create pseudo-RGBD keyframes, we estimate the camera
motion using photometric methods and fuse the registered
pseudo-RGBD keyframes in a volumetric representation.
We achieve high-quality reconstructions in the Hamlyn
dataset (see an example in Fig. 1). Our pipeline, that we
call Endo-Depth-and-Motion, is among the first ones based
on depth convolutional networks that produces accurate
and dense 3D reconstructions of in-body cavities. We
show results that are competitive against relevant baselines
(IsoNRSfM [10] and LapDepth [11]) and provide an
extensive evaluation of the pipeline.

II. RELATED WORK

Deep convolutional networks were first proposed for depth
estimation in [12], [13]. These first models were trained
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    Endo-Depth         Photometric tracking       Volumetric reconstruction

Fig. 2: Endo-Depth-and-Motion overview. First, monocular depth is predicted with Endo-Depth. The camera motion (green
line) is then estimated using the photometric residuals. Finally, the full scene is reconstructed by volumetric fusion.

in a supervised manner using depth sensors, and were
improved in following works using deeper networks and
several architectural contributions [14], [15], [16], [11].
Self-supervised approaches were proposed later, mainly
based on multi-view photometric consistency. [17] proposed
self-supervision using stereo, and [18] generalized it to
monocular views (ego-motion being predicted by another
network). Both have been improved in many recent works,
e.g., [19], [20]. Self-supervised depth learning is relevant
for in-body monocular reconstructions, as it does not
require additional sensors, sophisticated renderings [21], [22]
or domain transfer [23]. In medical contexts, supervised
depth learning has been addressed in [24], [25], [26],
self-supervised using stereo in [27] and self-supervised using
sparse monocular depth in [28]. [29] is the first that fuses
the monocular depths from a supervised network using
ElasticFusion [30]. Differently from them, in Endo-Depth
we use the state-of-the-art network of [20] with the following
advantages: 1) the training is self-supervised from monocular
endoscopes, stereo ones, or from both, 2) our experiments
show that self-supervised training removes the effect of the
domain shift from synthetic data, 3) its dense photometric
loss uses the information of the whole image, and 4)
several details (e.g, minimum reprojection loss from a set
of images) make the loss sufficiently robust to endoscopic
image challenges.

Depth and motion can be estimated using only multi-view
constraints, either dense [31] or sparse [2]. The literature
on these methods is huge, but they are limited on
in-body images by drastic illumination changes, weak
texture, deformations, tool insertions, fluids and sometimes
small camera motions. All of this poses challenges in
determining the correspondences and the geometry, that can
be alleviated starting from single-view dense depth as we
do in Endo-Depth-and-Motion. Convolutional networks are
indeed demonstrating a huge potential to replace several parts
of SfM/SLAM pipelines [32]. [33], [34] are early works
combining single-view depth with multi-view approaches
for mapping and tracking respectively. [35] proposed a
convolutional model for camera tracking and incremental
mapping, in this case tightly integrating multi-view
optimization within the network. [5] uses variational
auto-encoders for single-view depth and optimizes the

depth prediction jointly with the camera poses. The
combination we propose is photometric odometry, using the
self-supervised Endo-Depth prediction as a pseudo-RGBD
keyframe.

The interest for applying SfM/SLAM in intracorporeal
sequences has risen following the advances of the
field, but encounters the challenges mentioned before.
Early monocular approaches were based on the Extended
Kalman Filter [36], [37]; and more recent ones on
non-linear optimization for tracking and mapping [6] and
map densification using variational approaches [38] or
multi-view stereo [39]. These methods were strongly based
on the rigidity assumption. MIS-SLAM [40], [41] was
the first bringing deformable SLAM to intracorporeal
images. It uses a canonical shape, as DynamicFusion
[42], integrating stereo observations in a Truncated Signed
Distance Function (TSDF) [43] with a deformation model.
It uses the rigid tracking of ORB-SLAM2 [2] to estimate
the camera pose between keyframes. DefSLAM [44] was
the first monocular SLAM fully addressing deformations
in monocular endoscopies. SD-DefSLAM [45] improves
over it incorporating an illumination-invariant Lukas-Kanade
tracker, relocalization and tool segmentation. Both of
them use at their core an isometric NRSfM (IsoNRSfM)
[10] over a sliding window and a robust deformation
tracking inspired in [46]. Although IsoNRSfM models
intracorporeal deformations, it assumes that the scene is a
continuous surface, which does not hold for many in-body
scenes. In addition, even in [45], feature correspondence
keeps being a challenge. As another drawback, deformable
tracking is computationally demanding. Compared to them,
our Endo-Depth can be a fair substitute of IsoNRSfM
for deformable SLAM. And, under the assumption of
slow deformations, our high-keyframe-rate odometry allows
Endo-Depth-and-Motion to achieve long tracks in both rigid
and deformable in-body sequences.

III. OVERVIEW

Fig. 2 shows an overview of Endo-Depth-and-Motion.
First, pixel-wise depth is predicted on a set of keyframes
of the endoscopic monocular video using a deep neural
network. This part is described in Section IV. The motion of
each frame with respect to the closest keyframe is estimated



by minimizing the photometric error, robustified using image
pyramids and robust error functions (see Section V for the
details). Finally, the depth maps of the keyframes are fused
in a TSDF-based volumetric representation, as explained in
Section VI. A demonstrative video showing sample results
is available as supplementary material2.

IV. ENDO-DEPTH

We use the Monodepth2 network architecture and training
procedures [20], which are the state of the art for
self-supervised depth learning. Monodepth2 follows a U-Net
encoder-decoder architecture with a ResNet18 encoder, and
models the mapping function f : Rw×h×3 → Rw×h between
an image I of size w × h and its depth map D = f(I;θ).
Fig. 3 shows several examples of predicted depth maps. The
network parameters θ are learned in a self-supervised manner
minimizing a total loss L = Lp + λLs, formed by the
weighted sum of a photometric loss Lp and a smoothing loss
Ls. This last one regularizes the surface while preserving
discontinuities at the edges (see details in [20]).

The photometric loss Lp sums over each pixel p ∈ Ωt in a
target image It the minimum value of an appearance residual
with a pixel p ∈ Ωt′→t in images It′→t that are warped from
a small set of source images S = {I1, . . . , It′ , . . .}. The
network can be trained using stereo pairs –the target and
source images are the stereo ones–, monocular views –the
source images are the images before and after the target
one–, or both. Specifically, the loss is a function of the
photometric reprojection error and the Structural Similarity
Index Measure (SSIM) [47]

Lp =
∑
p∈Ωt

min
S

(α‖It [p]− It′→t [p]‖1+

+ (1− SSIM (It, It′→t,p))) , (1)

where [·] is the sampling operator and α weights the two
addends. The color values of p ∈ Ωt′→t are taken from the
corresponding pixels p′ ∈ Ωt′ , so that It′→t [p] = It′ [p′].
The warping function is

p′ = π
(
Rt′tπ

−1 (p, Dt [p]) + tt′t
)

(2)

where π : R3 → Ω and π−1 : Ω × R → R3 are
respectively the projection and back-projection functions.
Tt′t =

(
Rt′t tt′t
0 1

)
∈ SE(3), with Rt′t ∈ SO(3) and

tt′t ∈ R3, is the transformation matrix that converts points
from the target reference frame of It to the source frame of
It′ . Such transformation is pre-calibrated when training with
a stereo pair and learned by another deep network when
training with two monocular views.

V. PHOTOMETRIC TRACKING

We use a keyframe-based photometric approach for
tracking the camera pose, that estimates a relative
transformation matrix Tck ∈ SE(3) between a target

2The video is at https://youtu.be/G1XWIyEbvPc

Input           Stereo loss         Monocular loss    Mono + stereo loss

Fig. 3: Endo-Depth predictions on sample images of the
Hamlyn dataset, trained with different losses.

keyframe Ik and the current source frame Ic. Given the dense
depth map for the last keyframe Dk = f(Ik;θ), predicted
using Endo-Depth (Section IV), we optimize Tck so that
corresponding pixels have minimum color difference. We
formulate it as a non-linear least-squares in a Lucas-Kanade
style, minimizing the photometric error. To improve the range
of convergence, known to be a challenge in photometric
methods, we use a coarse-to-fine pyramidal optimization.

Our approach is similar to DTAM [31]. First, we optimize
only the camera rotation using the lowest level of the the
pyramid. This gives us resilience under motion blur and helps
convergence, even when the motion is not a pure rotation.
For every scale after the coarser one, we optimize the full
six-degrees-of-freedom camera pose. We parametrize local
motion updates by using Lie algebras as ψ ∈ se(3). The
final cost function is the forward-compositional photometric
cost between corresponding pixels in the keyframe p ∈ Ωk

and in the warped frame p ∈ Ωc→k

https://youtu.be/G1XWIyEbvPc


ψ̂ = arg min
ψ

∑
p∈Ωk

min (‖Ik [p]− Ic→k [p]‖2, γ) (3)

where the color value of p ∈ Ωc→k is taken from its
correspondences p′ ∈ Ωc using unprojection and projection
as in Equation 2. The frame-to-keyframe motion Tck is
the composition of a global transformation T0

ck and the
exponential mapping of the local updates in the Lie algebra
Tck = expSE(3)(ψ)T0

ck. We use Gauss-Newton, which
converges in a few steps. Our tracking does not model
occlusions nor illumination changes, as both have a small
effect in our narrow baseline setup. In any case, to mitigate
the effect of outliers, we saturate the L2-norm of the residuals
with a threshold γ determined experimentally.

VI. VOLUMETRIC RECONSTRUCTION

In this final stage of our pipeline, we fuse the registered
pseudo-RGBD keyframes obtained from Endo-Depth after
tracking into an implicit surface representation. Specifically,
we use a TSDF [43]. The scene is first divided into voxels
and, for each of them it is stored a cumulative signed distance
function d : R3 → R that represents the distance to the
closest surface (which it is truncated at a certain depth value).
The TSDF can be updated in a straightforward manner, using
sequential averaging for every voxel and the predicted depth
for every pixel p ∈ Ωk in every keyframe k. The surface
can be efficiently recovered from such implicit representation
using, for instance, the Marching Cubes algorithm [48]. In
our experiments, we use the implementation in Open3D [49].

VII. EXPERIMENTAL RESULTS

We used the Hamlyn dataset [54], [55], [56], [57],
that contains challenging sequences imaging intracorporeal
scenes with weak textures, deformations, reflections, surgical
tools and occlusions. Specifically, we chose 21 videos with
diverse image resolution and calibration parameters.

A. Endo-Depth

Fig. 3 shows Endo-Depth predictions for several sample
images of the Hamlyn dataset. To obtain quantitative results,
we generated ground truth depth from stereo, specifically
using Libelas (Library for Efficient Large-Scale Stereo
Matching [58]). It must be remarked that Libelas is
sufficiently good but not perfect: it leaves blank areas for
pixels at image borders and sometimes within the image.
This ground truth is made available to be used as benchmark
and can be found in our project page.

We defined the configuration for self-supervised training
after an extensive ablation study. First, we set the input
size to half of the original images. In this manner we
filter details like veins, small folds or specular reflections
that cause color changes unrelated to depth. Also, using
reflection padding (instead of the more usual zero padding)
in the decoder demonstrated a better performance both
qualitatively and quantitatively. Many works [20], [59], [60],
[61] used an encoder pretrained for ImageNet classification

a)

b)

c)

d)

e)

f)

g)

Fig. 4: Trajectory and reconstructions before fusion
in Hamlyn video #22 for 7 tracking alternatives: a)
point-to-point ICP [50], b) point-to-plane ICP [51], c)
photometric [52], d) photometric plus geometric [53] and
ours with keyframe creation ratio e) 0.5, f) 0.2 and g) 0.1.

[62], achieving smaller errors compared to training from
scratch. For Monodepth2, pretraining is also benefitial when
evaluated in KITTI [63], and we have seen the same effect
for Endo-Depth evaluated in Hamlyn. Summing up, all our
models were pre-trained in ImageNet, and trained in Hamlyn
halving the resolution of the input images and with reflection
padding. With stereo and monocular-stereo data, the best
performance was reached after 2 epochs. When training only
with monocular images, 9 epochs were necessary.

We do 21-fold cross validation for each training modality
in Tables I and II. Each of the 21 models is tested on one
Hamlyn video and trained on the rest. To address the varying
camera intrinsics in the Hamlyn data, we grouped together
videos that have similar resolution and intrinsics and trained
Endo-Depth sequentially in each of them. For the training



Fig. 5: Frames until failure for 5 tracking alternatives (ICP
point-to-point [50], ICP point-to-plane [51], photometric
[52], hybrid photometric and geometric [53] and ours) in
9 Hamlyn videos (same as the maps in Fig. 1, 2 and 4).

splits we removed occluded or useless frames, and for the
test ones, also those frames with low-quality ground truth.
We report the standard metrics for depth networks [12]. As
monocular depth is affected of scale drift, in particular if
trained with monocular sequences, we align the scales of the
predicted depth Di and the ground truth depth DGT

i using
a per-image scale factor si computed, as it is standard in
the literature [12], as si = median(DGT

i )/median(Di). We show
in the last column of Table I that the stereo loss achieves the
best performance in most of the sequences. This is expected,
since the illumination does not change nor the scene deforms
between the images of a stereo pair. On the other side, the
monocular loss is affected by these two factors, in addition
to having to learn the relative camera motion.

Table II shows Endo-Depth results without depth scaling,
as stereo self-supervision observes such scale. We consider
this a more realistic setup and a more relevant metric
for applications. Notice that the differences with per-image
scaling are small (less than 1 cm RMSE in average). This
demonstrates that Endo-Depth trained with monocular-stereo
or stereo losses learns a stable global scale for the
reconstruction, which is a key aspect to obtain small
trajectory drift in the experiments of Section VII-B.

Table III shows the comparison between Endo-Depth and
the baselines LapDepth [11] and IsoNRSfM [10]. LapDepth
is a state-of-the-art supervised depth network, that we trained
in the synthetic dataset of [26], containing 16K images,
using the authors’ default configuration. IsoNRSfM is a
multi-view method for which we chose the state-of-the-art
implementation of [45]. However, we re-ran IsoNRSfM and
obtained even better results than [45]. We use the per-image
scaling as in [45], s′i = median

(
DGT

i /Di

)
. Although it is

slightly different from the one in Table I, we prefer to keep

the metrics strictly as they were defined in each of our
references. Notice that Table III reports IsoNRSfM results
only in keyframes and only for the sparse point cloud,
while Endo-Depth and LapDepth report dense ones. Note
also that we are able to run Endo-Depth in a larger set of
Hamlyn sequences than IsoNRSfM (21 of them, see Tables
I and II). We compare the three methods in four different
sequences. In video #1 the camera explores the abdominal
wall from a distant point causing a small stereo parallax,
hindering the evaluation. In video #4, the camera is static and
captures a beating heart. Video #19, shows challenging organ
deformations with low texture and tool intrusion. Lastly,
video #20, images a deforming intestine. Such deformations
and tools intrusions challenge the assumptions made by
the monocular self-supervision, but our results are still
competitive. Endo-Depth has three main advantages for
deformable mapping versus IsoNRSfM. First, we recover
the dense depth of the entire image without the limitation
of finding multi-view correspondences. Second, as shown
in Fig. 3, we can cope with discontinuities. And finally,
we can do it with a single-shot, allowing us to initialize
depth without a sliding window of images. This last point is
crucial in intracorporeal sequences where the lack of texture
compromises the matching. Finally, observe how LapDepth
performs significantly worse than Endo-Depth even if it
was trained in supervised data. The reason is the domain
shift between the synthetic and real images, which is our
motivation to use self-supervised training.

The computation time of Endo-Depth for one test image
is ∼15 ms in a Nvidia RTX 2080Ti GPU and ∼55 ms in a
AMD Ryzen 9 3900X CPU. IsoNRSfM, for the same image,
including warps and alignment, takes ∼ 500 ms in a Intel
i7-7700K CPU. For a better visualization of Endo-Depth
results, the reader is referred to our supplementary videos,
that contain depth predictions for five Hamlyn test videos
with our best training setup (stereo loss), together with their
backprojected 3D point clouds and the ground truth3.

B. Camera Tracking

Fig. 4 and Fig. 5 show qualitative and quantitative
results of our photometric tracking versus other
alternatives. Specifically, we compare it against the
Open3D [49] implementations of ICP (using point-to-point
and point-to-plane distances) and pose tracking using
photometric and hybrid photometric and geometric residuals
(at optimal keyframe creation ratios). We also show different
keyframe creation ratios in Fig. 4, being the higher ones
the more convenient due to fast camera dynamics in these
sequences. The computation time per frame of our Python
implementation is around 300 ms in our GPU (Nvidia RTX
2080Ti) and 700 ms in CPU (AMD Ryzen 9 3900X).

C. Volumetric Fusion

Fig. 6 shows sample 3D reconstructions after fusing
the predicted depth maps in a TSDF representation in 7

3The video is at https://youtu.be/V3Be2W3iomI?t=0

https://youtu.be/V3Be2W3iomI?t=0


Sequence

Loss 1 4 5 6 8 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #-Best

Mono 0.260 0.059 0.064 0.152 0.132 0.112 0.089 0.162 0.109 0.100 0.232 0.308 0.296 0.115 0.123 0.230 0.252 0.241 0.146 0.157 0.178 0/21
Stereo 0.091 0.038 0.047 0.080 0.120 0.092 0.040 0.136 0.070 0.072 0.195 0.230 0.184 0.109 0.108 0.158 0.166 0.183 0.141 0.131 0.128 18/21Abs Rel

Mono + Stereo 0.193 0.040 0.073 0.432 0.114 0.079 0.109 0.163 0.088 0.095 0.222 0.232 0.272 0.095 0.137 0.211 0.215 0.201 0.171 0.168 0.152 3/21

Mono 19.775 0.269 0.335 6.461 2.738 1.491 1.629 3.859 0.796 1.102 6.175 10.802 12.437 1.093 1.681 5.689 9.159 6.260 2.318 2.874 4.247 1/21
Stereo 1.429 0.160 0.186 1.057 1.951 1.332 0.651 2.855 0.425 0.751 5.344 6.994 4.379 1.084 1.581 3.147 4.954 3.664 2.471 2.407 2.371 16/21Sq Rel

Mono + Stereo 9.251 0.193 0.458 56.218 1.906 0.931 1.442 3.861 0.643 1.111 5.676 6.415 9.699 0.723 2.344 4.772 7.936 4.136 3.224 3.072 3.204 4/21

Mono 30.617 3.405 3.859 23.488 14.301 9.978 10.232 14.142 5.279 6.796 19.540 28.302 24.495 7.057 9.272 18.805 21.619 18.321 10.754 12.872 15.517 1/21
Stereo 9.792 2.385 2.855 10.653 11.296 9.156 6.156 11.833 3.537 5.258 17.793 21.772 15.723 6.816 8.760 13.848 16.003 14.522 11.022 11.862 11.072 18/21RMSE

Mono + Stereo 21.042 2.572 4.472 55.892 11.729 7.790 10.160 13.068 4.798 6.648 18.868 21.984 22.274 5.735 10.657 17.145 19.263 15.523 12.489 13.506 12.570 2/21

Mono 0.287 0.075 0.083 0.187 0.188 0.159 0.126 0.217 0.156 0.130 0.272 0.361 0.320 0.145 0.152 0.271 0.284 0.294 0.186 0.197 0.213 0/21
Stereo 0.114 0.052 0.061 0.099 0.154 0.126 0.070 0.183 0.099 0.099 0.239 0.279 0.230 0.138 0.141 0.199 0.206 0.226 0.179 0.169 0.161 17/21RMSElog

Mono + Stereo 0.230 0.056 0.093 0.400 0.153 0.112 0.146 0.212 0.144 0.123 0.262 0.278 0.310 0.118 0.173 0.251 0.254 0.245 0.213 0.208 0.185 4/21

Mono 0.747 0.989 0.995 0.810 0.810 0.864 0.921 0.767 0.887 0.915 0.586 0.453 0.557 0.865 0.860 0.567 0.647 0.595 0.804 0.776 0.735 1/21
Stereo 0.928 0.989 0.999 0.952 0.866 0.941 0.984 0.808 0.952 0.948 0.717 0.628 0.727 0.876 0.885 0.761 0.810 0.711 0.832 0.837 0.842 19/21δ < 1.251

Mono + Stereo 0.780 0.987 0.968 0.610 0.857 0.962 0.888 0.776 0.908 0.917 0.630 0.574 0.583 0.930 0.838 0.619 0.754 0.642 0.768 0.738 0.791 2/21

Mono 0.890 1.000 1.000 0.963 0.955 0.989 0.984 0.924 0.975 0.988 0.884 0.764 0.823 0.993 0.985 0.891 0.856 0.872 0.962 0.956 0.942 4/21
Stereo 0.989 0.999 1.000 0.999 0.980 0.989 0.991 0.950 0.992 0.990 0.915 0.870 0.921 0.990 0.980 0.955 0.923 0.930 0.960 0.967 0.972 14/21δ < 1.252

Mono + Stereo 0.946 0.999 0.999 0.861 0.980 0.993 0.993 0.936 0.971 0.985 0.893 0.873 0.842 0.999 0.962 0.910 0.881 0.922 0.944 0.952 0.959 5/21

Mono 0.940 1.000 1.000 0.989 0.989 0.994 0.995 0.978 0.995 0.997 0.980 0.937 0.941 1.000 0.998 0.986 0.940 0.959 0.995 0.993 0.990 5/21
Stereo 0.998 1.000 1.000 1.000 0.996 0.995 0.995 0.986 0.999 0.998 0.977 0.967 0.978 0.999 0.998 0.991 0.975 0.992 0.993 0.994 0.995 13/21δ < 1.253

Mono + Stereo 0.974 1.000 1.000 0.898 0.997 0.996 0.996 0.977 0.993 0.999 0.985 0.983 0.948 1.000 0.996 0.990 0.945 0.989 0.985 0.994 0.991 10/21

TABLE I: Endo-Depth results in Hamlyn with per-image scaling. Absrel and RMSE in [mm], RMSElog in [log mm]. We
compare three losses: pure monocular (Mono), stereo (Stereo) and a combination of both (Mono + Stereo). 1st column:
metrics used for evaluation. 2nd column: losses used during training. Last column: number of times a method is the best
for a given metric. Rest of the columns: results for the Hamlyn sequences.

Sequence

Loss 1 4 5 6 8 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #-Best

Stereo 0.573 0.070 0.062 0.342 0.642 0.168 0.203 0.209 0.105 0.174 0.222 0.255 0.236 0.192 0.128 0.198 0.182 0.365 0.158 0.156 0.224 18/21Abs Rel Mono + Stereo 0.312 0.070 0.079 0.571 0.754 0.086 0.295 0.514 0.719 0.396 0.343 0.262 0.379 0.279 0.208 0.267 0.273 0.447 0.420 0.347 0.189 4/21

Stereo 29.813 0.337 0.262 19.045 32.455 2.724 3.323 3.916 0.576 2.375 8.182 8.428 6.662 3.429 1.713 5.538 5.478 13.119 2.932 2.919 5.067 17/21Sq Rel Mono + Stereo 18.939 0.392 0.530 83.030 41.415 1.057 6.415 13.947 15.758 9.142 12.983 7.743 12.800 4.599 4.640 8.038 7.842 17.415 13.131 9.939 3.928 4/21

Stereo 44.538 3.605 3.570 29.569 38.724 12.649 15.521 13.724 4.152 9.971 20.678 24.102 18.435 11.130 9.605 16.963 16.622 24.723 11.799 13.138 17.851 18/21RMSE Mono + Stereo 27.863 3.690 4.799 65.822 44.831 8.237 20.921 23.659 20.948 19.805 26.075 24.948 30.643 13.813 14.505 20.749 21.462 28.698 24.522 22.421 15.660 3/21

Stereo 0.452 0.081 0.075 0.273 0.484 0.183 0.245 0.232 0.130 0.181 0.269 0.304 0.271 0.200 0.155 0.233 0.216 0.352 0.195 0.195 0.294 18/21RMSElog Mono + Stereo 0.306 0.083 0.100 0.472 0.547 0.120 0.388 0.431 0.546 0.347 0.353 0.311 0.550 0.263 0.226 0.292 0.289 0.407 0.385 0.334 0.242 3/21

Stereo 0.158 0.990 0.999 0.632 0.199 0.800 0.488 0.696 0.941 0.837 0.763 0.555 0.663 0.718 0.852 0.733 0.815 0.524 0.772 0.774 0.467 18/21
δ < 1.251

Mono + Stereo 0.606 0.984 0.961 0.455 0.153 0.956 0.160 0.299 0.071 0.276 0.569 0.486 0.182 0.470 0.700 0.613 0.529 0.413 0.401 0.438 0.609 3/21

Stereo 0.492 1.000 1.000 0.787 0.545 0.983 0.983 0.935 0.988 0.972 0.867 0.840 0.867 0.940 0.989 0.902 0.917 0.769 0.956 0.960 0.828 18/21
δ < 1.252

Mono + Stereo 0.838 1.000 0.999 0.765 0.381 0.992 0.752 0.595 0.220 0.810 0.794 0.822 0.425 0.938 0.927 0.839 0.889 0.698 0.671 0.802 0.911 4/21

Stereo 0.894 1.000 1.000 0.886 0.792 0.994 0.990 0.980 0.997 0.996 0.943 0.961 0.961 0.996 0.998 0.975 0.969 0.908 0.990 0.993 0.975 16/21
δ < 1.253

Mono + Stereo 0.958 1.000 1.000 0.872 0.724 0.995 0.971 0.830 0.853 0.973 0.893 0.982 0.742 0.998 0.983 0.962 0.958 0.874 0.926 0.956 0.993 7/21

TABLE II: Endo-Depth results in Hamlyn without scaling. Absrel and RMSE in [mm], RMSElog in [log mm]. We compare
two losses that predict real scale: (Stereo) and its combination with monocular self-supervision (Mono + Stereo). 1st column:
metrics used for evaluation. 2nd column: losses used during training. Last column: number of times a method is the best
for a given metric. Rest of the columns: results for the Hamlyn sequences.

Hamlyn videos, chosen among those with larger camera
translation. Although the ground truth for the scene and
camera trajectory is not available, the accuracy of the
reconstruction can be qualitatively assessed in the figure.
Notice that we present a higher number of reconstructions
and of larger extent than other approaches in the literature
(e.g., [41], [44], [45]), which again highlights the potential
of depth networks, photometric pseudo-RGBD tracking and
volumetric fusion for reconstruction and motion estimation
in monocular endoscopies. The Python implementation runs
within reasonable time limits, the volumetric fusion of a
1200-frames reconstruction taking ∼7 s in our CPU (AMD
Ryzen 9 3900X).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented Endo-Depth-and-Motion,
in which we train and evaluate thoroughly state-of-the-art
self-supervised depth learning in endoscopic videos,
implement a robust photometric odometry and integrate
their outputs with a volumetric fusion approach. Several
conclusions can be extracted from our evaluation. Firstly,
our self-supervised depth network Endo-Depth, trained in

the Hamlyn sequences, has a competitive performance
even when compared against well-established multi-view
baselines such as IsoNRSfM and supervised networks as
LapDepth. This suggests that relevant future work could
come out from the replacement of IsoNRSfM templates
and supervised depth learning in SfM/SLAM pipelines for
endoscopies. Importantly, such performance does not degrade
when evaluated without per-image scaling, showing that
the global scale of the scene can be effectively learned
using stereo losses. Secondly, we implement a photometric
dense tracking for estimating the camera motion with respect
a pseudo-RGBD keyframe. Finally, we fuse the predicted
depth maps of the registered keyframes using a TSDF
representation, showing again a satisfactory performance.
Our main line for future work is including deformation
models in our scene representation.
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