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Excavation Learning for Rigid Objects in Clutter
Qingkai Lu1 and Liangjun Zhang1

Abstract—Autonomous excavation for hard or compact mate-
rials, especially irregular rigid objects, is challenging due to high
variance of geometric and physical properties of objects, and
large resistive force during excavation. In this paper, we propose
a novel learning-based excavation planning method for rigid
objects in clutter. Our method consists of a convolutional neural
network to predict the excavation success and a sampling-
based optimization method for planning high-quality excavation
trajectories leveraging the learned prediction model. To reduce
the sim2real gap for excavation learning, we propose a voxel-
based representation of the excavation scene. We perform
excavation experiments in both simulation and real world to
evaluate the learning-based excavation planners. We further
compare with two heuristic baseline excavation planners and
one data-driven scene-independent planner. The experimental
results show that our method can plan high-quality excavations
for rigid objects in clutter and outperforms the baseline methods
by large margins. As far as we know, our work presents the first
learning-based excavation planner for cluttered and irregular
rigid objects.

Index Terms—Deep learning in grasping and manipulation,
perception for grasping and manipulation, manipulation plan-
ning

I. INTRODUCTION

EXCAVATORS are widely used in various applications,
including construction, material loading, and mining.

Excavators need to operate in extreme environments or
weather conditions, which are challenging for human opera-
tors. Operating excavators requires special and costly training
to ensure safe operations of equipment [1]. Moreover, oc-
cupational machine-related fatalities and injuries occur each
year [2]. Automating the excavator operation has been an
active area of research because of its potential to increase
safety, reduce cost and improve the work efficiency [3–5].

In terms of developing autonomous excavator systems,
there have been many efforts that focus on particular as-
pects [6, 7], including perception [8], planning [9, 10],
control [5], teleoperation [11, 12], and system integration
and applications [4]. Despite these advances, autonomous
excavation for hard or compact materials, especially irregular
rigid objects, remains challenging and relatively few works
have looked at this problem [13, 14].

Manuscript received: February, 24, 2021; Revised May, 22, 2021; Ac-
cepted June, 23, 2021.

This paper was recommended for publication by Editor M. Vincze upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by Baidu Research USA.

1Qingkai Lu and Liangjun Zhang are with the Robotics and Auto-Driving
Lab, Baidu Research, Sunnyvale, CA USA. qingkailu@baidu.com;
liangjunzhang@baidu.com

Digital Object Identifier (DOI): see top of this page.

Rock excavations are typical scenarios in mining job
sites [15]. As compared to granular material, rocks are
rigid and often in clutter. It is more challenging, more
time consuming, and much more expensive to excavate [15]
rocks. Excavation of rocks can result in large resistive forces
to the bucket [16]. Furthermore, unlike granular materials
composited by uniform particles, rigid objects often have
high variance of geometrical shapes (e.g., concave and con-
vex), appearances, and physics properties (e.g., mass), which
largely increases the challenges for robotic perception and
manipulation.

In this paper, we focus on excavation learning and planning
for irregular rigid objects in clutter. We employ deep learning
to tackle the challenges of excavation for rigid objects in
clutter. Given the visual representation of the excavation
scene, our goal is to plan a high-quality trajectory to excavate
objects with large total volume per excavation. We first
propose novel RGBD and voxel-based convolutional neural
network (CNN) models to predict the excavation success,
which we train by collecting a large set of training excavation
samples in simulation. We then formulate the excavation
planning as an optimization problem leveraging the learned
prediction models. We perform excavation experiments in
both simulation and real world to evaluate our learning-based
excavation methods. Our excavation experiments in simula-
tion and real world show that our learning-based planners
are able to generate excavations with high success rates.
The experimental results also demonstrate the advantages
of the learning-based excavation planners over two heuristic
planners.

In summary, the main contribution of this work includes:
1) We propose two CNN models for success prediction

of a new task, excavation for rigid objects in clutter,
and solve the excavation planning as an optimization
problem leveraging the learned models.

2) Our excavation experiments in simulation and real
world show that our learning-based planner is able to
generate excavation trajectories with a high success
rate.

3) We represent the excavation trajectories in task space,
which allows the transfer of the learned excavation
prediction models across different hardware platforms.

4) We demonstrate the voxel-grid representation of the
excavation scene reduces the sim2real gap for ex-
cavation learning, compared with the RGBD image
representation.

5) We collected and released an excavation dataset for
cluttered rigid objects.

We summarize the related work in Section II. In Sec-
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tion III, we define the excavation planning problem for
cluttered rigid objects. We follow this in Section IV with
an overview of our approach to excavation learning and
planning. We then give a thorough account of our simulated
and real-robot experiments in Section V. We conclude with
a brief discussion in Section VI. In the Appendix (i.e.,
Section VII-H), we present the excavation data collection,
model training, offline validation, further results analysis, and
ablation study.

II. RELATED WORK

In this section, we summarize the literature of autonomous
excavators, manipulation learning, and voxel-based planning.

A. Autonomous Excavators

Prior work on developing autonomous excavators mainly
focuses on soil excavation and granular material handling. In
the seminal work [4], a prototype system for autonomous
material loading to dump trucks is proposed. Recently, a
system for autonomous trenching [17] is presented and vali-
dated on a real excavator. Yang and colleagues [10] propose
a trajectory optimization method for for granular material
excavation. Recently, various prototypes and experiments
have been carried out on the task planning for large-scale ex-
cavation tasks, e.g., soil pile removals [9]. A novel real-time
panoramic telepresence system for construction machines is
presented in [11]. Tanzini and others discuss a novel approach
for interactive operation of working machines in [12]. A
reinforcement learning approach is proposed for automated
arm control of a hydraulic excavator in [12].

Different control approaches have been proposed for ex-
cavation automation. Maeda et al. propose a new control
structure with explicit disturbance compensation for soil
excavation in [18]. In [5], a force control method is presented
and the resulting bucket motions can be adaptive to different
terrain. In [19], a straight-line motion tracking control scheme
is proposed for hydraulic excavator system. In [20], a model-
free extremum-seeking approach using power maximization
is presented.

There are relatively few work related to rigid objects exca-
vation [13, 14, 21]. Fernando and others develop an iterative
learning-based admittance control algorithm for autonomous
excavation in fragmented rock using robotic wheel loaders.
An admittance-based Autonomous Loading Controller for
fragmented rock excavation is discussed in [14]. Compared
with the low-level excavation control work in [13, 14],
our work focuses on learning-based excavation trajectory
planning that considers the visual scene representation of
cluttered rigid objects. In [21], Sotiropoulos and Asada
integrate a Gaussian process rock motion model and an
Unscented Kalman Filter for rock excavation. However, they
only focus on excavation of a single rock in isolation and
use the OptiTrack motion capture system to track the motion
of the rock. In comparison, we focus on excavation for rigid
objects in clutter using a RGBD camera.

B. Deep Learning for Manipulation

In recent years, researchers have looked to capitalize on the
success of deep learning to improve robotic manipulation,
including non-prehensile manipulation [22], grasping [23–
25], and granular material scooping [26, 27]. For example,
deep learning has been shown to generalize well to previously
unseen objects where only partial-view visual information is
available for grasping [28]. In [29], Halbach and others train
an end-to-end Neural Network controller for automated pile
loading of granular media using human demonstration data.
In [30], a statistical model is learned to predict the behavior
of soil excavation, which is used for controlling the amount of
excavated soil. In our work, we apply deep learning to tackle
the perception and manipulation challenges of excavation for
cluttered rigid objects and generate high-quality excavations.

Various planning approaches have been developed to lever-
age deep neural network predictive models. In [25], Lenz and
colleagues proposes cascaded deep networks to efficiently
evaluate a large number of candidate grasps. In [26], a highly-
tailored CNN model is developed to learn the dynamics of
the granular material scooping task and the cross entropy
method (CEM) leveraging the learned prediction model is
used for scoop planning. In [24], the grasping planning
is formulated and solved as a gradient-based optimization
over the grasp configuration leveraging the grasp predication
network. In this paper, we model excavation planning as
an optimization problem which maximizes the probability
of excavation success predicted by our excavation prediction
network and solve the optimization using CEM.

C. Voxel-based Planning

In [28], a voxel-based object representation and two 3D
CNNs are presented for multi-fingered grasp learning and
planning. Jetchev and Toussaint model environments with
voxel-grids and present a novel way for faster movement
planning in such environments by predicting good path ini-
tializations [31]. To overcome the sim2real issue, we propose
a 3D voxel-grid representation of the excavation scene.

III. PROBLEM DEFINITION

In this section, we define the excavation task for rigid
objects and the excavation trajectory representation.

A. Task Overview

This work focuses on rigid objects excavation in clutter.
Given the visual representation (i.e., the RGBD image or
voxel-grid in this work) Z of the current excavation scene,
our goal is to plan a trajectory T that excavates rigid
objects (e.g., stones or wood blocks) with the maximum total
volume V . An excavation instance/sample is defined to be
the pair of the scene visual representation and the excavation
trajectory (Z, T ). We focus on maximizing the excavated
objects volume of the current excavation greedily without
considering the future excavations.
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(a) An excavator. (b) Our Franka “excavator”.
Fig. 1: The mechanical structure of an excavator and our Franka
arm “excavator” with a 3D printed bucket are shown in this figure.
The first to forth joint of the excavator and Franka are the base
swinging, boom, stick, and bucket joint respectively.

In this work, we emulate a standard 4 DOF excavator
model using a Franka Panda 7 DOF robot arm mounted
with a 3D printed excavation bucket. Figure 1b shows our
excavation task and scene setup, where rigid wood blocks are
put in an excavation tray and the task is to excavate these
blocks and dump to a dumping tray after each excavation.

B. Excavation Trajectory Representation in Task Space

As shown in Figure 1, an excavator arm usually has 4 DoF,
including the base swinging, boom, stick, and bucket joint.
The 4D excavation pose of the bucket in task (Cartesian)
space is composed of the 3D excavation position (x, y, z) and
the 1D excavation angle α. The excavation angle determines
the bucket orientation, which also equals to the sum of the
joint angles of the last three excavation joints. We define
the excavation angle to be zero degree when the bucket
orientation is horizontal and points away from the robot. The
excavation angle is −90 degree when the bucket orientation
is vertical and points down. One example of the excavation
angle visualization can be seen from the closing excavation
angle β in Figure 2.

In general, an excavation trajectory T can be divided into
multiple phases [3]. Figure 2 illustrates one scheme, where
the trajectory is divided into 5 phases: attacking, penetration,
dragging, closing, and lifting. In the attacking phase, the
excavator arm moves the bucket from the starting pose to its
4D target attacking pose p = (x, y, z, α). In the penetration
phase, the bucket penetrates into objects with a specified
depth d along the gravity direction. Then the bucket drags
horizontally towards the excavator base in the excavation
plane for a given length l. Dragging allows the excavator arm
to push and accumulate more objects into the bucket along
the way. In the closing phase, the excavator arm decreases
the angle between the bucket and the horizontal plane to β
degree in order to close the bucket and manipulate objects
into the bucket. Finally, the excavator arm lifts the bucket to
a certain height h.

We assume the attacking point is always on the surface
of the objects clutter. Given the (x, y) coordinate of the
attacking pose p, its z coordinate value on the objects clutter

Fig. 2: This figure visualizes our excavation trajectory representation
in the task space. The numbers in blue circles represent the sequence
of our five excavation phases. The bucket pose with ID 0 shows the
starting pose. The bucket poses with ID from 1 to 5 represents
the attacking, penetration, dragging, closing, and lifting phase
respectively.

surface is computed as the height of the grid/height map
of the objects clutter at (x, y). More details and examples
of the grid map can be found in Section VII-C of the
Appendix. We fix the lifting height h to lift the bucket to
the height of the robot base. Therefore, we can represent
a task space excavation trajectory T using 6 parameters
T = (x, y, α, d, l, β). The points of attack (x, y) are learned
and planned in the objects tray frame. The object tray frame
definition for simulation and real world is explained in more
detail in Section V-A and VII-B of the Appendix respectively.

Having the 6D task trajectory parameters, we interpolate
the excavation trajectory and generate its corresponding joint
space trajectory by applying inverse kinematics (IK) of the
excavator arm [32]. Then the interpolated joint trajectory
waypoints are sent to a position controller in both simulation
and real world. Though the robotic arm is used for excavation
in this paper, the task trajectory representation and excavator
IK can also be translated directly to hydraulically actuated
excavator arms.

IV. OBJECTS EXCAVATION LEARNING AND PLANNING

In this section we present the design of our deep network
models to predict the excavation success for rigid objects in
clutter. We then propose an excavation planner leveraging the
learned prediction excavation model.

A. Excavation Scene Representation

We consider two visual representations for the excavation
scene, RGBD image and voxel-grid. RGB and depth images
are captured using the corresponding RGBD camera in sim-
ulation or real world. It turns out the RGBD image repre-
sentation suffers from a large sim2real gap when transferring
the learned excavation knowledge from simulation into real
world, because (1) our simulated excavation environment
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(e.g., the geometry and color of the excavation tray and the
color of the floor) differs from the real-world excavation
environment; (2) the RGBD image depends on the camera
intrinsics and extrinsics. Figure 7a and Figure 7b show the
RGB image of the simulation and real world respectively.

To overcome the sim2real issue, we propose a 3D voxel-
grid representation of the excavation scene. The pointcloud
(i.e., depth) of the excavation scene obtained from the same
RGBD camera is first transformed into the objects tray frame.
Then we filter the transformed pointcloud according to the
specific excavation cuboid space and voxelize the filtered
pointcloud to generate its voxel-grid. More details of the ex-
cavation space specification for simulation and real world can
be found in Section VII-A and VII-B of the Appendix. The
voxel-grid has a dimension of 64×64×32 with a resolution
of 0.01 m. An example of the voxel-grid visualization and
its source pointcloud are shown in Figure 3. The voxel-grid
dimension and resolution are empirically designed to cover
the excavation space and maintain a reasonable level of visual
details, similar to the voxelization for grasping in [28].

Since our voxelization only focuses the specified exca-
vation space, the voxel-grid representation is not affected
by the environment surroundings. Moreover, our voxel-grid
representation is agnostic to the camera intrinsics and extrin-
sics, because the voxelization is applied in the tray frame
instead of the camera frame. Our experimental results in
Section V demonstrate the sim2real benefits of the voxel-
grid representation over the RGBD one.

B. Excavation Prediction Models

We model the excavation prediction as a binary clas-
sification problem. The excavation classifier predicts the
probability of excavation success (i.e., bucket filling success),
Y , as a function of an excavation instance. We propose two
CNN models to predict the excavation success probability,
namely “excavation-RGBD-net” and “excavation-voxel-net”.
Each model takes an excavation instance composed of a task
trajectory and a RGBD image/voxel-grid as input and predicts
the excavation success probability as output.

ResNet [33] provides one of the state of the art CNN
architectures for various computer vision tasks such as image
classification and object detection. We choose ResNet-18
as the backbone architecture of excavation-RGBD-net and
naturally extend ResNet-18 to 3D CNN as the backbone of
excavation-voxel-net. The offline validation results in Sec-
tion VII-E of the Appendix and the experiments in Section V
empirically show the effectiveness of both models, especially
excavation-voxel-net. We believe other alternative network
structures such as scoop & dump-net in [26] for the 2D
CNN RGBD model and voxel-config-net in [28] or the shape
completion CNN in [34] for the 3D voxel model could also
potentially work well.

Figure 3 shows the architecture of our excavation-voxel-
net using the ResNet-18 backbone. We tile each trajectory
parameter point-wise across the 64 × 64 × 32 voxel-grid

dimension (cf. [23]). We then concatenate the tiled trajectory
parameter voxel-grids with the scene voxel-grid to generate
the final input voxel-grid of the given excavation instance.
The input voxel-grid has 7 channels (i.e., the dimension of
each voxel) in total, including 1 for the scene voxel-grid and
6 for the tiled trajectory parameters.

The 2D convolution filters of the raw ResNet-18 are
replaced with 3D convolution filters to build the ResNet3D-
18 backbone. We feed the input voxel-grid into ResNet3D-18
to generate a 1000-dimensional feature vector. The ResNet3D
feature is then processed by 3 fully-connected layers followed
by a sigmoid output layer to generate the excavation success
probability. These 3 fully-connected layers have 512, 256,
and 128 ReLu neurons, respectively. The design of the fully-
connected layers is inspired from the voxel-config-net in [28],
which is further tuned empirically during training. We apply
batch normalization for all fully-connected layers except the
output layer. We train our the excavation classifier using the
cross entropy loss.

The excavation-RGBD-net shares a similar architecture
with the excavation-voxel-net, except we use the raw ResNet-
18 backbone with 2D convolution and tile the trajectory
parameters in the image space instead of voxel-grid space.

To compare with classification, we also model the excava-
tion prediction as a regression problem. Excavation-RGBD-
net and excavation-voxel-net are adapted to “excavation-
RGBD-reg-net” and “excavation-voxel-reg-net” respectively
by replacing the sigmoid output layer with the fully-
connected layer. The regression models are trained using the
smooth L1 loss (i.e., Huber loss)1.

In order to show the importance of the scene dependency
for excavation learning and provide a data-driven baseline
for experiments, we also develop a fully-connected excava-
tion classification network “excavation-traj-net”. The scene-
independent excavation-traj-net only takes the task trajectory
without the visual scene representation as input. It has 4
fully-connected layers with 512, 256, and 128 ReLu neurons
respectively. Its final sigmoid layer outputs the excavation
success probability.

In summary, five excavation prediction models are
presented: excavation-RGBD-net, excavation-voxel-
net, excavation-traj-net, excavation-RGBD-reg-net, and
excavation-voxel-reg-net.

C. Learning-based Excavation Planning

Given the excavation scene visual representation Z, our
goal is to plan an excavation trajectory T that maximizes the
the probability of excavation success, Y . Similar with the
grasp planner in [24], we formulate the excavation planning
as an optimization problem:

argmax
T

p(Y = 1|T,Z,W ) = f(T,Z,W ) (1)

In Eq. 1 f(T,Z,W ) defines a neural network classifier
with logistic output trained to predict the excavation success

1https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Fig. 3: The excavation-voxel-net architecture.

probability as a Bernoulli distribution over Y . The parameters
W define the neural network parameters.

We use CEM [35] leveraging the learned excavation pre-
diction model to solve the excavation optimization problem,
similar with [26]. As a sampling-based optimization ap-
proach, CEM iteratively samples from the current distribution
and selects the top K samples using a scoring function to
update the distribution. We aim to optimize a Gaussian dis-
tribution of the 6D task trajectory parameters, given the visual
representation of the current excavation scene. 256 heuristic
excavation trajectories are generated using the random-heu
excavation planner to initialize the Gaussian distribution.
More details of the random-heu planner can be seen from
Section VII-C1 of the Appendix. We have 5 iterations for the
CEM excavation planning. At each iteration, we first sample
256 excavation trajectory samples from the current distribu-
tion. We predict the success probability of each sample using
the learned excavation prediction network. Then we select the
top 64 samples with higher success probabilities to update the
Gaussian distribution. To summarize, CEM uses the learned
prediction model as a quality metric to iteratively improves
the distribution of the task trajectory parameters through
sampling and distribution updating. We sample 64 excavation
trajectories from the final CEM distribution, evaluate each
one using the learned prediction model, and pick the one
with the highest success probability, valid IK solution, and
valid attacking point range as the planned task trajectory.

V. EXCAVATION EXPERIMENTS

In this section, we first describe the excavation experiment
setup and results in simulation. Then we introduce the ex-
periment setup and results in real world. Our learning-based
planners are compared with two heuristic planners and a data-
driven baseline planner in simulation and real world. Our
experimental results demonstrate the learning-based planners
are able to plan high-quality excavations and significantly
outperform the baseline methods. The data collection, model
training, offline validation, more detailed results analysis, and
ablation study are provided in the Appendix.

A. Experiment Setup in Simulation

We collect the training data and perform simulated experi-
ments in PyBullet2. A UR5 robot arm is used for excavation
data collection. The UR5 arm has 6 DoF in total. We control
the shoulder panning, shoulder lifting, elbow, and the first
wrist joints of the UR5 arm and disable the other two
wrist joints by fixing their joint angles in simulation. A
3D designed bucket is used as the end-effector of UR5 in
simulation. The full volume of the bucket is 450 cm3.

The RGB and depth image of each excavation trial are
generated by the built-in simulated camera in PyBullet.
Figure 4a shows the camera setup in simulation. One example
of the RGB image generated by the simulated camera can
be seen from Figure 7a in the Appendix. More details of the
camera and excavation scene setup for real-robot experiments
are discussed in Section VII-A of the Appendix.

(a) The RGBD camera setup in sim-
ulation.

(b) The Azure RGBD camera setup
in real world.

Fig. 4: The RGBD camera setup in simulation and real world.

For each experiment trial of a certain excavation planner,
the joint space trajectory is interpolated and computed from
its planned task trajectory T using IK, and sent the joint space
waypoints to a joint position controller of the UR5 arm in
simulation.

B. Experiments in Simulation

We perform simulated experiments to evaluate the
learning-based planner of excavation-voxel-net, excavation-
RGBD-net, excavation-voxel-reg-net, excavation-RGBD-reg-
net, and excavation-traj-net. We name them “CEM-voxel”,
“CEM-RGBD”, “CEM-voxel-reg”, “CEM-RGBD-reg”, and
“CEM-traj” respectively. CEM-traj serves as a data-driven
baseline planner without visual scene representation input.
In addition, these five learning-based planners are compared
with two heuristic planners: random-heu and highest-heu.
More details of these two heuristic planners can be found
in Section VII-C1 of the Appendix. 100 excavation episodes
are experimented for each method. 10 excavation trials are
sequentially performed for each excavation episode. That
gives us 1000 excavation experimented trials in total for each
method.

2https://pybullet.org/wordpress/

https://pybullet.org/wordpress/
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The simulated results of all seven methods are presented in
Table I. We benchmark the excavations of each planner using
three metrics: the volume of excavated objects (excavation
volume), the excavated objects number, and the excavation
success rate. Same as the model training in Section VII-D of
the Appendix, if the total volume of a sample’s successfully
excavated objects is above 134 cm3 (i.e., 30% bucket filling
rate), it is counted as a success, otherwise a failure. We also
report the computation time of each planner.

The mean with standard deviation in parentheses are listed
for all metrics except the success rate. The mean and standard
deviation for each method are computed across its 1000
experimented excavation trials. As shown in Table I, CEM-
voxel achieves the best excavation performance in terms of
the excavation volume, excavated object number, and success
rate. CEM-voxel excavates objects of 136 cm3 per excavation
in average, which is 30.2% of the full bucket volume (i.e.
bucket volume filling rate). CEM-voxel, CEM-RGBD, and
CEM-voxel-reg outperform the two heuristic planners and
CEM-traj by relatively large margins in terms of these 3
excavation metrics, which shows the effectiveness of the
scene-dependent excavation learning.

Classification-based CEM-voxel and CEM-RGBD per-
form better than regression-based CEM-voxel-reg and CEM-
RGBD-reg respectively. Since classification is about predict-
ing a label and regression is about predicting a continuous
quantity, we believe excavation regression is more complex
and needs a lot more training data to perform as well as or
better than excavation classification.

The fact that scene-dependent planner CEM-voxel, CEM-
RGBD, and CEM-voxel-reg significantly outperform the
scene-independent CEM-traj planner demonstrates that it is
important to learn to plan excavation trajectories based on
the visual scene information.

The five learning-based planners all have higher standard
deviations in terms of excavation volume and objects number
than the two heuristic planners. CEM-voxel has the highest
standard deviation. The experiment results of heuristic plan-
ners are dominated by failure excavations with low exca-
vation volumes. Learning-based planners, especially CEM-
voxel, generate excavations with relatively higher excavation
volumes. This makes the excavation volume distribution
of learning-based planners more uniform and have larger
standard deviations, which is shown by the volume histogram
of different planners in Figure 9 of the Appendix.

In terms of computation speed, heuristic planners spend 0.2
second to plan one excavation trajectory. CEM-voxel, CEM-
RGBD, CEM-voxel-reg, and CEM-RGBD-reg takes more
than 10 seconds to generate one excavation trajectory. It costs
CEM-traj 3 seconds to plan a trajectory. Finally, Figure 5
visualizes 6 high-quality excavation examples planned by the
CEM-voxel planner in simulation.

C. Experiment Setup in Real World

Real-robot excavation experiments are performed using a
Franka Panda robotic arm. The Franka Panda arm has 7 DOF

Method Volume (cm3) Number Success Rate Time (s)
CEM-voxel 136.23 (106.14) 7.58 (6.05) 51.9% 10.5 (0.77)

CEM-RGBD 129.78 (101.50) 7.51 (6.03) 48.1% 17.3 (0.28)
CEM-voxel-reg 127.89 (105.22) 7.15 (6.09) 47% 10.44 (0.29)

CEM-RGBD-reg 107.93 (98.18) 6.29 (5.73) 35.3% 17.4 (0.27)
CEM-traj 97.27 (100.73) 5.54 (5.87) 32.4% 3.17 (0.28)

random-heu 85.81 (87.65) 4.73 (4.99) 28.4% 0.2 (0.03)
highest-heu 67.24 (76.43) 3.36 (4.19) 19.3% 0.2 (0.02)

TABLE I: The experimental results of seven excavation planners
in simulation.

Fig. 5: We show 6 high-quality simulated excavations generated by
the CEM-voxel planner in this figure.

in total. We control the shoulder panning, shoulder lifting,
elbow lifting, and the wrist lifting joint of the Franka arm as
the excavation joints and disable the other three joints (i.e. the
elbow panning and the last two wrist joints) by fixing their
joint angles. The same bucket model used in simulation is 3D
printed as the Franka arm end-effector. The Azure Kinect
camera generates the RGBD image and pointcloud of the
excavation scene. Figure 4b shows the camera setup in real
world. An example of the Azure RGB image showing the
excavation setup can be seen from Figure 7b in the Appendix.
More details of the camera, robot, and excavation scene setup
for real-robot experiments are introduced in Section VII-B of
the Appendix.

For each experiment trial of a certain planner, we compute
the joint space trajectory from the planned task trajectory T
using IK and send the joint space trajectory to the built-in
joint position controller of the Franka arm. Compared with
hydraulic excavator arms, the Franka arm can only produce
a limited amount of force and torque. For example, Franka’s
force and torque range along z (i.e., gravity direction) are
[−50, 150] N and [−10, 10] Nm respectively. Considering
the large resistive force of rigid objects, this makes it hard
for the bucket to penetrate into the rigid objects. During
penetration, the robot is automatically commanded to alter-
natively shift the bucket back or forth by 2 cm horizontally
per waypoint, which helps to prevent the robot getting stuck.

D. Real Robot Experiments

The excavation model learned on UR5 in simulation is
transferred to Franka in real world for rigid objects ex-
cavation experiments. The representation of the excavation
trajectory in task space allows us to transfer the excavation
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prediction model from one hardware platform to another with
similar kinematic reachability. The reachability of UR5 and
Franka arm are 850 mm and 800 mm respectively. In addition
to the task trajectory representation, we represent excavation
poses in the tray frame to make excavation learning and
planning agnostic to different tray poses across simulation
and real world.

Excavation experiments are performed to evaluate our
learning-based planners CEM-voxel and CEM-RGBD, which
achieves the best performance in simulation experiments. We
also compare our learning-based planners with these two
heuristic planners random-heu and highest-heu. We experi-
ment 5 excavation episodes for each method in real world. We
randomly reset the rigid objects for each excavation episode.
We perform 5 excavation trials for each excavation episode.
That gives us 25 excavation experimented trials in total for
each method.

Details of these two heuristic planners for simulation
are described in Section VII-C1 of the Appendix. Random
parameter ranges of heuristic planners in real world are
smaller than that in simulation. Because experiments with
large heuristic ranges can be unsafe for human or robot.
For example, relatively long dragging lengths cause collision
with the tray. Moreover, the Franka arm can only produce
a limited amount of force and torque, which makes it
difficult to penetrate into the rigid objects with a depth larger
than 5 cm. Specifically, we randomly generate the attacking
excavation angle α and the closing angle β in the range of
[−110,−70] and [−110,−140] degree respectively in real
world. We randomly generate the penetration depth d and
the dragging length l in the range of [0.02, 0.05] m and
[0.02, 0.06] m respectively. The trajectory parameter range
of heuristic planners also affect our learning-based planners,
since we generate heuristic excavation trajectories to initialize
CEM, as described in Section IV-C of the Appendix.

The real-robot experiment results of all four methods are
presented in Table II. We evaluate the excavation perfor-
mance in terms of the volume of excavated objects and the
excavation success rate. The mean with standard deviation in
parentheses are reported for the volume of excavated objects.
The success threshold of the volume of excavated objects is
134 cm3, same as simulation.

We also show the valid rate of each planner in the table.
An excavation trial is treated as valid if the trajectory can
be planned and executed successfully. Invalid excavation
trials are mostly caused by limit exceeding of the robot
force/torque. Large resistive force during excavation, espe-
cially penetration, and collision with the tray can both lead to
the force/torque limit exceeding. Examples of the Franka arm
getting stuck due to force/torque limit exceeding are shown in
Figure 8 of the Appendix. In the future, we are interested to
examine force control for excavation trajectory execution in
order to mitigate force/torque limit exceeding. We also count
the excavation trials without valid trajectory IK as invalid.

As shown in Table II, the CEM-voxel planner significantly

outperforms these other 3 planners in terms of the volume
of excavated objects and success rate in real world. CEM-
voxel excavates objects of 110 cm3 per excavation in average,
which is 24.4% of the full bucket volume. CEM-voxel
significantly outperforms these two heuristic planners, which
demonstrates the effectiveness of excavation learning in real
world. The fact that CEM-voxel outperforms CEM-RGBD
shows that the voxel-based visual representation handles
the sim2real gap better than the RGBD representation. The
computation time of each planner in the real world is similar
with simulation.

The CEM-RGBD planner performs poorly in the real
world, worse than random-heu and roughly on par with
highest-heu. The attacking poses of the trajectories planned
by CEM-RGBD are mostly close to the edge of the tray,
which leads to invalid excavation trials with collision. This is
because the RGBD image representation suffers from a large
sim2real gap when transferring the excavation knowledge
gained in simulation into real world. In addition to the
poor excavation performance, another evidence of the RGBD
sim2real gap is the predicted success probabilities of the
CEM-RGBD trajectories are close to zero in real world.
More details of the excavation scene visual representation
are discussed in Section IV-A.

In Figure 6, we show 6 high-quality excavation examples
planned by the CEM-voxel planner on the real robot. We also
annotate the volume of excavated objects of each example.

Method Volume (cm3) Success Rate Valid Rate
CEM-voxel 110.32 (120.42) 11/25 17/25

CEM-RGBD 13.84 (67.8) 1/25 2/25
random-heu 50.24 (79.95) 5/25 12/25
highest-heu 13.36 (26.51) 0/25 19/25

TABLE II: The real-robot experimental results of four excavation
planning methods.

Fig. 6: We show 6 successful real robot excavations generated by
the CEM-voxel planner together with their bucket filling volumes
in this figure.

VI. CONCLUSION

In conclusion, we propose multiple deep networks for
success prediction of a new task, rigid objects excavation
in clutter. We solve excavation planning as an optimization
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problem leveraging the learned prediction models. Our ex-
cavation experiments in simulation and real world show that
our learning-based planner is able to generate high-quality
excavations. The experimental results also demonstrate the
advantage of the learning-based excavation planner over two
heuristic planners and one data-driven scene-independent
planner.

We plan an excavation trajectory greedily by maximizing
the excavation volumes of the current excavation. In the
future, we would like to consider the long-term expected
excavation reward of sequential excavations and investigate
deep reinforcement learning for rigid objects excavation. We
also plan to use force control instead of position control to
make the excavation trajectory execution smoother and more
robust to large resistive forces. Finally, we want to transfer the
learning-based planner from robotic arms to real excavators.
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VII. APPENDIX

In this Appendix section, we first introduce the excavation
scene setup in simulation and real world. Then we describe
the data collection and training of the excavation predic-
tion model, before presenting the offline evaluation of the
learned model results. We also show the excavation volume
histograms, trajectory analysis, and ablation experiments.

As defined in Section III-B, a task space excavation
trajectory T contains 6 parameters T = (x, y, α, d, l, β). We
name (x, y) and (α, d, l, β) of a task trajectory T as “Point of
Attack” (PoA) and “Geometric Trajectory Parameters” (GTP)
respectively for the ablation study.

A. Camera and Excavation Scene Setup in Simulation

The camera is located at (0.5 m, 0.8 m, 0.91 m) in the
robot base frame in simulation. The robot frame and the cam-
era location for simulation are shown in Figure 4a. Both the
transformation between the camera and the robot base frame
and the transformation between the robot base frame and the
tray frame are known. With these two transformations, the
pointcloud obtained from the PyBullet RGBD camera can be
transformed into the tray frame for grid map and voxel-grid
generation.

We sample the number of objects n uniformly in the range
of [200, 400] for each excavation scene. We then spawn n
testing objects with random poses into the tray for the current
excavation scene. The testing object meshes are unseen from
training as described in Section VII-C of the Appendix. The
0.38 × 0.4 × 0.3 m3 cuboid range is specified to filter the
pointcloud of the excavation scene in the tray frame, which
is then used for grid map and voxel-grid generation. This
cuboid range covers the excavation space of rigid objects in
the tray in simulation.

(a) One RGB image of one excava-
tion scene in simulation.

(b) One Azure RGB image in real
world.

Fig. 7: The RGB image examples in simulation and real world.

B. Camera and Excavation Scene Setup in Real World

The Azure camera is located at (0.57 m, 1 m, 1.14 m)
in the robot frame in real world. The robot frame and
camera location in real world can be seen in Figure 4b.
The transformation between the camera and the robot base
frame is manually calibrated using an ArUco marker 3. We
manually define the tray frame with respect to the robot base

3https://docs.opencv.org/master/d5/dae/tutorial aruco detection.html

frame according to the excavation range, which gives the
transformation between the robot and the tray frame. The tray
frame has the same orientation with the robot base frame. Its
origin is defined to be the center of the excavation cuboid
range. Knowing these two transformations, the pointcloud
obtained from the Azure camera can be transformed into the
tray frame for grid map and voxel-grid generation.

Fig. 8: Three examples of the robot getting stuck due to force/torque
limit exceeding during excavation.

132 rigid wooden objects with various geometrical shapes
and colors are used for real robot experiments, including 100
“Melissa & Doug wood blocks” and 32 “Biubee wooden
stone balancing blocks”. For example, there are objects with
both convex and concave shapes. The density of the wooden
rigid objects is estimated to be 0.5 kg/cm3. All of these rigid
objects are unseen from the training.

A layer of rocks with heavy mass is first put into the
excavation tray, which stabilizes the tray during excavation.
Then we lay a layer of red mulch on top of rocks. Finally
rigid wooden objects are put on top of the red mulch in
front of the Franka arm for excavation. We use the relatively
deformable red mulch as the excavation surface for safety
reasons. The 0.4× 0.3× 0.3 m3 cuboid range is specified to
filter the pointcloud of the excavation scene in the tray frame,
which is used for grid map and voxel-grid generation. This
cuboid space covers the excavation space of the real-robot
experiments. Roughly only the half of the tray space that is
closer to the robot base is used for excavation experiments.

An excavation episode is created by shaking these 132
rigid objects in a box, and then pouring them into the
excavation area of the tray. The robot dumps the excavated
objects into a dumping tray after excavation for each trial.
A certain amount of red mulch under the rigid objects
can be excavated and dumped sometimes. On average the
amount of excavated red mulch is relatively small across all
experimented trials.

The desired dumping pose of the bucket end-effector is
specified to be the center of the dumping tray. The robot first
moves to the desired dumping pose, then pour the objects
into the dumping tray by controlling the bucket to point down
vertically. We use a kitchen scale under the dumping tray to
weigh the objects dumped into the tray for each trial. Having
the mass of the excavated objects and the objects density, we
can compute the volume of excavated objects.

C. Data Collection in Simulation
We use an UR5 arm with a 3D designed bucket to perform

excavation experiments in simulation. The full bucket volume

https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
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of the bucket is 450 cm3. The data collection setup is the
same with the simulated experiment setup in Section V-A.
The camera and excavation scene setup for data collection
is described in Section VII-A of the Appendix. Rigid object
meshes with random geometry for simulated excavation are
generated using trimesh4. The number of vertices for each
object mesh are randomly selected in the range of 10 to 50.
The maximum value of each coordinate is uniformly sampled
from 1 cm to 5 cm for the object mesh. The 3D coordinates of
all vertices of the object mesh are randomly generated from
the range of 0 to its maximum coordinate values. We then
compute the convex hull of the original mesh and use that
as the final object mesh. We assume the object density to be
6 g/cm3 in simulation. We separately generate 100k training
and testing candidate object meshes. The training object mesh
dataset is used for training data collection in simulation. The
testing object mesh dataset are used for excavation prediction
model offline evaluation and experiments in simulation.

A certain number of object meshes are randomly selected
from the training objects set for each excavation episode
of the data collection. We then spawn each selected object
into the excavation tray with a random generated pose. The
objects number of each scene is randomly and uniformly
generated in the range of 50 to 400. 20 excavation trials
(i.e., samples) are sequentially executed for each excavation
episode. We randomly select one of our two heuristic plan-
ners to use and compute the total volume of the objects
excavated successfully at each trial. The excavated objects
are dumped into the dumping tray for each excavation trial.
We collected 50, 000 training excavation samples and 10, 000
testing samples for offline validation of the excavation pre-
diction network.

1) Heuristic Excavation Planners: We design two heuris-
tic excavation planners for data collection, namely “heu-
random” and “heu-highest”. For the heu-random planner, we
randomly select a grid map cell of the excavation scene and
use its center as the 2D (x, y) coordinate of the attacking
excavation pose. For the heu-highest planner, we generate
the 2D (x, y) coordinate of the attacking excavation pose as
the center of the grid map cell with the maximum height.
We assume the attacking point is on the object clutter
surface. Under this assumption, the z coordinate value of
the attacking excavation pose is computed as the height of
the corresponding grid map cell.

The excavation grid map is generated from the point
cloud of the excavation space using the grid map library
in [36] in both simulation and real world. We randomly
generate the attacking excavation angle α and the closing
angle β in the range of [−120,−60] and [−180,−120] degree
respectively. We randomly generate the penetration depth d
and the dragging length l in the range of [0.05, 0.2] m and
[0.05, 0.4] m respectively. The same random parameter ranges
are used for data collection and experiments in simulation.

4https://github.com/mikedh/trimesh

D. Excavation Prediction Model Training

We collected 50, 000 training excavation samples in simu-
lation. 45, 000 training samples are used for training and these
other 5000 training samples are used as the validation set. For
the excavation binary classification, if the total volume of
a sample’s successfully excavated objects is above 134 cm3

(i.e., 30% bucket filling rate), the excavation sample is treated
as a success, otherwise a failure. Excavation samples without
valid task trajectory IK are labeled as failure excavations,
using which we aim to learn to plan excavation trajectories
with valid IK. 4768 out of these 50, 000 (10%) training
samples are successful excavations.

We train all five excavation prediction models, includ-
ing excavation-RGBD-net, excavation-voxel-net, excavation-
RGBD-reg-net, excavation-voxel-reg-net, and excavation-
traj-net, using the same specifications. In order to overcome
the class imbalance (i.e., i.e. low percentage of successful
excavation samples), the successful samples are oversampled
to make the number of positive and negative samples roughly
the same in each training epoch for all five models. We
compare training the excavation-RGBD-net from scratch and
fine-tuning ResNet-18. We find training from scratch has
significantly better performance, which we believe is because
our excavation task is significantly different from the ResNet
ImageNet classification. In addition to excavation-RGBD-net,
we also train all other four models from scratch.

All networks are trained using the Adam optimizer with
mini-batches of size 64 for 50 epochs. The learning rate
starts at 0.1 and decreases by 10× every 10 epochs. The
training of excavation-RGBD-net and excavation-RGBD-
reg-net take around 810 minutes on an Alienware desk-
top computer with an Intel i7-6800K processors, 32GB
RAM, and a Nvidia GeForce GTX TITAN Z graphics
card. Excavation-voxel-net and excavation-voxel-reg-net take
around 500 minutes to train on the same machine. It takes
excavation-traj-net around 100 minutes to train on the same
machine. We implement all excavation prediction networks
in PyTorch. We have released the data and the trained
models in this link: https://drive.google.com/drive/folders/
1X54doBlf3QBjjNFTAZA48igO9VInY0k2?usp=sharing

E. Excavation Prediction Model Offline Evaluation

We collected 10, 000 testing samples using the testing
objects dataset in simulation for offline validation of the
excavation prediction models. Among these 10, 000 testing
samples, 967 samples are successful excavations.

Table III shows the accuracy, precision, recall, and F1
score of three methods. The second, third, and forth row
show the offline testing result of the excavation-voxel-net,
excavation-RGBD-net, and excavation-traj-net respectively.
The “random-0.5” method in the fifth row refers to random
guessing with a probability of 0.5 for positive prediction.
The “random-0.1” method in the last row means random
guessing with a probability of 0.1 for positive prediction.

https://github.com/mikedh/trimesh
https://drive.google.com/drive/folders/1X54doBlf3QBjjNFTAZA48igO9VInY0k2?usp=sharing
https://drive.google.com/drive/folders/1X54doBlf3QBjjNFTAZA48igO9VInY0k2?usp=sharing
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The prediction metrics of random guessing show the classifi-
cation challenges due to the low percentage of successful
excavation samples. Excavation-voxel-net and excavation-
RGBD-net perform reasonably well and significantly out-
perform random guessing in terms of these offline evalua-
tion metrics. Excavation-voxel-net achieves the best offline
evaluation performance. Excavation-traj-net performs worse
than excavation-voxel-net and excavation-RGBD-net for the
offline evaluation, but significantly better than random guess-
ing.

Method Accuracy Precision Recall F1
excavation-voxel-net 0.904 0.502 0.637 0.562

excavation-RGBD-net 0.877 0.399 0.542 0.459
excavation-traj-net 0.731 0.241 0.827 0.373

random-0.5 0.5 0.1 0.5 0.17
random-0.1 0.82 0.1 0.1 0.1

TABLE III: The offline evaluation results of the excavation-
voxel-net, excavation-RGBD-net, excavation-traj-net, and random
guessing for classifying the excavation success on the testing set.

The excavation regression model excavation-voxel-reg-net
and excavation-RGBD-net are also offline evaluated on the
testing set using the L1-norm error. The mean and standard
deviation of the testing L1-norm error of excavation-voxel-
reg-net are 31.94 cm3 and 37.66 cm3 respectively. The testing
L1-norm error of excavation-RGBD-reg-net has a mean of
35.22 cm3 and a standard deviation of 43.71 cm3. Both
regression models achieve reasonably good testing perfor-
mance.

F. Excavation Volume Histograms of Experiments in Simu-
lation

The histograms of the excavation volume for the 1000
simulated experimented excavations of seven planners are vi-
sualized in Figure 9a-9g. In addition to the excavation volume
means and the excavation rates in Table I, the histograms
further shows the learning-based planners excavate objects
with larger volumes than heuristic planners. The histograms
also show the distributions of learning-based planners are
more uniform and have larger standard deviations than heuris-
tic planners. Only the excavation histograms of simulation
experiments are shown here, since the number of excavations
in real world experiments is relatively small.

The excavation volume histogram of the training data is
plotted in Figure 9h. We consider an excavation as a success
if its excavation volume is above 134 cm3. The red vertical
line in Figure 9h show where the excavation volume is 134
cm3. With 134 cm3 as the excavation success threshold, 4768
out of these 50, 000 (10%) training samples are successful.

Since there are a lot less successful training excavation
samples than failure ones, we oversample the successful sam-
ples overcome this class imbalance issue in the excavation
training, as described in Section VII-D of the Appendix.
Increasing the threshold to be larger than 134 cm3 will lead
to even less successful excavation training samples, which
would make the excavation training harder due to more

severe class imbalance. On the other hand, if we decrease the
success threshold to be smaller than 134 cm3, the learning-
based planners would be more likely to generate excavation
trajectories whose bucket filling rates are below 30%. This
would hurt the excavation performance of the learning-based
planners. Therefore, we believe 134 cm3 is a reasonable
success threshold for our excavation learning. Moreover, it
is shown in Section V-B that classification-based CEM-voxel
and CEM-RGBD outperform regression-based CEM-voxel-
reg and CEM-RGBD-reg respectively, which empirically
justify the choice of the excavation threshold.

G. Experimental Excavation Trajectory Analysis

The trajectory parameter mean and standard deviation of
the 1000 simulated experimented excavations for each of the
seven planners are presented in Table IV and V respectively.
In Figure 10, we plot the PoA distributions of the simulated
experiment results of all seven planners. The coordinate
origin is at the center of the tray in each PoA plot. The
robot base locates at (x = −50, y = 0) in the 2D tray frame.

The GTP means and standard deviations of different plan-
ners are mostly similar, which shows learning-based planners
generate excavation trajectories with large GTP diversity.
The PoA standard deviations of the learning-based planners
are smaller than heuristic planners due to the randomness
of heuristic planners. In terms of the PoA mean, CEM-
voxel, CEM-RGBD, and CEM-voxel-reg are similar and they
are relatively different from CEM-RGBD-reg, CEM-traj-opt,
random-heu, and highest-heu.

As can be seen from both the trajectory means in Table IV
and the PoA distribution plots in Figure 10, learning-based
planners prefer to generate PoA in the top (i.e., positive y
direction) right (i.e., positive x direction) area. Highest-heu
generates a lot of PoA close to the left edge of the tray (i.e.,
x = −0.19 m). Objects tend to be pushed to the left wall of
the tray during excavations. So highest points are more likely
to occur close to the left wall of the tray.

We randomly select 5000 excavation training excavation
samples and plot the PoA of the successful and failure
excavations separately in Figure 11. As described in Sec-
tion VII-C, the training data contains half random-heu and
half highest-heu excavations statistically. As shown in Fig-
ure 11a, there are more successful PoA in the top half of the
tray, which explains the learning-based planners prefers PoA
in the top area. The UR5 excavator swings around the swing
center (x = −0.5 m, y = 0.109 m) in the tray 2D coordinate.
When the PoA gets closer to the bottom of the tray (i.e.,
y = 0.2 m), the robot would have relatively less space to
drag and close due to collision with the tray. Moreover, there
are more failure excavations close to the left edge of the tray
in Figure 11b, which pushes the learning-based planners to
plan PoA away from the left edge.

It has been reported in Section V-B that learning-based
scene-dependent planners such as CEM-voxel significantly
outperform CEM-traj, which shows that it is important to
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(a) The excavation volume his-
togram of CEM-voxel.

(b) The excavation volume his-
togram of CEM-RGBD.

(c) The excavation volume his-
togram of CEM-voxel-reg.

(d) The excavation volume his-
togram of CEM-RGBD-reg.

(e) The excavation volume his-
togram of CEM-traj.

(f) The excavation volume his-
togram of random-heu.

(g) The excavation volume his-
togram of highest-heu.

(h) The excavation volume his-
togram of the training data.

Fig. 9: Figure (a)-(g) show the histogram of the excavation volume
of seven planners in simulated experiments. The excavation volume
histogram of the training data is shown in Figure (h). The x axis
represents the excavation volume. The y axis represents the number
of excavations.

learn to plan scene-dependent excavation trajectories using
the visual representation of the excavation scene. However,
the trajectory and PoA distributions can not reflect the
benefits of the learning-based scene-dependent planning. In
the future, we would like to further investigate and understand
how learning-based planners use the scene representation to
generate high-quality excavation trajectories.

Method Trajectory Mean
CEM-voxel [0.03, 0.04,−1.54, 0.12, 0.24,−2.56]

CEM-RGBD [0.02, 0.05,−1.59, 0.13, 0.24,−2.79]
CEM-voxel-reg [0.02, 0.04,−1.54, 0.13, 0.25,−2.51]

CEM-RGBD-reg [0.06, 0.06,−1.52, 0.14, 0.26,−2.59]
CEM-traj-opt [0.02, 0.1,−1.56, 0.14, 0.23,−2.54]
random-heu [0, 0,−1.57, 0.12, 0.22− 2.61]
highest-heu [−0.06, 0.01,−1.59, 0.12, 0.23,−2.62]

TABLE IV: The trajectory means of different methods in simulated
experiments.

Method Trajectory Std
CEM-voxel [0.07, 0.1, 0.34, 0.04, 0.1, 0.36]

CEM-RGBD [0.09, 0.08, 0.33, 0.04, 0.11, 0.29]
CEM-voxel-reg [0.07, 0.11, 0.32, 0.04, 0.1, 0.37]

CEM-RGBD-reg [0.07, 0.07, 0.28, 0.04, 0.09, 0.26]
CEM-traj-opt [0.06, 0.05, 0.36, 0.03, 0.10.37]
random-heu [0.11, 0.11, 0.3, 0.04, 0.1, 0.31]
highest-heu [0.12, 0.13, 0.3, 0.04, 0.1, 0.3]

TABLE V: The trajectory standard deviations of different methods
in simulated experiments.

H. Ablation Experiments

Ablation experiments are performed to show insights on
how the learning-based planners improve excavation for
cluttered rigid objects. The ablation study is focused on the
CEM-voxel planner, since it achieves the best excavation
performance in the simulated and real-robot experiments.
Two ablation experiments are performed by replacing the
PoA and GTP of each CEM-voxel trajectory with random
parameters respectively. Random PoA and GTP parameters
are uniformly sampled from the same range as the heuristic
planners introduced in Section VII-C1. 1000 excavation trials
are experimented for both ablation experiments in simulation
using the same experiment setup and protocol as Section V-A.

The excavation volumes, the excavated objects numbers,
and the excavation success rates of both ablation experi-
ments are presented in Table VI. We list the mean with
standard deviation in parentheses for excavation volumes
and objects numbers. The original CEM-voxel experiment
results in simulation are shown in Table I. CEM-voxel with
random PoA and random GTP both performs worse than the
original CEM-voxel in terms the three excavation metrics.
This demonstrates CEM-voxel learns about how to generate
both good PoA and GTP parameters for excavation. CEM-
voxel with random PoA gets worse excavation performance
than CEM-voxel with random GTP. This implies the learning
of PoA matters more than the learning of GTP for CEM-
voxel.

Method Volume (cm3) Number Success Rate
CEM-voxel with random PoA 104.56 (99.91) 5.8 (5.72) 36.2%
CEM-voxel with random GTP 119.62 (92.79) 6.77 (5.34) 42.7%

TABLE VI: Ablation experiment results in simulation.
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(a) The PoA distribution of CEM-
voxel.

(b) The PoA distribution of CEM-
RGBD.

(c) The PoA distribution of CEM-
voxel-reg.

(d) The PoA distribution of CEM-
RGBD-reg.

(e) The PoA distribution of CEM-
traj.

(f) The PoA distribution of random-
heu.

(g) The PoA distribution of highest-
heu.

Fig. 10: The 2D PoA distributions of different methods in simula-
tion. The red bounding box represents the 2D tray projected from
the overhead view. Each PoA is plotted as a cross in the 2D tray
frame.

(a) The PoA distribution of success-
ful training samples.

(b) The PoA distribution of failure
training samples.

Fig. 11: The 2D PoA distributions of the training data in simulation.
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