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Large-Scale Exploration of Cave Environments by
Unmanned Aerial Vehicles

Pavel Petráčeka , Vı́t Krátkýa , Matěj Petrlı́ka , Tomáš Báčaa , Radim Kratochvı́lb , and Martin Saskaa

Abstract—This paper presents a self-contained system for the
robust utilization of aerial robots in the autonomous exploration
of cave environments to help human explorers, first responders,
and speleologists. The proposed system is generally applicable
to an arbitrary exploration task within an unknown and un-
structured subterranean environment and interconnects crucial
robotic subsystems to provide full autonomy of the robots.
Such subsystems primarily include mapping, path and trajectory
planning, localization, control, and decision making. Due to the
diversity, complexity, and structural uncertainty of natural cave
environments, the proposed system allows for the possible use of
any arbitrary exploration strategy for a single robot, as well as
for a cooperating team. A multi-robot cooperation strategy that
maximizes the limited flight time of each aerial robot is proposed
for exploration and search & rescue scenarios where the homing
of all deployed robots back to an initial location is not required.
The entire system is validated in a comprehensive experimental
analysis comprising of hours of flight time in a real-world cave
environment, as well as by hundreds of hours within a state-
of-the-art virtual testbed that was developed for the DARPA
Subterranean Challenge robotic competition. Among others, ex-
perimental results include multiple real-world exploration flights
traveling over 470 m on a single battery in a demanding unknown
cave environment.

Index Terms—Aerial Systems: Applications; Field Robots;
Aerial Systems: Perception and Autonomy; Multi-Robot Systems;
Mapping

MULTIMEDIA MATERIALS

The paper is supported by the multimedia materials avail-
able at mrs.felk.cvut.cz/papers/ral-2021-caves. The implemen-
tation is also publicly available at github.com/ctu-mrs.

I. INTRODUCTION

HUMAN exploration of complex cave systems has oc-
curred for thousands of years. However, there are still

entire cave systems and individual subterranean voids, shafts,
and cavities that are yet uncovered. This is primarily due
to the dangerous nature of subterranean exploration in en-
vironments like natural caves, although man-made cellars,
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Fig. 1: Robotic exploration of the Bull Rock Cave (central Moravian Karst,
Czech Republic) by a fully autonomous aerial vehicle.

drainages, and mines pose similar risks. These environments
contain sediments such as debris, rocks, sand, clay, ice, decom-
posed organic matter, human waste, and even various forms
of speleothems in limestone caves. Considering the absolute
darkness, lack of GNSS signals, flowing and dripping water,
humid air, and the possible presence of poisonous gases, wind
gusts, hanging ropes, and wildlife, there is excessive risk to
the lives of human explorers in the exploration of new envi-
ronments, as well as in search & rescue missions. Given the
current state-of-the-art technology in robotics, many danger-
ous areas of subterranean systems are safely reachable using
mobile robots, with the greatest focus being on vertical explo-
ration using aerial vehicles. In contrast to human exploration,
the use of such technology presents several advantages in the
form of accessibility, safety, speed, instantaneous environment
visualization, and precise quantification. On the other hand,
challenges to the operation of mobile robots in such an envi-
ronment lies in the uncertainty, lack of light, high humidity,
and diversity of space in the form of narrow and/or low pas-
sages, canyons, large domes, high chimneys, and deep abysses.

The challenges to deployment of aerial vehicles in subter-
ranean environments with respect to robot control, communi-
cation, sensor fusion, and positioning are described thoroughly
in [1]. These specific challenges continue to be relevant even
after substantial progress in the field of mobile robotics. How-
ever, in contrast to [1], our motivation includes minimizing
the need for communications required for operator control and
instead focuses on the full autonomy of robots and autonomous
cooperation among members of a robotic team. The restriction
of communication in subterranean environments introduces
challenges to the maximization of system robustness and the
use of efficient decision making in the form of adaptable
exploration strategies in harsh unknown environments.
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A. Related work

In a non-robotic context, wild caves are explored by mod-
ernly termed cavers. However, the human surveying and map-
ping of caves is known to have existed for thousands of years
for purposes ranging from dwelling to speleology. The signif-
icance of cave exploration and cave mapping to scientific re-
search is a thoroughly studied inquiry in literature, e.g., in [2].

In the work presented here, we focus mainly on the robotic
point of view within the scope of the application domain. One
of the first cave-mapping approaches using robotic solutions
was proposed in [3], where the authors employed hand-held
laser scanners, which are limited in speed, accuracy, and safety.
In the context of mobile robotics, topics like the automatic
control of an unstable dynamic system such as an aerial multi-
rotor vehicle [4], the fusion of inertial, visual, and laser in-
formation for localization and mapping [5], and path planning
in dynamic environments [6] have been addressed in order to
achieve faster and safer methodology than mapping done with
hand-held devices, as proposed in [3].

Within the scope of subterranean environments, the DARPA
Subterranean Challenge competition has pushed the state of
the art of autonomous exploration in human-made mines [7]–
[10]. Although these systems have provided interesting solu-
tions with great potential, the authors of [7]–[10] rely on the
predictable structure of underground mines, such as using the
protraction of human-made tunnels to mark the furthest depth
data as frontiers or predefining turns at junctions in [9]. Since
the complexity and diversity of natural caves is extensive, more
robust solutions with a minimum number of environmental
assumptions are required. This was tackled in [11] where the
authors introduced a possible way for applying autonomous
drones as a technology to assist speleologists and archaeolo-
gists. Although an interesting read, the proposed methods only
constitute a preliminary discussion that presents neither novel
technology nor applied results. A similar discussion focusing
on the state of robotic problems within the application of sub-
terranean exploration with UAVs is presented in [12]. In con-
trast to [11], the authors of [12] present a set of preliminary ex-
periments in laboratory conditions and two dimensional space.
Unfortunately, the assumption of a planar world is highly
restrictive within the scope of real-world deployment due to
the complex character of natural subterranean environments.

The precise localization of mobile robots is crucial to au-
tonomous navigation in such complex environments. Among
existing state-of-the-art literature, the LOCUS algorithm [13]
achieves the lowest localization error at the cost of high com-
putational demands. Unlike with ground robots, this method
might be unsuitable for aerial robots as the computational
resources on lightweight UAVs are scarce due to their limited
payload. In [14], the authors demonstrated that localization
performance can be further improved by dropping range bea-
cons. This is a viable strategy for heterogeneous robotic teams,
but unfeasible for teams of only lightweight UAVs.

The use of robotic teams for cooperative exploration has
been addressed mostly in planar worlds with recurrent connec-
tivity constraints [15] or with the requirement of a centralized
element [16]. A similarly defined task to our problem of team
homing — respecting intermittent communication, need for

decentralization, and limited operation time of aerial robots
— is proposed in [17], where the robots gather and share
data during the mission and return all the way back to the
base before their operation times out. In contrast to [17], we
propose homing coordination that lands each aerial robot at
a position expanding a communication relay graph, thereby
increasing the time for mere exploration in tasks where return
to the starting position is not required. Related to the scope
of search & rescue, the authors in [18] propose to re-posi-
tion robots in a relay-chain formation to enable data trans-
mission over longer distances once an object of interest is
found. Our solution reports the position of the objects once
the explorer robot connects to the relay graph during hom-
ing. The recently developed fast exploration technique in [19]
maximizes explored volume over battery-limited flight time.
The method is based on data only from an RGBD camera
with a limited field of view (FoV). In comparison to LiDAR-
based methods, we have experimentally verified that RGBD
cameras are sub-optimal sensors for the exploration of large-
scale caves due to their limited range and FoV.

B. Contributions

First, we propose a fully autonomous system enabling multi-
modal mapping, fast and efficient planning with sensoric field-
of-view constraints for safe movement in 3D, robust localiza-
tion, and adaptable decision making. Second, a multi-robot
cooperation for the efficient homing of a team of autonomous
explorer robots is proposed. Third, the system has been vali-
dated through hundreds of hours of testing in a state-of-the-
art virtual testbed developed for the DARPA Subterranean
Challenge robotic competition, as well as through hours of
flight time in the real world. To the best of our knowledge, the
presented large-scale experimental deployment of autonomous
aerial robots in a natural cave environment goes beyond the
current state of the art in autonomous robotics. Lastly, we
present and share the experience obtained during this compre-
hensive experimental deployment that was carried out in close
cooperation with speleologists.

II. EXPERIENCE GAINED

A. Speleology motivation

From the speleological point of view, aerial systems are
crucial for pushing exploratory state-of-the-art methods to pro-
vide assistance in efficient scouting of difficult-to-access areas
in vertical environments, as well as for the quick inspection
of known areas using onboard sensors only. These systems
minimize risks for humans by reducing the need to climb or to
swim in cold water reservoirs, and also through the detection
of poisonous gases or even radioactive waste. Furthermore,
this enables the preservation and protection of natural envi-
ronments against human influence, including ancient sediment
forms, floor dripstone formations, paleontological and archae-
ological sites, and sources of potable water.

In contrast to well-established methods of subterranean doc-
umentation (i.e., theodolite and level/distance meter, compass,
and clinometer), modern technology employs stationary and
mobile laser scanners to produce a dense 3D model of the
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environment. Due to the complexity of natural environments,
the use of stationary scanners is time-consuming because of
the necessity of eliminating occluded spaces. Although hand-
held mobile scanners are more time-efficient in this context,
their use is limited to areas accessible to humans. This limita-
tion opens the door for mobile robotics which is able to tackle
this challenge and to provide optimized 3D mapping. State-of-
the-art mapping in such environments reaches decimeter level
precision, which is less precise than stationary scanners, yet
sufficient for the majority of speleological needs. Moreover,
the common issue of mapping drift accumulation in long-
corridor spaces can be minimized using reference measure-
ments by precise stationary scanners or man-measured control
points to obtain accurate results.

B. System requirements
The primary prerequisite of a team of aerial explorers that

can be deployed in caves involves the ability to adapt to di-
verse, unknown environments lacking sources of light and ac-
cess to GNSS. This general description requires the abilities to
• be deployed in constrained cavities, as well as in open

caverns of natural caves,
• map and visualize the environment in a fast, quantified

manner in the form of dense point clouds and image
streams,

• seamlessly infuse an arbitrary exploration strategy for
more efficient mission operation within the scope of
individual environments (policy selection is discussed
in Sec. IV),

• return to the mission operator and promptly visualize the
environment for human supervision, and

• maximize operation capabilities in terms of coverage
when a team of robots is employed.

C. Depth estimation in high humidity
The performance of the PMD pico flexx time-of-flight (ToF)

camera and the Intel Realsense D435 stereo camera have been
analyzed as complementary sensors to the primary LiDAR for
the purpose of improving the sensory FoV coverage. Although
ToF cameras generally outperform stereo cameras in terms of
distance measurement precision and density of measurement
points [20], the high humidity typically present in natural caves
causes dispersion of light emitted from ToF cameras by small
water droplets. This effect significantly degrades the acquired
measurements. As was verified empirically, ToF cameras can
produce false-negative measurements of obstacles situated be-
hind clouds of water droplets. The use of stereo cameras (e.g.,
Realsense) is recommended for its robustness to environmental
conditions within natural caves. Nevertheless for large cave
systems, such a sensor needs to be combined with 3D LiDARs
in order to comply with the requirements of speleologists and
first responders.

III. SYSTEM ARCHITECTURE

The system of the proposed autonomous explorer robot
is divided into multiple groups of individual interconnected
modules to be described in this section. All components and
their relations are visualized in Fig. 2.
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Fig. 2: Individual interconnected modules form the system architecture of
the autonomous explorer robot. The High-level planning modules focus on
achieving the mission objectives by generating references for the Tracking &
control modules based on the map built by the Perception modules. This also
provides a state estimate for closing the control feedback loop. All modules
except the Autopilot group are handled by the main onboard computer.

A. Perception

The perception of the proposed system is based on a multi-
channel LiDAR sensor that is used for both building the spatial
representation of the surrounding environment in the Mapping
module, as well as for the motion estimation in the LOAM
module. Obtaining the full-state estimate is realized within the
State estimation module, where multiple sources of incom-
plete state measurements are fused together using a bank-of-
filters estimator.

The vertical navigation capabilities of the system can be
greatly improved by equipping the robot with vertically-facing
RGBD cameras that are able to fill in the blind spots in the
limited vertical FoV of the LiDAR. Apart from navigation,
these optional sensors may be used for detecting objects of
interest in caves in search & rescue scenarios or for visual
documentation of newly explored cave systems.

1) LiDAR: Even though our system is not tied to a specific
LiDAR model, there are certain important parameters that can
affect the performance and capabilities of the platform.

To reliably stabilize the UAV, the time delay of the estimated
state must stay below the threshold of a certain critical value
depending on the type of controller and gains. When this
threshold is exceeded, the UAV begins oscillating and even-
tually automatically lands when the control error is too large
to continue the mission safely. We have found experimentally
that for most combinations of localization methods and con-
trollers, the critical value ranges from 100 ms to 200 ms. Thus,
10 Hz is the lowest rotation frequency that can be used without
employing methods of delay compensation.

The typical values of a vertical field of view (VFoV) of 3D
LiDARs are in the 30° to 90° range. The higher VFoV values
improve vertical mobility in constrained spaces, however with
a low VFoV, it is impossible to safely navigate narrow vertical
shafts as it is not known whether the space above the UAV is
free and safe to fly through, or whether it contains an obstacle.

2) RGBD: The regions above and below the UAV that are
not covered by the LiDAR can be captured using a depth
camera or by spinning the LiDAR sensor around a vector
that is orthogonal to the axis of scanning, as seen in [21].
However, such a solution adds additional weight to the sensor,
which decreases the available flight time. A blind spot also
still remains as part of the laser rays is blocked by the frame
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of the UAV. Alternatively, lightweight depth cameras can be
mounted on opposite sides of the body frame in order to cover
most blind spots of the LiDAR. Additional sensing modality
is gained by combining an RGB and depth camera in a single
sensor (RGBD) with a slight weight increase.

3) Localization: For localization of the UAV, we have
adapted the LOAM algorithm [22]. This state-of-the-art
method is very precise (0.55 % translation error [23]) while
attaining real-time performance. In our adapted version of the
open-source implementation, the algorithm is optimized on
CPU and employs parallel computing, which enables us to
deploy and use the localization in the real-time position control
feedback loop onboard fast-moving aerial vehicles.

4) Mapping: The LOAM-based algorithm builds a sparse
internal representation of the environment consisting of edge
and planar features. However, this sparse map is unsuitable
for navigation purposes. Additionally, the LOAM map does
not consider the probabilistic nature of the sensor, nor does
it distinguish free and unknown space. Both of these factors
are necessary in exploration techniques for reliable navigation
and consistent frontier selection.

In the proposed system, the environment is represented by
a dense probabilistic volumetric map, which consists of cubic
cells with one of 3 states: free, occupied, or unknown. The
map is kept in the octree structure to facilitate the Bayesian
integration of new measurements and efficient access to indi-
vidual cells of the probabilistic map. The high-level systems,
such as grid-based path planning or inter-robot map registra-
tion, also benefit from quick access to the dense environment
representation. This approach is capable of multi-modal fusion
by integrating the data from all available onboard sensors
and outputting point-cloud measurements. If high-level path
planning is constrained by the field of view of onboard sensors
(tackled in [24] and also in Sec. III-C), the multi-modality of
mapping enables arbitrary movement in 3D.

5) Sensor processing: The targeted subterranean environ-
ments may have high humidity or may contain large clouds
of whirling dust. The water and dust particles can then pro-
duce erroneous measurements for the LiDAR-based sensors.
Assuming a partial reflection from water or dust particles and a
large energy dissipation of distant reflections, these erroneous
measurements can be filtered with respect to the measured in-
tensity of returning light rays. As has been empirically verified,
a simple threshold-based filtration over the intensity channel
within the local neighborhood of the sensor is sufficient for
filtering out false-positive measurements. The idea of the local
filtration is to filter out particles gusting through the surround-
ing air due to the aerodynamic influence of the propellers.
Although the cutoff threshold of the intensity magnitude is
environment-specific, filtering out measurements below the
10th percentile of the intensity distribution per each laser scan
proved to be a reliable solution, even in the dustiest real-world
environments. Such processing is unavailable for camera-
based systems that may require thorough, computationally-
expensive solutions to overcome these challenges.

6) State estimation: The reference controller (see
Sec. III-B2) requires a position estimate of the UAV body
frame in the world frame r = (x, y, z), the velocity of the

body frame ṙ, rotation R from the UAV body frame to the
world frame, and angular velocity ω in the body frame in order
to close the feedback loop. The LOAM localization method
provides 6-DoF pose estimate, i.e., rLOAM, RLOAM, which
are fused in the State estimation block with interoceptive
measurements from the IMU of the Autopilot to obtain the
rest of the state variables.

The details about the estimation process are described
in [25]. Nevertheless, it is worth highlighting the importance
of the fusion of orientation RIMU and RLOAM in cave envi-
ronments. While RIMU is very precise and without delay, the
heading of the UAV (i.e., the measured direction of the body-
fixed, forward-facing axis) is unreliable due to the presence of
ferromagnetic ores in the cave rocks that cause deviations in
the magnetometer measurements. By correcting these errors
with the heading from RLOAM in the estimation process, the
resulting orientation R is robust to changes in the erratic
magnetic field in subterranean environments.

B. Tracking & control

The safe navigation of constrained environments with low
obstacle clearance imposes the requirements of precise trajec-
tory tracking with minimal control error, as any deviation from
the desired state could potentially result in a collision. The
Reference controller is responsible for minimizing the control
error around the desired control reference that is provided
by the Reference tracker. The controller outputs an attitude
rate reference for the low-level Attitude rate controller in the
Autopilot.

1) Reference tracker: The Reference tracker is essential in
providing the Reference controller with smooth and feasible
references to ensure a safe flight. The tracker based on the
model predictive control (MPC) simulates an ideal virtual
model of the UAV with constrained translational states up to
jerk, together with heading and heading rate. The input can be
either a single pair of desired 3D position pd and heading ηd,
or a trajectory Td in the form of a sequence of such pairs with
a specified sampling rate. The full state of the virtual model is
then sampled at 100 Hz, and rd, ṙd, r̈d, ˙̈rd, ηd, η̇d are passed
to the Reference controller as reference xd.

2) Reference controller: The agile SE(3) geometric state
feedback controller [26] minimizes the position and velocity
errors. To compensate imperfect calibration and external forces
acting upon the UAV, the controller is extended with the body
and world disturbance terms described in [25]. The output
attitude rate reference ωd is tracked by the Autopilot.

C. Path planning

The planning approach used to safely navigate through apri-
ori unknown environments must fulfill requirements of real-
time responsiveness and efficient global planning in order to
fully exploit the limited flight time of UAVs. For this pur-
pose, fast iterative post-processing is applied to the output of
an optimal grid-based planner in order to increase the UAV-
obstacle distance above a minimum threshold [27]. The grid-
based planner and the iterative post-processing do not apply
an optimistic assumption that the unknown space is collision-
free. Although this visibility-constrained precondition requires
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high sensory coverage around the robot to allow for arbitrary
movement in 3D, it consequently prevents collisions of the
trajectory being followed, even if replanning would fail. This
methodology improves safety and robustness of the overall
flight, allows for deployment in completely unknown environ-
ments without any apriori information, and permits seamless
navigation in open spaces, as well as safe movement through
narrow passages.

Common grid-based planning methods require pre-
processing of an employed map representation, such as deter-
mining and applying the 3D distance transform for obstacle
growing. This may introduce significant computational over-
head by bottle-necking system performance, as the map must
then be processed in every planning step. Such a computation-
ally expensive task contradicts the requirements for respon-
siveness within evolving dynamic environments. To minimize
the overall time required for a single planning iteration, a
local KD-tree representation of the environment is used to
decide the feasibility of particular cells within a voxel grid.
This approach shifts the largest load from the pre-processing
phase to the planning phase, which is beneficial especially to
shorter plans that require searching only a small part of the
environment. The low computational demands of the applied
planning approach enable frequent replanning the global plan,
which is also crucial for the efficient use of newly-discovered
collision-free space.

To effectively exploit the limited flight time of aerial ex-
plorers, all mid-flight stops are eliminated by computing in
parallel the next exploration goal during path following. The
path to the next goal is efficiently appended to the rest of the
current reference trajectory Td using the prediction horizon of
the MPC (see Sec. III-B). The need for precise locomotion
control in complex natural caves makes uniform path-sampling
unfeasible with respect to the dynamic constraints of a UAV
and fast, collision-free trajectory tracking. Therefore, the ref-
erence trajectory Td provided by the Navigation & planning
module to the Reference tracker is computed based on the
following process.

Given the dynamical constraints of the robot, the generated
path is uniformly sampled with a sampling distance adapted
to the maximum velocity magnitude vmax of the UAV. Based
on this initial trajectory Ti, the required acceleration magni-
tudes an between consequent transition points are computed
by velocity differentiation as

an(k) =
||vi(k + 1)− vi(k)||2

ts
, (1)

where vi(k) is the required velocity vector for transition from
a transition point ti(k) to ti(k+1) on the initial trajectory Ti
and ts is a constant sampling period. The new velocity for a
k-th segment is then given by

vk =

{
max

(
vmax

amax

an
, vmin

)
if an(k) > amax,

vmax if an(k) ≤ amax,
(2)

where the minimum velocity vmin serves as a parameter bal-
ancing the precision and the time needed for trajectory track-
ing. By this step, the velocities for particular segments are set
so that the maximum velocity is applied in straight segments,
while lower velocities are applied in curved segments of any

given path.
To further improve trajectory sampling and to achieve

smoother changes in velocities, the sampling distance on par-
ticular segments is computed so that the motion along each
segment has the constant acceleration

ak =
|vk+1 − vk|
tacc,k

, (3)

where tacc,k is the time available for acceleration on the k-th
segment. The time tacc,k is obtained from the length lk of
the segment k and the required change of the velocity. The
number of transition points Nk on the k-th segment of the
initial trajectory Ti is given as

Nk =


⌈

lk
vkts

⌉
if ak = 0,⌈

tacc

ts

⌉
if ak > 0,

(4)

where the desired constant acceleration is adapted to meet the
velocity vk+1 at the end of each segment as

ak =
ak
Nkts

. (5)

The sequence of sampling distances for the k-th segment of
Ti is then given by

dk,i = vkts + iakts
2, i ∈ {1, · · · , Nk}. (6)

The trajectory sampled with sampling distances defined
by (6) is passed to the Reference tracker [25] as a reference
trajectory Td in order to generate a feasible reference xd for
the Reference controller. Despite its simplicity, the described
sampling method achieves better results within the scope of
the proposed application than the optimization-based trajectory
generation methods proposed in [28], [29]. In contrast to the
proposed method, the problem in [28], [29] is defined in such
a way that the exact positions of all the path waypoints must
be visited, generating significantly slower trajectories.

IV. EXPLORATION POLICY

Cave environments are naturally diverse and require various
different mission strategies suitable for specific environments.
Deriving the optimal policy is thereby dependent on various
factors, such as the expected mission output, mission-specific
constraints, the complexity and the specifics of the environ-
ment, and the number of available robots. For this reason, our
system is designed so that any arbitrary policy can be utilized
within the scope of an autonomous mission.

Nevertheless, two exploratory mission types are of the most
use in practice: deep cave exploration and full-coverage ex-
ploration. These missions are used for scouting previously
uncovered areas in order to obtain a general overview of
the environment, monitor environmental changes such as gas
leaks, detect natural water reservoirs, discover new possible
passages, or assess the structural state of cavern walls and
other objects of interest. The former approach maximizes the
explored volume of space in the entire environment, while the
latter minimizes the blind spots missed by onboard cameras
with a constrained FoV.

The capabilities of a robotic mission are furthered with the
use of multiple cooperating robots. To show an example of
such improvement using a team of agents as opposed to a
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single agent, a homing strategy that maximizes the flight time
of aerial robots during a multi-robotic mission is proposed
in the following subsection. During the proposed coordina-
tion, continuous exploration is not assumed and distance-con-
strained ad-hoc communication is used. The robots are homo-
geneous and generate their behaviors in a decentralized man-
ner based on their current state and the available information
from other robots (only positions in a shared frame are re-
quired).

A. Multi-robot homing strategy

A cooperative operation maximizing the flight time of a
multi-robot team is proposed for applications where homing
all the deployed robots to an initial location is not required.
This strategy is suitable for tasks where the possible gained
information is superior to the cost of the robots, such as in
search & rescue scenarios. This method assumes there is ac-
cess to a low-bandwidth communication link among any two
robots within an omnidirectional communication radius.

To maximize the flight time, the robots utilize local commu-
nication to plan the homing path such that a group of robots
is able to build up a communication tree with the base station
as the root communication node. This allows the robots to
optimize their flight time by navigating back to a location in
the proximity of another communication node (a landed robot,
base station, or self-sustaining communication node deployed
by other robots) when the battery capacity becomes drained.
This entire homing strategy is showcased in an example sce-
nario for two independent robots in Fig. 3.

In the proposed strategy, each robot constructs a navigation
homing tree using nodes created from the set of past poses
of the robot. This online-built tree has edges valued by the
required flight time between two nodes and is used to estimate
required homing time to the proximity of a communication
node. The pose nodes are connected such that each path leaf-
to-communication is the shortest (see Fig. 3a). A homing path
is constructed recursively as a sequence of tree nodes from the
current robot position (a leaf) to the nearest communication
node, with the landing position being within communication
range of the nearest communication node (see Fig. 3b). The
tree is shared among the robots deployed in the same mission.
The knowledge from the previous explorers is integrated to
prolong their flight time (see Fig. 3c), thus causally maximiz-
ing the time capacity for the exploration task. When a commu-
nication node (e.g., a robot landing pose) is integrated into the
homing tree, it is linked exclusively to another communication
node to join the retranslation chain (see Fig. 3d). Consequently,
the parents of neighboring pose nodes are updated so that
each pose node has a parent with the minimal accumulated
cost to any communication node (see Fig. 3b and Fig. 3d).
The process of inserting pose nodes as well as communication
nodes into the homing tree is described in Alg. 1.

V. EXPERIMENTAL ANALYSIS

The entire proposed system has been validated through
hours of flight time in the real world, as well as in hundreds of
hours in various virtual subterranean environments. The results
of these experimental analyses are presented hereafter.

B a) B

C1

b)

B

C1

c) B

C1

C2

d)

B base station C communication node (range incl.) homing tree

Fig. 3: An example scenario of the homing strategy for two robots (red and
blue) that maximizes flight time by landing at feasible positions while building
a communication chain to a base station.

Algorithm 1: Insertion of a node into the onboard-built homing tree. Function
cost(na, nb) returns an estimate of flight time among nodes na and nb,
function accumulatedCost(na) returns the required flight time from node na

to the nearest communication node, and function freeRay(na, nb) returns true
if a linear path between nodes na and nb is collision-free in 3D.

1: procedure INSERTNODETOHOMINGTREE
2: Input:
3: N . Node to be inserted
4: C,P . Sets of communication and pose nodes
5: de . Minimum edge length
6: if N.type == COMMUNICATION then
7: N.parent← argminc∈C cost(N, c)
8: for p ∈ P do . Update parents of neighboring pose nodes
9: if cost(N, p) < accumulatedCost(p) then

10: p.parent← N

11: C ← C ∪ N
12: else
13: V ← C ∪ P
14: if minv∈V (||N− v||2) ≥ de then
15: V = {v | freeRay(N, v), ∀v ∈ V}
16: if V 6= ∅ then
17: N.parent← argminv∈V [cost(N, v) + accumulatedCost(v)]
18: P ← P ∪ N

A. Real-world environment

To analyze the properties of the system, a fully autonomous
aerial robot (see Fig. 4) was deployed for several hours of
flight time in the Bull Rock Cave located in the central Mora-
vian Karst of the Czech Republic (see Fig. 1 and the attached
multimedia materials).

During multiple autonomous exploratory missions, a single
explorer (see the hardware components of the robot in Fig. 4)
was deployed to validate the proposed system in various ex-
ploratory scenarios. The flight trajectories from all missions
are visualized in Fig. 5a and the mission statistics and perfor-
mance metrics of the mapping module are summarized in Ta-
ble I. A greedy frontier-navigation policy was employed such
that the frontier closest to the lateral direction of flight (A,
B), the highest frontier (C), and frontier with the largest ratio
of unknown to free cells in a bounded area (D) was selected
as the next goal. With respect to these experiments in a harsh
subterranean environment, we have
• validated the performance of the system by flying in large

cave domes, as well as in narrow corridors just 70 cm
wider than the dimensions of the robot,
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Mapping accuracy

Trial
Flight

time (s)

Trajectory
length (m)

Explored
volume

(
m3

) µ (m) σ (m)

A 731 476 7463 0.57 0.59
B 935 473 11 403 0.53 0.56
C 359 71 551 0.23 0.26
D 749 602 3756 0.33 0.38

E 386 233 3055 0.39 0.39
F 633 256 2579 0.21 0.22
G 638 261 3650 0.27 0.33
H 297 142 1682 0.25 0.41
I 129 121 3326 0.19 0.22
J 425 233 4388 0.25 0.29

TABLE I: Quantitative evaluation on multiple autonomous exploratory mis-
sions within the Bull Rock Cave system. The flight trajectories and qualitative
analysis of the mapping accuracy are shown in Fig. 5.

• validated the real-time performance and robustness of the
system in multiple autonomous horizontally-deep flights
longer than 470 m using just a single battery and reaching
a maximal velocity up to 2 m s−1,

• validated the ability to autonomously explore natural
domes in terms of vertical depth,

• verified the ability to perform a full mission and return
to an initial location with the obtained information,

• quantified the accuracy of the onboard-built maps with
respect to a ground truth map of the environment, and

• obtained feedback from speleologists in order to design
the system following their requirements.

The dense onboard-built maps (20 cm resolution) from all
the experiments were merged (manual global registration with
local ICP refinement) during post-processing to obtain the map
of the environment M. The reference ground truth map Mgt

was built by registering over 100 largely overlapping scans
taken by a Leica BLK360 terrestrial 3D scanner. The mapping
accuracy over all the experiments reached mean µ = 0.37m
and standard deviation σ = 0.46m using the point-to-point
Euclidean error metric between each point in M and the
corresponding closest point in Mgt. The distribution of the
mapping errors throughout all flights is visualized in Fig. 5b.
As specified by the end-users, the decimeter-level mapping
precision achieved over the course of these exceptionally fast
and extensive flights is sufficient for the majority of speleo-
logical needs.

Ouster OS1-16

Intel RealSense D435

Pixhawk autopilot
LED lights

RGB cameras

Intel NUC i7

Fig. 4: General hardware components of an autonomous explorer robot. All
data are processed and reasoned over with an onboard processing unit. The
main source of data comes from the top-mounted LiDAR.

B. Virtual environment
To validate the proposed methodology for multi-robot coor-

dination using a local low-bandwidth communication network,
a team of aerial robots was deployed for hundreds of hours
of flight in a virtual environment using a virtual testbed de-
veloped for the DARPA Subterranean Challenge competition.

x (m)

y
(m

)
z

(m
)

A B C D others

(a) Overview of the cave environment with the trajectories of all exploration
missions (see Table I) performed within Bull Rock Cave. The figure shows
deep cave missions (A, B), vertical flight (C), and the thorough exploration of
a bounded area (D).

x (m)

y
(m

)
z

(m
)

(b) Visual analysis on the mapping accuracy – the distribution of mapping
errors during all autonomous exploration tasks as summarized in Table I. The
color bar legend represents the mapping error in meters using the point-to-point
euclidean error metric.

Fig. 5: Full-coverage exploration of the Bull Rock Cave system (located in the
central Moravian Karst, Czech Republic) with autonomous aerial explorers.
Full resolution figure is available within the attached multimedia.

This state-of-the-art testbed consists of several large-scale cave
environments containing dynamic obstacles and models of
real-world interference, such as sensor discrepancies, commu-
nication schemes, and battery longevity.

In contrast to real-world experiments, the virtual environ-
ment is larger and allows for the seamless verification of multi-
robotic cooperation. To demonstrate the performance of the
proposed homing strategy, a selected example scenario of such
an operation is presented in Fig. 6. This experiment highlights
the positive influence of the homing strategy in a search & res-
cue scenario where the three explorers were able to exploit the
increased flight time. With a 50 m communication range and
1.2 m s−1 average velocity for each robot, the homing coopera-
tion increased the available flight time for exploration by 40 s
and 80 s, respectively. Moreover, the experiment shows the
influence of multi-sensor mapping, which allowed the black
robot to single-handedly explore the upper floor of the virtual
environment. The final exploratory trajectories of the cooper-
ating robots during the presented mission reached lengths of
715 m, 1349 m, and 1405 m.

The influence of the homing strategy on the time available
for mere exploration is also quantitatively analyzed in Table II.
The results were averaged over six separate deployments,
each with five cooperating robots. Identical mission parameters
were set to all the robots for the baseline [17], as well as for
the proposed method. The data show an increasing trend in
the available mission time for belated explorers for which the
effective exploration phase is consequently prolonged during
their entire operation time.

VI. CONCLUSION

This letter presents a comprehensive study on the use of
autonomous aerial explorers as an assisting technology for
the exploration of natural cave environments. This study also
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Fig. 6: Three autonomous explorers deployed in a virtual cave world within
the DARPA simulation testbed. The robots finished their missions by building
a communication tree with maximal edge length of dc = 50m.

Robot 1st 2nd 3rd 4th 5th

Exploration time before homing (secs) 316 330 360 380 389
Exploration time increase (%) −1.5 2.8 12.2 18.4 21.0

TABLE II: Influence of the homing strategy on the flight time available for
mere exploration. Comparison with a baseline time of 321 s (averaged over
10 flights) where a robot returned to base before its operation timed out.

shares the experience acquired during the technology’s de-
velopment in close cooperation with a team of speleologists,
cavers, and first responders.

The proposed self-sustaining system interconnects solutions
for all crucial robotic tasks in order to enable full autonomy in
complex unknown subterranean environments without access
to GNSS. Among others, this includes laser-data processing
which copes with high humidity and dustiness within subter-
ranean environments and robust path-planning for unknown
dynamic environments to allow for flights in constrained cav-
ities, as well as in open caverns of natural caves. Moreover,
a multi-robot cooperation is proposed for the efficient hom-
ing of a team of robots for applications where the possible
information gain is superior to the costs of the robots, such as
search & rescue scenarios in cave systems. The performance of
the entire applicable system was validated in one of the most
large-scale experimental analyses ever conducted, consisting
of hours of flight time in Bull Rock Cave (Czech Republic,
Moravian Karst) and in hundreds of hours in the state-of-
the-art virtual testbed developed for the DARPA Subterranean
Challenge. This presented analysis of the entire system proves
that it is a robust solution capable of reliable planning with
sensoric field-of-view constraints and accurate mapping. The
accuracy of localization and mapping was evaluated with re-
spect to a ground-truth map of the cave environment and
reached mean precision below 40 cm in real-world conditions.
This performance has satisfied the requirements of speleolo-
gists and first responders.
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