
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021 7001

Parallel Hierarchical Composition Conflict-Based
Search for Optimal Multi-Agent Pathfinding

Hannah Lee , James Motes , Marco Morales , and Nancy M. Amato

Abstract—In this letter, we present the following optimal multi-
agent pathfinding (MAPF) algorithms: Hierarchical Composi-
tion Conflict-Based Search, Parallel Hierarchical Composition
Conflict-Based Search, and Dynamic Parallel Hierarchical Com-
position Conflict-Based Search. MAPF is the task of finding an
optimal set of valid path plans for a set of agents such that no
agents collide with present obstacles or each other. The presented
algorithms are an extension of Conflict-Based Search (CBS), where
the MAPF problem is solved by composing and merging smaller,
more easily manageable subproblems. Using the information from
these subproblems, the presented algorithms can more efficiently
find an optimal solution. Our three presented algorithms demon-
strate improved performance for optimally solving MAPF prob-
lems consisting of many agents in crowded areas while examining
fewer states when compared with CBS and its variant Improved
Conflict-Based Search.

Index Terms—Multi-robot systems, path planning, parallel
algorithms.

I. INTRODUCTION

In multi-agent pathfinding (MAPF) problems, we are given an
environment with a set of agents, each with their own respective
start and goal positions. At a given timestep, an agent can either
move to a neighboring location or wait at its current location. The
goal of MAPF is to find a set of actions for each agent, such that
no agent collides with another while reaching its goal. MAPF
is used in many application domains such as assembly [1],
evacuation [2], localization [3], and object transportation [4].

There are three general classes of MAPF algorithms: coupled,
decoupled, and hybrid. Coupled approaches compute agent
paths in unison. They use a joint space to represent all agent
states, allowing many coupled approaches to guarantee feasible

Manuscript received February 24, 2021; accepted June 23, 2021. Date of
publication July 13, 2021; date of current version July 28, 2021. This letter
was recommended for publication by Associate Editor L. Pimenta and Editor
M. A. Hsieh upon evaluation of the reviewers’ comments. The work of H. Lee
was supported in part by the National Science Foundation Graduate Research
Fellowship under Grant 2020297899. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation. The work of M.
Morales is funded by the Academia Mexicana de Cultura A.C. (Corresponding
author: Hannah Lee.)

Hannah Lee, James Motes, and Nancy M. Amato are with the Parasol
Lab, Department of Computer Science, University of Illinois at Urbana-
Champaign, Champaign, IL 61820 USA (e-mail: hannah9@illinois.edu;
jmotes2@illinois.edu; namato@illinois.edu).

Marco Morales is with the Parasol Lab, Department of Computer Science,
University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA, and
with the Instituto Tecnológico Autónomo de México, Mexico City 01080,
Mexico (e-mail: moralesa@illinois.edu).

Digital Object Identifier 10.1109/LRA.2021.3096476

and optimal path plans [5], [6]. However, finding an optimal so-
lution for the MAPF problem is NP-hard as the state space grows
exponentially with the number of agents [7]. Thus, coupled
solvers are not viable options for problems with large numbers
of agents because the state space grows to be too large to solve.

Decoupled approaches plan for agents independently and
adjust the paths to meet problem constraints or avoid inter-
agent conflicts [8], [9]. Unlike coupled approaches, decoupled
approaches work with smaller search spaces by planning for
individual agents, allowing them to scale to larger MAPF prob-
lems. However, planning for individual agents leads to issues
with completeness and optimality; thus, decoupled planners are
incomplete and provide sub-optimal solutions.

Hybrid approaches leverage the optimality of coupled ap-
proaches and the fast computation of decoupled approaches
to efficiently find optimal solutions [10], [11]. Conflict-Based
Search (CBS) is a state-of-the-art hybrid MAPF algorithm that
uses a two-level search method to guarantee optimal solutions.
The low-level search finds optimal paths for individual agents.
The high-level search explores a constraint tree (CT) that re-
solves inter-agent conflicts. The high-level search tree, the CT,
grows exponentially with the number of found conflicts; there-
fore, CBS performs poorly for problems with highly coupled
agents that result in many inter-agent conflicts that are tedious
to resolve [12]. To improve the performance of CBS, four im-
provements were presented in Improved Conflict-Based Search
(ICBS) that improve performance by limiting conflicts and the
number of branches within the constraint tree [13]. There exist
many variants of CBS [14]–[16] and algorithms that utilize it
to solve MAPF problems and other problems such as multi-
agent pickup and delivery [17], MAPF for large agents [18],
MAPF with delay probabilities [19], and task and motion
planning [20].

In this work, we present Hierarchical Composition Conflict-
Based Search (HC-CBS), Parallel Hierarchical Composition
Conflict-Based Search (PHC-CBS), and Dynamic Parallel Hi-
erarchical Composition Conflict-Based Search (DPHC-CBS).
These algorithms are extensions of CBS where the MAPF prob-
lem is solved by considering smaller subproblems that are eval-
uated and hierarchically composed into larger subproblems until
the original MAPF problem is formed. Multithreading is used in
PHC-CBS and DPHC-CBS to further improve the performance
of our algorithms. The presented algorithms provide significant
speedup for large MAPF problems while examining fewer states
when compared to CBS and ICBS. From our results, we can
conclude that the proposed algorithms are a better alternative

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2811-673X
https://orcid.org/0000-0002-9553-7331
https://orcid.org/0000-0003-1824-2350
https://orcid.org/0000-0001-5817-5290
mailto:hannah9@illinois.edu
mailto:jmotes2@illinois.edu
mailto:namato@illinois.edu
mailto:moralesa@illinois.edu

7002 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

for solving large MAPF problems. This benefits many of the
variants and applications of CBS mentioned before, as they
can leverage the performance improvement from the proposed
algorithms over standard CBS.

II. BACKGROUND

MAPF is a well-studied problem in robotics; however, not
much work is available on parallel MAPF algorithms. In [21],
the authors present a local collision avoidance algorithm that is
parallelized using data-parallelism and thread-level parallelism.
In [22], a multi-agent A* algorithm is presented along with
a parallel variant. Their A* algorithm leads to super-linear
speedup but does not perform well for tightly coupled agents. For
general motion planning, there is more extensive work available
on parallelized algorithms. For a comprehensive survey, see [23].

A. Conflict-Based Search (CBS)

In CBS, we are given a set of n agents a0, a1, . . ., an−1. Each
agent ai has a start si and goal gi position. An agent’s path is
the sequence of actions leading from si to gi. The algorithm is
tasked with finding a set of n paths that are free of vertex and
edge conflicts. Vertex conflicts occur when two agents inhabit
the same position. Edge conflicts occur when agents attempt
to transition along the same edge at the same time. Conflicts
are represented as a tuple. A vertex conflict is represented as
〈ai, aj , v, t〉. This states that agents ai and aj occupy vertex v at
timestep t. For edge conflicts, the conflicting edge is represented
with a pair of vertices, 〈ai, aj , (v0, v1), t〉. A solution is the set of
all agent paths and is only valid if all paths are conflict-free. The
cost of a path is the number of actions required to move from si to
gi. The cost of a solution is determined by a defined cost metric.
Two common metrics are Sum-of-Costs and Makespan. Sum-
of-Costs is the summation of all agent path costs. Makespan is
the maximum path cost of all agents. For the purpose of this
letter, we will be using Sum-of-Costs as our cost metric.

CBS is a two-level search method. The low-level search con-
sists of a pathfinding algorithm that finds an optimal sequence
of actions for an agent ai to move from si to gi. The high-level
search explores a constraint tree (CT) that iteratively resolves
conflicts by generating sets of constraints that restrict individual
agents [12]. The CT is a binary tree where each node N contains
a set of constraints imposed on the agents (N.constraints), a
solution (N.solution), and the cost of N.solution (N.cost).
Constraints are represented by a tuple 〈ai, v, t〉which states that
agent ai cannot access vertex v at timestep t. Edge constraints
contain a pair of vertices denoting the edge. The solution and
paths within a CT node must be consistent. A consistent path
for agent ai is a path that adheres to all of ai’s constraints. A
consistent solution is a solution composed of only consistent
paths. A solution is valid if it is consistent and conflict-free.

The initial root node of the CT contains an empty set of
constraints and an initial path for each agent. All following nodes
will contain a set of d constraints where d is the depth of the CT.
N.solution is found using CBS’s low-level search algorithm.
N.cost is calculated from N.solution. The high-level search of
CBS greedily evaluates lowest cost nodes.

Given a CT node N , N.solution is validated by examining
every agent’s path with respect to every other agent’s path for
conflicts. If no conflict is found, N.solution is valid and N can
be returned as a goal node. If a conflict 〈ai, aj , v, t〉 is found,
the node N is resolved by a splitting action.

When a non-goal node N is split to resolve a conflict
〈ai, aj , v, t〉, two new CT nodes, Ni and Nj , are generated as
children ofN .Ni andNj both receive a copy ofN.constraints
and N.solution. To resolve the conflict, two constraints are
created: 〈ai, v, t〉 and 〈aj , v, t〉. One of these constraints is placed
on Ni and the other on Nj . When Ni receives the constraint
〈ai, v, t〉, Ni.solution is no longer consistent. Agent ai’s path
is inconsistent while all other agent paths remain consistent,
so only ai’s path must be replanned. The same is true for Nj .
Once agents ai and aj have been replanned within nodes Ni

and Nj , respectively, both nodes will have consistent solutions.
Ni.cost and Nj .cost are updated to reflect their new solutions.
By creating two constraints that disjointly limit ai and aj , CBS
guarantees optimality by examining both possibilities and ensur-
ing that no states within the search space are lost or overlooked.

B. Improved CBS (ICBS)

ICBS consists of four improvements that can be used sepa-
rately or in conjunction. The only exception to this is merge and
restart (MR), which can only be used when meta-agent CBS is
present. For the purpose of this letter, all four improvements are
used in conjunction.
� Meta-agent CBS (MA-CBS): MA-CBS generalizes CBS

by merging small groups of agents into meta-agents when
the number of conflicts seen between a pair of agents
exceeds a predetermined thresholdB. Once a node decides
to merge a group of agents, the merged agents are searched
and evaluated in a composite state for all following nodes.
MA-CBS reduces the runtime of CBS when a good thresh-
old is chosen [24].

� Merge and Restart (MR): MR can only be used with
MA-CBS. In MA-CBS, agents are merged locally at each
node within the CT and remain merged for all following
nodes. With MR, when a meta-agent is made, the search
is restarted. The CT is cleared and starting from the root
node, the merged agents are handled as a meta-agent for
the entirety of the search [13].

� Bypass (BP): When node N is validated and a conflict
〈ai, aj , v, t〉 is found, BP tries to find an alternative path
for one of the conflicting agents, ai or aj . For an alternative
path to be considered a bypass, the path must have the same
cost as the original path without containing the conflict
Ci,j . If nodeN has a conflicting agent ai and a valid bypass
P ′i is found, N is not split into child nodes. Instead, the Pi

within N.solution, is replaced with the valid bypass path,
P ′i , and the node is re-evaluated in the following iteration
of CBS without growing the tree [25].

� Prioritized Conflicts (PC): In CBS, nodes are split based
on the first occurring conflict with respect to the timestep.
CBS’s CT is sensitive to th set t of ae order in which con-
flicts are resolved as it influences the number of generated

LEE et al.: PARALLEL HIERARCHICAL COMPOSITION CONFLICT-BASED SEARCH FOR OPTIMAL MULTI-AGENT PATHFINDING 7003

CT nodes. A poor conflict choice can increase the size
of the CT and lead to poor performance. Instead of ar-
bitrarily choosing conflicts, conflicts can be prioritized by
categorizing them into three types: cardinal, semi-cardinal,
and non-cardinal [13]. A conflict 〈ai, aj , v, t〉 is cardinal if
adding either of the two constraints, 〈ai, v, t〉 or 〈aj , v, t〉
results in an increase in the agent’s path cost. A conflict
is semi-cardinal if adding one of the constraints results
in an increase in the path cost. A conflict is non-cardinal
if neither of the two constraints results in an increase in
the path cost. The PC improvement splits nodes by first
prioritizing cardinal conflicts, then semi-cardinal conflicts,
and then finally non-cardinal conflicts. When PC is used in
conjunction with BP, BP is only applied to semi-cardinal
or non-cardinal conflicts.

III. METHODS

We present three algorithms: Hierarchical Composition
Conflict-Based Search (HC-CBS), Parallel Hierarchical Com-
position Conflict-Based Search (PHC-CBS), and Dynamic Par-
allel Hierarchical Composition Conflict-Based Search (DPHC-
CBS). These are extensions of CBS where instead of solving
a given MAPF problem all at once, the algorithms consider
smaller, more easily managed subproblems. Subproblems are
MAPF problems where only a subset of agents from the full
problem are considered. These subproblems are solved and hi-
erarchically composed into larger subproblems until the original
MAPF problem is reformed. The information from subproblems
is used to generate a starting point for larger subproblems. By
solving less related subproblems independently, solutions can be
found faster and earlier within the search by targeting strongly
coupled agents and reducing the number of explored states.

The order in which subproblems are solved and merged is
determined by a composition function. This will be further
discussed in Section III-A. Agent group composition determines
which agents should be grouped together into a subproblem. For
HC-CBS and PHC-CBS, the ordering of subproblems is deter-
mined each time a layer of subproblems has finished executing.
PHC-CBS is a parallel implementation of HC-CBS where mul-
tithreading is used to parallelize the execution of subproblems.
DPHC-CBS differs in that it organizes subproblems dynamically
as subproblems finish.

Subproblems are solved using CBS and the information from
their completed CTs is merged to create larger subproblems
through a process called crossing CTs. Crossing CTs takes
information from each subproblem and combines it to provide
a starting basis for larger subproblems.

The three proposed algorithms each use agent group com-
position and crossing CTs to solve MAPF problems. In this
methods section, we will discuss agent group composition,
crossing constraint trees, and then move on to discuss HC-CBS,
PHC-CBS, and DPHC-CBS.

A. Agent Group Composition

Agent group composition functions are used to organize sub-
problems to be merged based on an estimate of the amount of

computational work required to solve the merged subproblems.
The organized subproblems are passed on to crossing CTs to
be merged and composed into larger subproblems. The goal
of the composition function is to organize subproblems such
that difficult agents are organized together. We want to resolve
strongly paired agents in smaller subproblems before the CT and
subproblems grow to be large and cumbersome. If more work
is accomplished in smaller subproblems and smaller CTs, less
work will need to be done in larger problems. The organization
of these agents is determined by estimating the amount of
computational work a pair of subproblems will require.

The exact amount of computational work required by a pair
of subproblems cannot be calculated without finding a solution
to the combined MAPF problem. Without the full CT, we don’t
know how conflicts will be resolved or how resolved conflicts
may impact agent paths. If the subproblems are poorly paired,
more work is distributed to larger subproblems, leading to per-
formance that is worse than CBS due to added overhead from
grouping and merging. Agent group composition attempts to
force the work needed to resolve highly coupled agents into
smaller subproblems. As a CT grows, highly coupled agents can
cause many nodes within the CT to have to split for the same
conflict [12]. By resolving these conflicts within the smaller sub-
problem CTs, the number of nodes generated from inter-agent
conflicts is reduced. Therefore, it is important that agents are
intelligently grouped to resolve highly coupled agents early on
and distribute work to smaller subproblems.

To group agents, we test three composition functions: random,
conflict, and cardinal conflict composition. The work estimation
values that are calculated by these functions is used to organize
the subproblems for HC-CBS, PHC-CBS, and DPHC-CBS. For
HC-CBS and PHC-CBS, the work estimation values are used to
organize subproblems in layers. In DPHC-CBS, the values are
used to organize subproblems as they are evaluated and returned.

Random agent composition groups agents randomly without
considering their paths or inter-agent conflicts. Conflict com-
position and cardinal conflict composition are more intelligent.
However, these composition heuristics still provide very rough
estimations as they only observe the initial paths of agents.
In Section IV we will show that even with naive composition
heuristics, the three proposed algorithms produce significant
improvements in memory and execution time in congested en-
vironments.

For conflict composition and cardinal conflict composition,
we evaluate each subproblem’s set of paths with every other sub-
problem’s set of paths for conflicts. For conflict composition, we
count and store the number of internal conflicts between every
possible subproblem pair. For cardinal conflict composition, we
do the same but only consider cardinal conflicts. A conflict is
cardinal if adding any of the two constraints and invoking the
low-level search on the constrained agent results in an increase
in the agent’s path cost [13]. We take these conflict counts and
sort the subproblems in descending order of internal conflicts
and begin pairing based on the greatest number of conflicts.
The generated subproblem pairings are independent of one
another. An agent only ever exists within a single subproblem
for each level of the hierarchy. When creating a new layer in

7004 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Fig. 1. Crossing CTs takes every combination of leaf nodes from two CTs and
merges them to create root nodes. Leaf nodes and goal nodes are shown in green
and yellow, respectively. Root nodes are shown in blue. Crossing nodes consists
of unioning the nodes’ constraints and paths and updating the costs. CBS then
begins its search from the root nodes.

the hierarchy, once an subproblem pair is made, the agents that
compose the subproblem pair cannot exist within any of the
other pairs for the new layer. For example, if (sub0, sub1) share
4 conflicts, (sub0, sub2) share 3 conflicts, (sub1, sub2) share 5
conflicts, the paired agent groupings would be (sub1, sub2) and
(sub0), where each subproblem would contain a disjoint set of
agents.

B. Crossing Constraint Trees

When we start HC-CBS, PHC-CBS, and DPHC-CBS, we
begin by considering the set of single-agent subproblems that
make up the MAPF problem. We compose the subproblems
into pairings and evaluate them with crossing constraint trees.
Then, for all following subproblems, the process of composing
subproblem pairs and evaluating with crossing CTs is repeated
until the entire MAPF problem is solved.

Crossing constraint trees is a two-step process that starts by
generating root nodes to provide a starting basis for the CBS
call that is used to solve the parent problem. When the parent is
being evaluated, it begins its search from the root nodes provided
by its children instead of starting from scratch. Root nodes are
generated by crossing the leaf nodes of each child’s CT. Then,
these root nodes are used to solve the MAPF problem using
CBS.

The leaf nodes of a CT consist of the goal node and all
unevaluated nodes. When generating root nodes, the information
from every single combination of leaf nodes from each child’s
CT is taken and merged. If child one has n leaf nodes and child
two has m leaf nodes, crossing CTs results in n×m root nodes.
Crossing a pair of leaf nodes to create a root node requires
unioning the constraints and paths from each child and updating
the cost. Passing these root nodes to CBS results in a Constraint
Forest, but as it functions the same as a constraint tree, we will
refer to it as a CT for consistency. An example of this is shown in
Fig. 1. After the root nodes have been generated, CBS is called
to begin its high-level search starting from the root nodes. The
process of crossing constraint trees is repeated for all internal
DT nodes until a solution for the entire problem is found.

When CBS is used to solve a MAPF problem, the constraints
and paths that reside within the CT are only relevant to the agents

Algorithm 1: Hierarchical Composition CBS Finds an
optimal, conflict-free path for a set ofn agents. For HC-CBS,
omit the lines in grey. For PHC-CBS and DHC-CBS, include
the lines in grey.

Input:Set of individual agent problems A, thread limit T
Output:Optimal path solution P
1: layer L←SOLVE(A)
2: subproblems← COMPOSE(L)
3: runningJobs← 0
4: do
5: L← ∅
6: for S0, S1 in subproblemsdo
7: if runningJobs ≥ T then

8: wait until runningJobs < T
9: runningJobs← runningJobs+ 1
10: L← L ∪ LAUNCHJOB(CROSSCTS(S0, S1))
11: ifalgorithm is PHC-CBSthen
12: wait for all threads to finish
13: subproblems← COMPOSE(L)
14: while |subproblems| > 1 or runningJobs > 1
15: P ← subproblems[0].Paths
16: return P

within that problem. CTs from different subproblems contain
information that is independent of all other subproblems. There-
fore, we can merge leaf nodes of different CTs by simply copying
the constraints and paths within each node because nodes of
different CTs hold independent information. By crossing every
possible combination of leaf nodes from both CTs, crossing
constraint trees maintains optimality by ensuring that we do not
lose states within the search space, allowing us to explore all
possible solutions.

C. Lazy Crossing Constraint Trees

Copying information from all leaf nodes to generate root
nodes can be expensive when there are a large number of leaf
nodes. To maintain optimality, given n and m leaf nodes, we
must generate all n×m root nodes. If n and m are large, a
significant amount of time is spent copying information and
generating root nodes. This can lead to poor performance in
larger problems. To combat this, we present an optimization to
the crossing constraint trees method.

When CBS evaluates generated root nodes, it may not need to
access all the root nodes given. This is especially true for larger
problems. Thus, some root nodes are never accessed after being
made and the time spent copying and generating information
for these root nodes is wasted. To reduce the amount of wasted
time, we can lazily execute node crossings such that the copying
of paths and constraints is only done when the crossed node is
about to be evaluated.

Root nodes are lazily generated using an intermediate struc-
ture that is used to store the leaf nodes from each child’s CT.
Then, instead of crossing the nodes by copying, references to the
combination of nodes is stored instead. A root node’s references
indicate which nodes from what subproblem need to be crossed.

LEE et al.: PARALLEL HIERARCHICAL COMPOSITION CONFLICT-BASED SEARCH FOR OPTIMAL MULTI-AGENT PATHFINDING 7005

In CBS, when the root node is about to be evaluated for conflicts,
the node references are used to look up which nodes to cross from
the intermediate structure. Once the leaf nodes are retrieved from
the intermediate structure, the nodes are crossed by unioning the
paths and constraints and then evaluated.

D. Hierarchical Composition CBS (HC-CBS)

HC-CBS solves the MAPF problem in layers. The first layer
consists of single agent subproblems that are merged and solved
to produce the second layer consisting of two-agent subprob-
lems. The subproblems are repeatedly organized and solved
using the composition function and crossing constraint trees,
layer by layer, until we have a layer consisting of only a single
subproblem, which is our fully solved MAPF problem.

The algorithm for HC-CBS can be seen in Algorithm 1. We
start by solving the single agent subproblems (line 1). This
creates the base layer L for our group of subproblems where
each subproblem consists of a single agent and a single node
containing the agent’s path. We then repeatedly merge and solve
subproblem pairs using crossing CTs (CrossCTs, line 10). As
subproblems are solved through crossing constraint trees, the
newly composed subproblems are stored in L to create the next
layer of subproblems to solve. The new layer is then organized
using the composition function Compose on line 13. This is
repeated until the subproblems have all been merged into a single
subproblem, which is the fully solved MAPF problem. Thus, we
return its path as our solution.

E. Parallel and Dynamic Parallel Hierarchical Composition
CBS (PHC-CBS and DPHC-CBS)

PHC-CBS and DPHC-CBS are a direct extension of HC-CBS.
To parallelize HC-CBS, the algorithm is multithreaded so that
each merged subproblem is evaluated by a single thread. In
Algorithm 1, the gray lines indicate the lines that must be added
to parallelize HC-CBS. For both PHC-CBS and DPHC-CBS,
threads are launched (LaunchJob) when subproblem pairs are
about to be merged and evaluated using crossing constraint trees
(CrossCTs).

When subproblems are stored in the subproblem list, they
are in the “ready” state. “Ready” state subproblem pairs are
removed and launched into the “running” state when a new
thread is launched to cross their constraint trees. When threads
finish solving the merged subproblem, the merged subproblem is
put into L. This moves subproblems from “running” to “done.”
Subproblems that are in L are then moved back into “ready”
after they are are organized by the composition function on line
12.

The number of threads running at any given time is limited
using a thread limit T and a counter, runningJobs, that
tracks the number of running jobs to prevent thrashing between
different subproblems. Thrashing can lead to unwanted overhead
that leads to parallel runtimes that are significantly worse than
that of HC-CBS. When threads are launched, the running job
count is incremented. When threads finish their execution of
crossing CTs, the running job count is decremented to allow
new jobs to be launched.

In PHC-CBS, the MAPF problem is solved in distinct layers.
Once threads for the current list of subproblems are launched,
we must wait until they have all finished before the next layer
can be solved (lines 11, 12). For PHC-CBS, the runtime of each
layer is bounded by the slowest subproblems because we must
wait for the subproblems of each layer to completely finish
executing before moving on to the next subproblem. Because
the subproblems are organized based on an estimation of the
required computational work, the subproblems take varying
amounts of time to run. The hardest subproblem in a layer could
take significantly more time than the easiest subproblem. This
imbalance in runtimes is a consequence of differing CT sizes.

In DPHC-CBS, subproblems are merged dynamically as jobs
finish. Whenever a “done” state subproblem is stored in L,
DPHC-CBS will organize the subproblems in L using its com-
position functions. The organized subproblems are moved into
subproblems to indicate that they are “ready” for evaluation.
Then, DPHC-CBS will launch as many jobs as possible from
subproblems, given the current number of running jobs and
the thread limit. Unlike PHC-CBS, it does not wait for threads to
finish. While threads are running, it continues to sample and or-
ganize L as subproblems finish. The dynamic nature minimizes
idle waiting time, which was the main disadvantage of PHC-
CBS. However, as the subproblems are organized and merged
dynamically, there is added overhead from calling the composi-
tion function every time a batch of subproblems has finished.

IV. EXPERIMENTS

We used three sets of experiments to show the performance
of the presented algorithms. These are simulated experiments
that do not involve real robots. For all figures, our algorithms
are shorthanded from HC-CBS, PHC-CBS, and DPHC-CBS to
HC, PHC, and DPHC, respectively, for the sake of space.

The first experiment is a composition function experiment
that shows the performance of our presented algorithms with
the three composition functions on a random environment. The
second and third experiments test the runtime and memory per-
formance of our algorithms against the baseline algorithms CBS
and ICBS. For the second experiment, we test the runtime and
memory performance of our algorithms with the improvements
of ICBS applied. HC-CBS, PHC-CBS, and DPHC-CBS with the
ICBS improvements are defined as I+HC, I+PHC, and I+DPHC.
Results are given as overall runtime, the number of evaluated
nodes, and the total nodes in the CT. All algorithms are run for 20
iterations and the results are averaged from these iterations. For
the proposed algorithms, the number of evaluated nodes is cal-
culated from the number of nodes evaluated across all CTs. The
total nodes are calculated as the number of nodes in the final CT.

The environments used for these experiments are shown in
Fig. 2. The random environments are used in the first and
third experiments. There are three sets of random environments.
These are generated with an obstacle density of 10%, 15%, and
20% and sized such that there are at least 15 free positions
for each agent. Each environment was generated once and the
experiments were run 20 times in the same environment. An
example of a 15% obstacle density environment is shown in

7006 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Fig. 2. The sample environments shown are labeled as (a) random env. and
(b) cross env. Red squares represent obstacles, green squares are the free space,
circles are start positions for agents, rhombuses are goal positions. Start and goal
positions are paired to an agent by color.

Fig. 3. The three composition functions: random, conflict, and cardinal con-
flict composition were run on random environments populated with a 15%
obstacle density with the HC-CBS, PHC-CBS, DPHC-CBS. Runtime is shown
in (a) and the number of evaluated nodes is shown in (b).

Fig. 2(a). The cross environment, Fig. 2(b), is used for the second
experiment.

A. Composition Function Tests

The three composition functions were tested on HC-CBS,
PHC-CBS, and DPHC-CBS on random environments with an
obstacle density of 15%. From the results shown in Fig. 3(a),
the algorithms perform best when run with a randomized com-
position function. For the random environments, the random
composition function performs well because agents are uni-
formly scattered throughout the environment and it is unlikely
for patterns within paths to exist.

Randomized composition is a good option for environments
that lack structure and pattern. An intelligent subproblem com-
position function is unnecessary if the environment does not have
a natural grouping of agents. When compared against conflict

and cardinal conflict composition, random composition also has
the least overhead because it does not need to evaluate any of
the returned nodes.

The performance of HC-CBS, PHC-CBS, and DPHC-CBS is
very sensitive to the subproblem compositions. The composition
functions determine which nodes are merged and how the high-
level search across CT nodes is performed. Poor compositions
can unnecessarily expand the CT and prevent the high-level
search from exploring more meaningful branches of the CT.
The large differences in evaluation time (Fig. 3(a)) and in the
number of evaluated nodes (Fig. 3(b)) between different com-
position functions displays how sensitive these algorithms are
to different subproblem groupings, especially as the number of
agents increases.

Composition functions should be applied based on the prob-
lem’s features. If the composition function can capture the
relationship between agent paths, work can be intelligently
distributed into subproblems. Random composition may be most
successful in environments that lack structure. For an environ-
ment that contains agents that frequently collide with many other
agents, cardinal conflict composition can help group problematic
agents together. Conflict composition may be more useful in
environments where agents only collide with small subsets of
agents.

B. Runtime and Memory Performance

The runtime and memory results for HC-CBS, PHC-CBS,
and DPHC-CBS with and without the ICBS improvements are
shown in Fig. 4. The results from the 10%, 15%, and 20% ob-
stacle density random environments are shown in Figs. 5 and 6.
The cross environments were run with the conflict composition
function and the random environments were run with the random
composition function.

We show significant improvements in both runtime and mem-
ory in congested environments. Our algorithms are most useful
when many inter-agent conflicts need to be resolved and when
the composition function distributes meaningful work to its
threads. In congested environments, such as environments with
narrow passages or with high-activity open spaces, like the cross
environments, there are typically many conflicts that make the
CBS CT grow rapidly. Improvements in runtime and memory
are greatest in congested environments because the composition
functions can leverage the conflicts to compose meaningful
subproblems that make it easier to solve the MAPF problem.
In open, non-congested environments and small agent problems,
the added overhead from organizing subproblems outweighs the
benefits.

DPHC-CBS introduces more overhead than HC-CBS and
PHC-CBS because it reorders its subproblems as they are
returned. Thus, the composition function is called more fre-
quently compared to the layer evaluation of HC-CBS and PHC-
CBS. Reordering composes better subproblems, but there is
noticeable overhead in small agent problems. As agent num-
bers increase, PHC-CBS and DPHC-CBS perform well when
compared to CBS and ICBS. The performance of PHC-CBS
and DPHC-CBS with respect to HC-CBS is dependent on the

LEE et al.: PARALLEL HIERARCHICAL COMPOSITION CONFLICT-BASED SEARCH FOR OPTIMAL MULTI-AGENT PATHFINDING 7007

Fig. 4. Average (a) Runtime and (b) Memory performance with standard
deviation of HC-CBS, PHC-CBS, DPHC-CBS on the cross environment.

work distributed to the launched threads. If threads are not given
meaningful work, the added overhead of managing shared mem-
ory and launching threads makes the parallel implementations
perform worse than HC-CBS.

The HC-CBS algorithms don’t necessarily benefit from the
improvements of ICBS. Although the improvements from ICBS
can reduce the number of nodes within the CT, the additional
overhead that is introduced to reduce the memory usage is
significant. Our algorithms implicitly capture many of the node
reduction methods that are present in the ICBS improvements.
Our algorithms group agents together, similar to MA-CBS, and
target highly coupled agents like the PC improvement. Because
of this, the ICBS improvements don’t contribute enough in
reducing the number of evaluated nodes to make up for the added
overhead in runtime.

PHC-CBS performs better than DPHC-CBS when subprob-
lems are relatively balanced in difficulty. The runtime of each
layer that is solved by PHC-CBS is bounded by the slowest
subproblem. If the subproblems are heavily unbalanced, threads
spend a significant amount of time waiting for their sibling
thread to finish. In cases like this, DPHC-CBS is more effective
because jobs are dispatched based on available subproblems,
allowing threads to run one after another without waiting. The
parallelization of these methods benefits most when the work is
distributed to smaller subproblems. Thus, both PHC-CBS and

Fig. 5. Average Runtime with standard deviation for random environments
populated with (a) 10%, (b) 15%, and (c) 20% obstacle densities.

DPHC-CBS are very dependent on finding good subproblem
compositions.

The node counts for HC-CBS, PHC-CBS, and DPHC-CBS
are much lower than that of CBS and ICBS. However, the
difference between the total number of nodes within the CT to
the number of evaluated nodes is much greater for the HC-CBS
algorithms. When CTs are crossed, we cross every combination
of leaf nodes to generate the root nodes. The generated root
nodes contain nodes that are never evaluated; however, these
nodes are still included in the CT to maintain optimality. This is
why the difference in evaluated nodes and total nodes is so large
for the HC-CBS algorithms.

V. CONCLUSION

We present the multi-agent pathfinding algorithms Hierarchi-
cal Composition Conflict-Based Search, Parallel Hierarchical
Composition Conflict-Based Search, and Dynamic Parallel Hi-
erarchical Composition Conflict-Based Search that can solve
large multi-agent pathfinding problems faster and with less
memory than Conflict-Based Search and Improved Conflict-
Based Search. We show that our method, which solves the MAPF
problem by evaluating smaller subproblems and hierarchically

7008 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Fig. 6. Average number of evaluated and total CBS nodes with standard
deviation for random environments populated with (a) 10%, (b) 15%, and
(c) 20% obstacle densities.

composing them into larger problems, achieves improved per-
formance on large problems in congested environments. Future
work will seek to explore the importance of different compo-
sition functions and optimizations that can improve parallel
performance.

REFERENCES

[1] D. Halperin, J.-C. Latombe, and R. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
no. 3, pp. 577–601, 2000.

[2] S. Rodríguez and N. M. Amato, “Behavior-based evacuation planning,” in
Proc. IEEE Int. Conf. Robot. Automat., 2010, pp. 350–355.

[3] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Auton. Robots, vol. 8, no. 3,
pp. 325–344, 2000.

[4] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. Hum.
Robot Interact. Cooperative Robots, vol. 1, 1995, pp. 235–242.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[6] T. Standley, “Finding optimal solutions to cooperative pathfinding prob-
lems,” in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 173–178.

[7] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-robot
path planning on graphs,” in Proc. 27th AAAI Conf. Artif. Intell., 2013, pp.
1443–1449.

[8] M. Saha and P. Isto, “Multi-robot motion planning by incremental co-
ordination,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2006,
pp. 5960–5963.

[9] D. Silver, “Cooperative pathfinding,” in Proc. 1st Conf. Artif. Intell.
Interactive Digit. Entertainment, 2005, pp. 23–28.

[10] G. Wagner and H. Choset, “M*: A. complete multirobot path planning
algorithm with performance bounds,” in Proc. IEEE Int. Conf. Intell.
Robots. Syst., 2011, pp. 3260–3267.

[11] S. Bhattacharya and V. Kumar, “Distributed optimization with pairwise
constraints and its application to multi-robot path planning,” Robot.: Sci.
Syst. VI, vol. 177, pp. 177–184, 2011.

[12] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search
for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp. 40–66,
2015.

[13] E. Boyarski et al., “ICBS: Improved conflict-based search algorithm for
multi-agent pathfinding,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015,
pp. 740–746.

[14] A. Andreychuk, K. Yakovlev, D. Atzmon, and R. Stern, “Multi-agent
pathfinding (MAPF) with continuous time,” IJCAI Inter. Joint Conf. Artifi.
Intell., pp. 39–45, 2019.

[15] A. Felner et al., “Adding heuristics to conflict-based search for multi-agent
path finding,” in Proc. 28th Int. Conf. Automated Plan. Scheduling, 2018,
pp. 83–87.

[16] I. Solis, J. Motes, R. Sandström, and N. M. Amato, “Representation-
optimal multi-robot motion planning using conflict-based search,” IEEE
Robot. Automat. Lett., vol. 6, no. 3, pp. 4608–4615, Jul. 2021.

[17] H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-agent path finding
for online pickup and delivery tasks,” in Proc. 16th Inter. Conf. Auton.
Agents Multiagent Syst., 2017, pp. 837–845.

[18] J. Li, P. Surynek, A. Felner, H. Ma, T. S. Kumar, and S. Koenig, “Multi-
agent path finding for large agents,” in Proc. AAAI Conf. Artif. Intell.,
vol. 33, no. 01, 2019, pp. 7627–7634.

[19] H. Ma, T. S. Kumar, and S. Koenig, “Multi-agent path finding with delay
probabilities,” in Proc. AAAI Conf. Artif. Intell., vol. 31, no. 1, 2017, pp.
3605–3612.

[20] J. Motes, R. Sandström, H. Lee, S. Thomas, and N. M. Amato, “Multi-robot
task and motion planning with subtask dependencies,” in Proc. IEEE Int.
Conf. Robot. Automat., vol. 5, no. 2, 2020, pp. 3338–3345.

[21] S. J. Guy et al., “Clearpath: Highly parallel collision avoidance for
multi-agent simulation,” in Proc. ACM SIGGRAPH/Eurographics Symp.
Comput. Animation. New York, NY, USA: ACM, 2009, pp. 177–187.

[22] R. Nissim and R. I. Brafman, “Multi-agent a* for parallel and dis-
tributed systems,” in Proc. ICAPS Workshop Heuristics Search Domain-
Independent Plan., 2012, pp. 43–51.

[23] D. Henrich, “Fast motion planning by parallel processing - a review,” J.
Intell. Robot. Syst., vol. 20, no. 1, pp. 45–69, 1997.

[24] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Meta-agent conflict-
based search for optimal multi-agent path finding,” SoCS, vol. 1, pp. 39–40,
2012.

[25] E. Boyrasky, A. Felner, G. Sharon, and R. Stern, “Don’t split, try to work
it out: Bypassing conflicts in multi-agent pathfinding,” in Proc. 25th Int.
Conf. Automated Plan. Scheduling, 2015, pp. 47–51.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

