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Abstract— We present a self-improving, neural tree expansion
method for multi-robot online planning in non-cooperative
environments, where each robot tries to maximize its cumulative
reward while interacting with other self-interested robots. Our
algorithm adapts the centralized, perfect information, discrete-
action space method from Alpha Zero to a decentralized, partial
information, continuous action space setting for multi-robot
applications. Our method has three interacting components:
(i) a centralized, perfect-information “expert” Monte Carlo
Tree Search (MCTS) with large computation resources that
provides expert demonstrations, (ii) a decentralized, partial-
information “learner” MCTS with small computation resources
that runs in real-time and provides self-play examples, and
(iii) policy & value neural networks that are trained with the
expert demonstrations and bias both the expert and the learner
tree growth. Our numerical experiments demonstrate neural
expansion generates compact search trees with better solution
quality and 20 times less computational expense compared to
MCTS without neural expansion. The resulting policies are
dynamically sophisticated, demonstrate coordination between
robots, and play the Reach-Target-Avoid differential game sig-
nificantly better than the state-of-the-art control-theoretic base-
line for multi-robot, double-integrator systems. QOur hardware
experiments on an aerial swarm demonstrate the computational
advantage of neural tree expansion, enabling online planning
at 20 Hz with effective policies in complex scenarios.

I. INTRODUCTION

Multi-agent interactions in non-cooperative environments
are ubiquitous in next-generation robotic domains such as
self-driving, space exploration, and human-robot interac-
tions. Planning, or sequential decision-making, in these set-
tings requires a prediction model of the other agents, which
can be generated through a game theoretic framework.

Recently, the success of Alpha Zero [1]] at the game
of Go has popularized a self-improving machine learning
algorithm: bias a Monte Carlo Tree Search with value and
policy neural networks, use the tree statistics to train the
networks with supervised learning and then iterate over
these two steps to improve the policy and value networks
over time. However, this algorithm is designed for classical
artificial intelligence tasks (e.g. chess or Go), and applica-
tions in multi-robot domains require different assumptions:
continuous state-action, decentralized evaluation, partial in-
formation, and limited computational resources. To the best
of our knowledge, this is the first work to provide a complete
multi-robot adaption from algorithm design to hardware
experiment of this powerful method.

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the author and should not be interpreted as repre-
senting the official views or policies of the Department of Defense or the
U.S. Government.
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Fig. 1.  Our method learns to play the multi-robot Reach-Target-Avoid
game. The learner trees query relevant states for demonstration from the
expert trees, and the data is used to train policy and value neural networks,
which are used to bias both tree growths. At runtime, the learner is
queried at each robot to generate an action with local information and little
computational resources.

The overview of our algorithm is shown in Fig. [} The
key algorithmic innovation of our approach is to create two
distinct MCTS policies to bridge the gap between high-
performance simulation and real-world robotic application:
the “expert” tree search is centralized and has access to per-
fect information and large computational resources, whereas
the “learner” tree search is decentralized and has access
to partial information and limited computational resources.
During the offline phase, the neural networks are trained
in an imitation learning style using the self-play states of
the learner and the high-quality demonstrations of the ex-
pert. The expert’s high-quality demonstrations enable policy
improvement through iterations and incrementally improve
the policy and value networks. The learner samples states
that should appear more frequently at runtime. For deploy-
ment, each robot uses the learner tree search to effectively
plan online with partial information and limited computa-
tional budget. Our contributions are extending Biased Neural
Monte Carlo Tree Search to (i) decentralized evaluation with
local information, (ii) continuous state-action domain, and
(iii) limited computational resources.

We validate our method in simulation and experiment.
We demonstrate numerically that our approach generates



compact trees of similar or better performance with 20 times
fewer nodes, and the resulting policies play the Reach-Target-
Avoid differential game with double-integrator dynamics
significantly better than the current state of the art. We
show the generalizability of the approach with a numerical
simulation extension with 3D Dubin’s vehicle dynamics.
Our hardware experiments demonstrate that the solutions are
robust to the sim-to-real gap and neural expansion generates
compact search trees to run effective policies in real-time.

Related Work: Our work relates to multiple communities:
planning, machine learning, and game theory. Planning, or
sequential decision-making, problems can be formalized with
a Partially Observable Markov Decision Process (POMDP).
The conventional solution to solving POMDPs in an online
setting is Monte Carlo Tree Search (MCTS) [2]. MCTS
searches through the large decision-making space by rolling
out simulated trajectories and biasing the tree growth to-
wards areas of high reward [3]. MCTS frequently uses the
Upper Confidence Bound for Trees algorithm [4] that uses
a discrete-action, multi-armed bandit solution [5] to balance
exploration and exploitation in node selection. Recent work
uses a non-stationary bandit analysis to propose a polyno-
mial, rather than logarithmic, exploration term [6].

Application of MCTS to a dynamically-constrained robot
planning setting requires extending the theoretical founda-
tions to a continuous state and action space. In general, the
recent advances in this area answer two principal questions:
i) how to select an action, and ii) when is a node fully
expanded. Regarding the former question, it is possible to
use the solution of the y-armed bandit problem [7]], which
is the extension of the multi-armed bandit to continuous
domains [8]]. Our approach is to use a policy network to
generate actions in the tree search. Regarding the latter
question, a popular method is to use progressive widening
and variants; we adapt the Polynomial Upper Continuous
Trees (PUCT) algorithm [9]] that uses the double progressive
widening method. Despite the advance in theory for contin-
uous action spaces, there have been relatively few studies of
learning-based extensions of biasing continuous MCTS with
data-driven methods [10].

The key of Alpha Zero [[1] is using MCTS as a policy
improvement operator; i.e. given a policy network to help
guide MCTS, MCTS’s own action will be closer to the
optimal action than the action generated by the original
policy network. Then, the policy network is trained with
supervised learning to imitate the superior MCTS policy,
matching the quality of the network to that of MCTS over
the samples. By iterating over these two steps, the model
improves over time. The first theoretical analysis of this
powerful method is recently shown for single-agent discrete
action space problems [6]. In comparison, our method is
applied to a continuous state-action, multi-agent setting.
Whereas Alpha Zero methods use the policy network to bias
the node selection process, i.e. given a list of actions, select
the best one, our policy network is an action generator for
the expansion process to create edges to children, i.e. given
a state, generate an action. A neural expansion operator has

previously been explored in robot motion planning [11],
but not robot decision-making. In addition, our method’s
supervised learning step is closer to imitation learning, as
used in DAgger [12], because the learner benefits from an
adaptive dataset generation of a learner using self-play to
query from an expert.

Although the Alpha Zero family of methods use a form
of supervised learning to train the networks, they can be
classified as a reinforcement learning method because the
networks are trained without a pre-existing labelled dataset.
Policy gradient [[13] is the conventional reinforcement learn-
ing solution and there are many recent advances in this
area [14]. In contrast, our method has a higher degree of
interpretability provided by the tree structure.

In contrast to data-driven methods, traditional analytical
solutions can be studied and derived through differential
game theory. The game we study, Reach-Target-Avoid, was
first introduced and solved by [15] for simple-motion, 1
vs. 1 systems. Later, multi-robot, single-integrator solutions
have been proposed by [16, [17]. Solutions considering
multi-robots with non-trivial dynamics, such as the double-
integrator [18]], are an active area of research.

II. PROBLEM FORMULATION

Notation: We denote the learning iteration with k and the
physical timestep with a subscript ¢ and, unless necessary, we
suppress the time dependency for notation simplicity. Robot-
specific quantities are denoted with ¢ or j superscript, and,
in context, the absence of superscript denotes a joint-space
quantity, e.g. the joint state vector is the vertical stack of all
individual robot vectors, s; = [s};...;s)] where N is the
number of robots.

Definition 1: A partially observable stochastic game
(POSG) is defined by a tuple: G = (Z,S, A, T, R, Z,0, H)
where: Z = {1, ..., N} is the set of robot indices, S is the
set of joint robot states, A is the set of joint robot actions, T
is the joint robot transition function where 7 (s, a;,S¢41) =
P(s¢11/8t,a:) is the probability of transitioning from joint
state s; to s;4+; under joint action a;, R is the set of joint
robot rewards functions where R’(s,a’) is the immediate
reward of robot 4 for taking local action a’ in joint state s,
Z is the set of joint robot observations, O is the set of joint
robot observation probabilities where O(z, s, a) = P(z|s, a)
is the probability of observing joint observation z condi-
tioning on the joint state and action, and H is the planning
horizon. Each of these joint-quantities can be appropriately
constructed from the robot-specific quantity. The solution of
a POSG is a sequence of actions that maximizes the expected
reward over time and is often characterized by a policy or
value function.

Assumption 1: A deterministic transition function is as-
sumed, thereby permitting rewriting 7 with a deterministic
dynamic function, f through:

T (st,ae,8e41) = L(f(s¢, ar) = st41) (1)

where I is an indicator function. Similarly, rewriting O with
a deterministic observation function results in z = h(s, a).
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Fig. 2. Example state space: blue robots, indexed by Z4, try to reach
the green goal region, and the red robots, indexed by Zpg, tries to prevent
that from happening by tagging the blue robots first. An x on the trajectory
indicates tagged state, and a o indicates reached goal.

This assumption can be relaxed by considering specialized
variants that are not the focus of this work. For example,
the stochastic transition can be handled with the double-
progressive-widening algorithm [9] (which we only use to
handle continuous action space) and measurement uncer-
tainty can be handled with observation widening [19].

Problem Statement: At time t, each robot ¢ makes a local
observation, z*, uses it to formulate an action, a*, and updates
its state, s?, according to the dynamical model. Our goal is to
find policies for each robot, 7 : Z* — A’ that synthesizes
actions from local observations through:

zi = hi(st), af; = Wi(zi), )

to approximate the solution to the general-sum, game theo-
retic optimization problem:

t+H
al = arg max Ri(s;,al) st
‘ {ai |vr} Tz::t v 3)

i i i P i Py
Sr+1 = f(sr,a;), s, € X', al el’, st =sg, Vi, T

70

where U* C A’ is the set of available actions (e.g. bounded
control authority constraints), and X? C S’ is the set of safe
states (e.g. collision avoidance) and sé is the initial state
condition. The optimization problems for each robot ¢ are
simultaneously coupled through the evolution of the global
state vector s, where each robot attempts to maximize its
own reward function R’

Reach-Target-Avoid Game: An instance of the above for-
mulation is the Reach-Target-Avoid game for two teams
of robots, where team A gets points for robots that reach
the goal region, and team B gets points for defending the
goal by tagging the invading robots first. The teams are
parameterized by index sets Z4 and Zp, respectively, where
the union of the two teams represents all robots, Z4 U Zp =
T. A state-space example of the Reach-Target-Avoid game
is shown in Fig. 2]

Dynamics: We consider the discrete-time double-integrator
system for the i robot as a motivating example:

Sii1 = [sﬂ + {Vf] Ay 4

where p’ and v* denote position and velocity and A; denotes
the simulation timestep. We use a simultaneous turn game
formulation where at a given timestep, each team’s action is
chosen without knowledge of the other team’s action.

Admissible State and Action Space: The admissible state
space for each robot is defined by the following constraints:
remain inside the position and velocity bounds, p,v, and
avoid collisions within the physical robot radius, r,:

1P e <P, IVl2 <o, (D) =Pl > 1y, Vi,j €T (5)

For robots on team A, the admissible state space has an
additional constraint: avoid the robots on team B by at least
the tag radius:

|p? —p'|| > 1, Vj€Ip, VicTs (6)

Then, the admissible state space for each team can be written
compactly, e.g. X' = {s' € ' | s.t. @), @}, Vi€ Za.
The admissible action space for each robot is constrained by
its acceleration limit: 4" = {a’ € A" | ||a‘|» <@}, Vi € T,
where @ is the robot’s acceleration limit. When a robot exits
the admissible state or action space, or a robot on team A’s
position is within an r, radius about the goal position py, it
becomes inactive.

Observation Model: Under Assumption [T} for each robot
7, we define a measurement model that is similar to visual
relative navigation h* : S — Z*, which measures the relative
state measurement between neighboring robots, as well as
relative state to the goal. Specifically, an observation is
defined as:
z' = [g —s', {SJ - SZ}jENAv {Sj - Sl}jENB] ) (N
where g is the goal position embedded in the state space,
e.g. for 2D double-integrator g = [p,; 0;0]. Then, N4 and
N denote the neighboring sets of robots on team A and B,
respectively. These sets are defined by each robot’s sensing
radius, Tsense, €.8-

NA = {] S IA | ||pj - pi”Q g rscnsc}~ (8)

Reward: The robot behavior is driven by the reward
function; the inter-team cooperation behavior is incentivized
by sharing the reward function and intra-team adversarial
behavior is incentivized by assigning complementary re-
ward functions only dependent on global state, Ri(s) =
—RI(s), Vi € Ta,j € Ip. The reward can be defined
by a single, robot-agnostic game reward, R(s) that team A
tries to maximize and team B tries to minimize. The game
reward is O until the terminal state where the game reward
and traditional value function are identical and defined as:

V(s)= > I(|p; — pyll2 < 7g), )
VieZa

i.e. the value is the number of team A robots in the goal
region. The indicator function payoff is known to be sparse
and makes traditional search and reinforcement learning
techniques ineffective [20]. The game termination occurs
when all robots on team A are inactive; typically when they
have reached the goal or been tagged by a robot on team B.



TABLE I
SUMMARY OF POLICIES

Symbol Name Computation Input Domain
™ True Optimal N/A Joint State
Tk Expert Biased MCTS Joint State
Uy Learner Biased MCTS Joint Estimated State
T Joint Policy Composition of 7* Joint Observation
L Policy Neural Network Local Observation

III. ALGORITHM DESCRIPTION

We present the meta-algorithm, the biased MCTS variant,
and then each of the components: expert, learner, and policy
and value networks. We summarize the symbol, notation, and
computation of our policies in Table [I}

A. Meta Self-Improving Algorithm

The input of the meta-learning is the POSG game de-
scribed in Sec. [II and the outputs are two neural networks
for policy and value distributions. The goal of the meta-
learning is to improve the models across learning iterations,
especially in relevant state domains, such that at runtime,
the robots can evaluate the learner policy. The desired model
improvement can be expressed by decreasing some general
probability distribution distance between the policy network
and the optimal policy function:

dist(7p(z), 7*(s)) < dist(7;(z), 7*(s)), Vk > 1, Vs (10)

where 7* is the optimal policy function that inputs a joint
state and returns a joint action, 7 is the policy network we
train, and k,[ are learning iteration indices. Specifically, we
train robot-specific policies 7 that map local observation to
local action and compose them together to create the joint
policy 7 = [i;.. .;fr,‘fl] that maps joint observation, z,
to joint action, a. Adapting the proof concept in [[6] to our
setting, the policy improvement can be shown by validating
the following two properties and then iterating: (i) bootstrap

dist(7* (s), Tk (s, 7r, Vi) < dist(7*(s), 7k (2)), ¥s (1)
and, after generating an appropriate dataset, (ii) learning

12)
(13)

D= {S, a} with a = ﬁk(s,frk, ‘7;@)
dist(7i11(z), 7" (s)) = dist(a, 7*(s)), V(s,a) € D

where Vj, is the value network and 7 is the expert that maps
state, policy and value networks to joint action. Intuitively,
the bootstrap property of MCTS (TI) generates a dataset
of policy samples superior to that of the policy network,
and then the supervised learning property (I3)) matches the
quality of the policy network to the quality of the new
dataset.

Validating these two properties drives the design of our
meta-learning algorithm in Algorithm [} At each learning
iteration k, each robot’s policy network is trained by gen-
erating a set of states from self-play of the learner policy,
#tt. Then, the expert policy 7, evaluates its policy on these
states to create a dataset of learning targets for the supervised
learning of each robot’s policy network 7;. The value

network, f/k is then trained to predict the outcome of the
game if each team was to play the joint policy 7. Because
the centralized expert has perfect information, coordination
and large computational resources, the bootstrap property is
more likely to hold. Furthermore, as the learner generates
state space samples through self-play, the dataset is dense in
frequently visited areas of the state space, and the models
will be more accurate there, validating the learning property.

In addition, we specify a simple POSG generator in
Line [4] of Algorithm [T]to select opponent policies and game
parameters for self-play. We select the most recent learning
iteration networks for self policies, and we uniformly sample
the other robot policies across all learning iterations. We
sample the number of robots to train on a range of branching
factors through the varying dimension of the joint-space
action. We also sample the environment size to train on a
range of maximum depths of the tree, as planning to the
terminal state takes more timesteps in larger environments.

Algorithm 1: Meta Self-Improving Learning

1 def Meta-Learning(G*):
o, Vo = None, None
for k=0,...,K do
{G}r = makePOSG(G*, k)
for i € 7 do
{s} = selfPlay(#((.), 7&, V&), {G}x)
D7 = {s, Tk(s, Tk, Vi) }
., = trainPolicy(D™)
end
DV = {s, selfPlay(7x, {G}1)}
Vip1 = trainValue(DV)
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B. Biased Neural Monte Carlo Tree Search (MCTS)

In order to specify the expert and learner policies, we
first explain their common search tree algorithm, shown in
Algorithm 2] and adapted from [3]] to our setting. For a
complete treatment of MCTS, we refer the reader to [J3]].

The biased MCTS algorithm begins at some start state
s and grows the tree until its computational budget is
exhausted, typically measured by number of nodes in the
tree, L. Each node in the tree, n, is initialized with a
state vector and an action edge to its parent node, i.e.
n’ = Node(s, (n, a)). Each node stores the state vector, S(n),
the number of visits to the node, N(n), its children set,
C(n), and its action set, A(n,n’), Vo’ € C'(n). The growth
iteration in the main function, Search, has four steps: (i)
node selection, Select, selects a node to balance exploration
of space and exploitation of rewards (ii) node expansion,
Expand, creates a child node by forward propagating the
selected node with an action either constructed by the neural
network or by random sampling, (iii) DefaultPolicy collects
terminal reward statistics by either sampling the value neural
network or by rolling out a simulated state trajectory from
the new node, and (iv) Backpropagate updates the number of



visits and cumulative reward up the tree. The action returned
by the search is the child of the root node with the most visits.
The primary changes we make from standard MCTS are
the integration of neural networks shown in the highlighted
sections of Algorithm [2] (called Biased Neural MCTS).

Algorithm 2: Biased Neural MCTS
1 def Search(s, T, V):

2 ng < Node(s, None)

3 for/=1,...,L do

4 n; < Expand(Select(ng, 7))

5 v ¢ DefaultPolicy(S(n;))

6 Backpropagate(n;, v)

7 return A(ng, arg max,, ¢ cny) N (1n'))

8 def Expand(n,):

9 a~1U(0,1)

10 if o < 3 then

1 | a«[al,...,al], a'~ 7 (hi(s)), Viel
12 else

13 La<—[a1 Lafll, al~uUt, VieT
14 n’ < Node(f(s,a), (n,a))

15 | return n’

16 def DefaultPolicy(s, \7):

17 a~T1(0,1)

18 if a < Sy then

19 L v~ V(hy(s))

20 else

21 while s is not terminal do

2 a«[a',...;al], al~ U’ VieZ
23 s« f(s,a)

24 v+ V(s)

25| return v

C. Expert Biased Neural MCTS

The expert, 7, is a function from joint state s to joint
action a. The expert computes the action by calling Search
in Algorithm [2] with a large number of nodes Lexperi. The
expert’s perfect information, centralized response, and large
computational budget is necessary to guarantee the bootstrap
property (I1I). We found that if the expert is given less
computational resources, the learning process is not stable
and the quality of the policy and value networks deteriorates
over learning iterations. Many of the desirable properties of
the expert for theoretical performance make it an infeasible
solution for multi-robot applications, motivating the learner.

D. Learner Biased Neural MCTS

The learner for robot i, 7%, is a function from local
observation z’ to local action a’. The learner computes the
action by reconstructing the state from its local observation
naively: §(z) = {§’}, Vj € NaUNp, where we assume that
the learner has prior knowledge of the absolute goal location.

The estimated state could be of a different dimension to the
true state if there are robots outside of robot i’s sensing
radius. Then, the learner calls Search in Algorithm ] with
the estimated state and a small number of nodes Lijearmer-
The final action a’ is selected from the appropriate index
of the joint-space action returned by Search. Both expert
and learner predict the actions of the opponent team, but
the learner also predicts the actions of other robots on its
own team. This communication-less implicit coordination
enables operation in bandwidth-limited or communication-
denied environments.

E. Policy and Value Neural Networks

We introduce each neural network with its dataset gen-
eration and training in Algorithm [I} and its effect on tree
growth via integration into Algorithm

Policy Network: The policy network for robot ¢ is an
action generator used to create children nodes, mapping
observations to action distribution for a single robot. The de-
sired behavior of the policy network is to generate individual
robot actions with a high probability of being near-optimal
expansions given the current observation, i.e. generate edges
to nodes with a high number of visits in the expert search.

The dataset for each robot i’s policy network is composed
of observation action pairs as computed in Line [/| of Al-
gorithm |1} Each datapoint pair is generated by querying the
expert 7 at some state, s;, considering the i™ robot’s action to
each of the root node’s children, A*(ng,n’) and calculating
the action label as the first moment of the action distribution,
weighted by the relative number of visits:

= ¥

n’eC(ng)

AZ (0o, n’) (14)

Next, we change the input from state to observation by apply-
ing robot 4’s observation model, z! = h'(s;). This is a global-
to-local learning technique to automatically synthesize local
policies from centralized examples [21]. The collection of
observation-action samples can be written in a dataset as
Di ={(zl,a})| l=1,...}.

The policy network training in Line [§] in Algorithm [I] is
cast as a multivariate Gaussian learning problem, i.e. the
output of the neural network is a mean, ;v and variance X.
An action sample a} ~ 7%(z}) can then be computed by
sampling € and transforming it by the neural network output:

e~ N(0,1) (15)

The variable size of the input, z/ is handled with a
DeepSet [22] feedforward architecture similar to [21]. The
solution to the multivariate Gaussian problem [23] is found
by minimizing the following loss function:

L=B) (aj— )= (aj — ) +
l

7= arg min [E E(/L(Z;), E(Z;:),a;)
iell’

aj = u(z;) + 2(z))e,

%ln|2| (16)
(17)

where 1, 3 are generated by the neural network given z,
and aj is the target. To challenge the model assumption



of multivariate Gaussian, we experimented with conditional
variational autoencoder techniques (CVAE) [24]] capable of
generating arbitrary distributions. We found that the empiri-
cal results were similar and the CVAE approach needed more
data and more epochs to train stable models.

The policy neural network is integrated in Line
in Algorithm [2] in the expansion operation by constructing
a joint-space action from decentralized evaluations of the
policy network for all the agents, and then forward propa-
gating that action. We found that using a neural expansion,
rather than neural selection as in Alpha Zero, is necessary
for planning with small number of nodes in environments
with many robots. For example, in a 10 vs. 10 game
such as that shown in Fig. 2] the probability of uniform
randomly sampling a control action that steers each robot
towards the goal within 90 degrees is (1/4)'°. If the learner
policy is evaluated with standard parameters (see Sec.
E]), it will generate 5 children, which collectively are not
likely to contain the desired joint action. Using the neural
network expansion operator will overcome this limitation by
immediately generating promising child nodes. The policy
network is not used at every expand operation to maintain
some pure exploration [25]]; the hyperparameter 3, € [0, 1]
determines the relative frequency of querying the network
and sampling a uniform random action.

Value Network: The value network is used to gather
reward statistics in place of a policy rollout, and is called
in the DefaultPolicy in Lines of Algorithm [2} The
value network uses an alternative state representation to be
compatible with the estimated state for local computation:

y= hy(s) = [{Sj - g}jENA7 {Sj - g}jGNBanrg] (18)

where hy(s) is the alternative observation function and n,.,
is the number of robots that have already reached the goal.
The value network maps this alternative state representation
to the parameters of a multi-variate Gaussian distribution.
The desired behavior of the value network is to predict
the outcome of games if they were rolled out with the
current policy network. The value function implementation
in DefaultPolicy is the same as Alpha Zero methods.

The value network dataset in Line [T0] of Algorithm [I] is
generated for all robots at the same time and is composed of
alternative state-value pairs. The y; state can be generated
from s, and the value label, v; is generated by self-play with
the current policy network. The dataset, Dy can then be
written as Dy = {(y;,v;)| VI = 1,...}. Because Alpha Zero
methods use a policy selector rather than a generator, the
dataset for the value network has to be made by rolling out
entire games with MCTS. Instead, we generate the dataset
by rolling out the policy network, which is much faster per
sample, resulting in less total training time.

The value network is trained in Line [TT] of Algorithm [I]
with a similar loss function (T6) as the policy network, using
a learning target of the value labels, v;, instead of the action
al. The value is also queried from the neural network in a
similar fashion (I3)). The value network uses a similar model
architecture as the policy network, permitting variable input

size of y. Integration of the value network in DefaultPolicy
uses the same probabilistic scheme as the policy network
with parameter Sy .

IV. EXPERIMENTAL VALIDATION
A. MCTS and Learning Implementation

We implement Algorithm [T]in Python and Algorithm [2]in
C++ with Python bindings. For the meta-algorithm, we only
train the inner robot loop in Line [5] of Algorithm [I] once per
team because we use homogeneous robots and policies. Our
MCTS variant uses the following hyperparameters: Lexpert =
10000, Licamer = 500, Cp = 2.0, Cpyy = 1.0, apyy = 0.25
and ag = (1—3/(100—10d))/20 where d is the depth of the
node. The neural frequency hyperparameters are 5, = Sy =
0.5. The double-integrator game parameters are chosen to
match the hardware used in the physical experiments (see
Sec. [[V-E). We use position bounds p = 1,2,3 m and
constant velocity ¥ = 1.0 m/s and acceleration @ = 2.0 m /s>
bounds. The tag, collision, and sensing radii are: r; = 0.2m,
rp = 0.1m, rsense = 2.0m. We train for up to 5 agents
on each team. We use a simulation and planning timestep
of A = 0.1s. Each team starts at opposite sides of the
environment, and the goal is placed slightly closer to the
defenders’ starting position.

We implement the machine learning components in Py-
Torch [26]. The datasets are of size 80000 points per iter-
ation for both value and policy datasets. The meta learning
algorithm is trained over K = 12 iterations. The policy and
value network models both use DeepSet [22] neural network
architecture, (e.g. [21]) with inner, ¢, and outer, p, networks
with one hidden layer with 16 neurons and appropriate input
and output dimensions. All networks are of feedforward
structure with ReLU activation functions, batch size of 1028,
and are trained over 300 epochs.

B. Variants and Baseline

In order to evaluate our method, we test the multiple
learners and expert policies, each equipped with networks
after k = 0, 3,6, 9, 12 learning iterations. To isolate the effect
of the neural expansion, we consider the k£ = 0 case for both
learner and expert as an unbiased MCTS baseline solution.

As a baseline for the double-integrator game, we use the
solution from [[18]. This work adapts the exact differen-
tial game solution of simple-motion, single-robot proposed
in [15] to a double-integrator, multi-robot setting. However,
their adapted solution is not exact because it assumes a
constant acceleration magnitude input, and it does have
collaborative behavior as it relies on composition of pair-
wise matching strategies.

C. Simulation Results

We evaluate our expert and learner by initializing 100
different initial conditions of a 3 attacker, 2 defender game
in a 3m space. Then, we rollout every combination of
the variants and the baseline for both team A and team
B policies, for a total of 12100 games. The performance
criteria for team A is the averaged terminal reward and
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(a) Double-integrator game evaluation: the thick lines indicate
the average performance and the shaded area represents the
variance over 100 games. The fully-trained learner outperforms
both the unbiased expert and the baseline, and approaches the
performance of the biased expert.
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Fig. 3. Double-integrator performance and strategy examples.

the performance criteria for team B is one minus average
terminal reward in order to have consistency of plots, i.e.
higher is better. An example game with different number
of agents and environment size is shown in Fig. [2] and an
animation of this instance is provided in the supplemental
video. The 10 vs. 10 game illustrates the natural scale-
ability in number of agents of decentralized approach and
the generalize-ability of the neural networks, as they were
only trained with data containing up to 5 robots per team.
The statistical results of the 3 vs. 2 experiment are shown
in Fig. [3a] where the thick lines denote the average perfor-
mance value and the shade is the performance variance. We
find the expected results; for both team A and team B, the
learner with no bias has the worst performance, and learner
with fully trained networks surpasses the centralized and
expensive unbiased expert and approaches the biased expert.
In the case of attacking policies, the baseline is relatively
weak. However, the baseline’s defensive strategy is strong
and it provides an analytical solution capable of beating the
unbiased expert. In both cases, the fully-trained biased expert
and learner are able to significantly outperform the baseline.
To investigate the qualitative advantages of our method, we
looked at the games where our learner defense outperformed
the baseline defense and found two principal advantages:
first, the learner defense sometimes demonstrated emergent
coordination that is more effective than pairwise matching
strategy, e.g. one defender goes quickly to the goal to protect
against greedy attacks while the other defender slowly ap-
proaches the goal to maintain its maneuverability, see Fig.

Second, the learner attacker is sometimes able to exploit the
momentum of the baseline defender and perform a dodge
maneuver, e.g. the bottom left interaction in Fig. [3c| whereas
the learner defense is robust to this behavior. These examples
show both offensive and defensive behaviors of learner are
sophisticated and effective.

D. Dynamics Extension

In order to show the generalizeability of a search tree
approach, we adapt our solution to the nonlinear 3D Dubin’s
vehicle dynamics. Planning solutions for 3D Dubin’s vehi-
cle are applicable for fixed-wing aircraft applications [27].
We consider the state, action, and dynamics for s; =

[xtaytvzhwtv'ytvgbtvvt]T and a; = [’.Ytaqgtﬂ-)t}T :

vy cos(ye) sin(¥r)
vy cos(7yt) cos(¥r)
—vy sin(7y)
% tan (¢ )
'

Si+1 = f(s,ar) =s¢ + Ay (19)

where x, y, z are inertial position, v is speed, v is the heading
angle, -y is the flight path angle, and ¢ is the bank angle and
g is the gravitational acceleration. The game is bounded to
P =5m with a maximum linear acceleration of 2.0 m/s? and
maximum angular rates of 72 deg/s, and g is set to 0.98 m /s>
to scale to our game length scale.

We initialize 2 attacker, 2 defender games for 100 different
initial conditions in a 5 m region and test the policy variants,
without an external baseline, for a total of 10000 games. An
example state space and the performance results are shown
in Fig. ] Again, we see the same trend that the learner
with no bias has the worst performance, and the learner
with fully trained networks surpasses the centralized, perfect
information, and expensive unbiased expert and approaches
the biased expert.

E. Hardware Validation

To test our algorithm in practice, we fly in a mo-
tion capture space, where each robot (CrazyFlie 2.x, see
Fig. [1) is equipped with a single marker, and we use the
Crazyswarm [28] for tracking and scripting. For a given
double-integrator policy, we evaluate the learner to construct
an action, forward-propagate double-integrator dynamics,
and track the resulting position and velocity set-point using
a nonlinear controller for full quadrotor dynamics.

We evaluate the double-integrator learner for up to 3
attacker, 2 defender games in an aerial swarm flight demon-
stration. We show the results of the experiments in our
supplemental video. We use the same parameters as in
simulation in Sec. [V=Cl Our learner evaluation takes an
average of 11ms with a standard deviation of 6ms, with
each robot policy process running in parallel on an In-
tel(R) Core(TM) i7-8665U. By comparison, the biased expert
takes 329+144 ms to execute and the unbiased expert takes
277+260 ms. Our computational tests show that the learner
has significant (= 25 times) computational advantage over
the baseline unbiased expert. Our physical demonstration
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(b) 3D Dubin’s vehicle game evaluation: the thick lines indi-
cate the average performance and the shaded area represents
the variance over 100 games. The fully-trained learner outper-
forms the unbiased expert and approaches the performance of
the biased expert.

Fig. 4. 3D Dubin’s vehicle state space and performance.

shows that our learner is robust to the sim-to-real gap and
can run in real-time on off-the-shelf hardware.

V. CONCLUSION

In this work, we presented a new approach for multi-robot
planning in non-cooperative environments with an iterative
search and learning method called neural tree expansion.
Our method bridges high-performance Alpha Zero method
and real-world robotics applications by introducing a learner
agent with decentralized evaluation, partial information, and
limited computational resources. Our method outperforms
the current state-of-the-art analytical baseline for the multi-
robot double-integrator Reach-Target-Avoid game with dy-
namically sophisticated and coordinated strategies. Further-
more, our method readily extends to the 3D Dubin’s vehicle
dynamics used for fixed-wing aircraft planning problems. We
validate the effectiveness through hardware experimentation
and show that our policies run in real-time on off-the-shelf
computational resources.
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