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Abstract—We present an end-to-end online motion planning
framework that uses a data-driven approach to navigate a
heterogeneous robot team towards a global goal while avoiding
obstacles in uncertain environments. First, we use stochastic
model predictive control (SMPC) to calculate control inputs that
satisfy robot dynamics, and consider uncertainty during obstacle
avoidance with chance constraints. Second, recurrent neural
networks are used to provide a quick estimate of future state
uncertainty considered in the SMPC finite-time horizon solution,
which are trained on uncertainty outputs of various simultaneous
localization and mapping algorithms. When two or more robots
are in communication range, these uncertainties are then updated
using a distributed Kalman filtering approach. Lastly, a Deep
Q-learning agent is employed to serve as a high-level path
planner, providing the SMPC with target positions that move
the robots towards a desired global goal. Our complete methods
are demonstrated on a ground and aerial robot simultaneously
(code available at: https://github.com/AlexS28/SABER).

Index Terms—Motion and Path Planning, Multi-Robot Sys-
tems, Deep Learning Methods, Optimization and Optimal Con-
trol, SLAM

I. INTRODUCTION

THE field of robotics has made remarkable progress in
providing diverse sets of robotic platforms with different

physical properties, sensor configurations, and locomotion ca-
pabilities (e.g., climbing, running, or flying). Thus, developing
new planning algorithms that can be ubiquitously applied to a
team of heterogeneous robots is a worthwhile endeavor, and
applicable to a wide range of tasks from search and rescue
to space exploration. However, for multi-agent planners to
be used in unknown and uncertain environments, they should
consider complex robot dynamics, uncertainty from imperfect
exteroceptive and proprioceptive sensor measurements, update
uncertainty when robots are in communication range, avoid
obstacle collisions, and address desired multi-agent behavior.

One common approach is to fully address some but not all of
the described requirements while assuming the rest can either
be satisfied in future work, or can be combined with other
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Fig. 1. SABER framework. SABER combines controls (stochastic model
predictive control), vision (simultaneous localization and mapping), and
machine learning (RNN and DQN), to provide local and globally optimized
solutions in unknown and uncertain environments.

existing methods. However, combining multiple approaches
towards a unified motion planning framework satisfying all
requirements can be nontrivial, requiring close examination
of the overall feasibility and performance of such a complex
system. Thus, in this work, we will examine the feasibility
and performance of an end-to-end motion planning framework
that addresses the above requirements termed as ‘Stochastic
model predictive control for Autonomous Bots in uncertain
Environments using Reinforcement learning’ or SABER.

Summary of Our Contributions

(1) SABER is an end-to-end motion planning framework for
a team of heterogeneous robots that unifies controls, vision,
and machine learning approaches to plan paths that account
for safety, optimality, and global solutions (our complete
framework is shown on a UGV-UAV team).

(2) Cooperative localization algorithms are used for cross-
communicating robots, which may include both non-Gaussian
and Gaussian measurement noise, where uncertainty is mod-
eled with recurrent neural networks (RNNs) for each agent’s
sensor configuration using outputs from simultaneous local-
ization and mapping algorithms (SLAM).

(3) Instead of simple heuristics when sampling the map for
target positions, we employ Deep Q-learning (DQN) for high-
level path planning, which is easily modifiable for learning
desired multi-agent behavior and finds global solutions (DQN
scalability for more than two robots is also evaluated).

II. RELATED WORKS

Several works that examine planning for heterogeneous
robots (typically composed of a two robot UGV-UAV team)
have focused mainly on fusing different sensor data to build a
unified global map [1], integrating several components such as
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Fig. 2. SABER Algorithm. This figure demonstrates the overall SABER planning algorithm in the testing phase, which can plan paths for one or more
robots simultaneously. At timestep k, the environment provides information to robots that either carry a LiDAR or RGB camera and IMU; for the LiDAR
configuration, a particle-filter SLAM is implemented, while for the RGB configuration, Visual-Inertial Odometry SLAM (VIO SLAM) is implemented. The
sensors provide either scans or distance to feature information to a recurrent neural network model (which serve as inputs), and outputs the propagation of
state uncertainty for future timesteps. If two or more robots are within communication range, a distributed Kalman filter updates the current and future states
and their uncertainties to a more accurate estimate. These updated states and uncertainties are used to update the chance constraints for obstacle avoidance.
These constraints are then considered by a stochastic MPC controller, which follows a given target position, provided by a deep Q-learning (DQN) agent that
aims to move the robot towards a global goal. DQN uses the relative distances between the robots and the respective obstacles as its states, provides a target
position for all robots as its actions, and is trained on several different maps with obstacles randomly distributed in each. Note, that the SMPC, SLAM, and
RNNs components run on each robot individually, however, the DQN is run on a centralized base (which may be on the robot itself).

path planning, sensor fusion, mapping, and motion control to-
wards a single framework [2], or strictly analyzing multi-agent
localization (i.e., multi-SLAM) [3]. While we also consider a
UGV-UAV team as done in the above works, here, we are
more concerned with the feasibility (i.e., computation time)
of such a complex system, and also in how uncertainty is not
only estimated for robots with different sensor configurations,
but how it’s tightly coupled with a local stochastic model
predictive controller (SMPC) towards coordinating multi-agent
behavior.

We also seek to address the major challenge for multi-agent
(or even single-agent) planners, which is to estimate a path
that is both safe (e.g., considers uncertainty in agent/obstacle
avoidance) and fast (e.g., finding the shortest path to the
goal). This is significant because conservative approaches to
safety would lead to over avoidance or non-optimal solutions,
and high-risk behavior may cause undesired collisions. Cur-
rently, few motion planners fully investigate this problem.
For example, in [4], the cost of reaching a target position
for each robot in a heterogeneous team depends on its indi-
vidual characteristics (e.g., varying sensors, travelling speed,
and payloads). However, by not considering uncertainty in
their planner, their cost-to-go function can be significantly
affected by disturbances. Conversely, a multi-agent planner
that does consider probabilistically-safe motion planning can
be found in [5]. Still, their planner may lead to conservative

solutions as they assume a worst-case behavior approach to
safety. SABER addresses the problem of avoiding obstacles
without over avoidance by using an RNN, which predicts and
propagates future state uncertainty dynamically and does not
make the assumption that uncertainty increases when no future
measurements are received [6]. The downside with an RNN
(which is typical with learning-based approaches) is that the
accuracy of the uncertainty estimates is directly correlated with
the quality of the data collection.

The geometric representation of obstacles is also critical
for planning. For example, FASTER [7] is a decentralized
and asynchronous planner where obstacles are represented as
outer polyhedrals (estimated from convex decomposition) and
applied as constraints into the optimization. In SABER, we
also represent obstacles as polyhedral constraints for each
timestep, however, we decompose them into a disjunction of
linear chance constraints (thus, obstacle ‘size and location’ are
a function of exteroceptive and proprioceptive uncertainty).
Using chance constraints in motion planning is not new, and
has been shown with success in single-agent planners such
as [8] and [9]. In this work, our chance constraints are also
influenced by the cross-communication uncertainty of a het-
erogeneous robot team (see III-B). Additionally, while obstacle
constraints can be explicitly used in the optimization, other
works show a learning-based approach to avoid collisions by
modeling the distribution of promising regions for travel [10]
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or predicting the separation distance between the robot and its
surroundings [11]. Our work is a hybrid approach, where we
use the RNN to predict uncertainty of state estimates (which
affect the ‘size’ of polyhedral obstacles), but still use these
obstacles as constraints in our SMPC optimization. This choice
sacrifices computation time, but may be more generalizable to
environments not observed in training and prevent collisions.

Finding a suitable path to the goal also has a wide array of
different solutions. Most commonly, sampling-based methods
which do not consider workspace topology (such as grid-
sampling [12] or rapidly-exploring random tree or RRT and
its variants [13]) can lead to very dense roadmaps and may
not scale well when the shortest path to the goal is desired.
This issue has been investigated in [14], which uses a self-
supervised learning approach to build sparse probabilistic
roadmaps (PRM) for bias sampling (sampling only regions the
robot is likely to safely travel). Moreover, using a learning-
based approach for path planning also has the potential for
integrating semantic behavior that can be gained from multi-
agent coordination, as evidenced in [15] and [16]. Motivated
by these works, we use a DQN for high-level planning,
where simple modifications of a reward function can yield
desired multi-agent behavior (e.g., rewarding agents based on
proximity or reaching the goal concurrently). Nevertheless, the
tradeoff of using a DQN compared to sampling-based methods
is that it cannot guarantee asymptotic optimality (e.g., RRT-
star) or probabilistic completeness (e.g., PRM). However, for
our DQN, we are primarily concerned with the feasibility
relative to our application (i.e., finding a near-optimal path
in a computationally efficient manner while satisfying multi-
agent behavior).

Algorithm 1: SABER

1 Initialize state Xi:nr

k , goal Xi:nr

goal, dt, horizon N , robot
size ri:nr

, timestep k, empty Mapi:nr , uncertainty
Σi:nr

k:k+N+1, error to goal ε, number of robots nr

2 while ‖Xi:nr

k −Xi:nr

goal‖2 > ε do
3 if LiDAR configuration:
4 Xi:nr

k ,Σi:nr

k ,Mapi:nr ←
Particle-filter SLAM(odom, scans, Mapi:nr )

5 Σi:nr

k+1:k+N+1 ← RNNi:nr (Xi:nr

k , scans)
6 if RGB camera configuration:

Xi:nr

k ,Σi:nr

k ,Mapi:nr ←
VIO SLAM(IMU, RGB, Mapi:nr )

7 Σi:nr

k+1:k+N+1 ← RNNi:nr (Xi:nr

k , features)
8 continue:
9 Xi:nr

ref ← Deep Q-Learning(Xi:nr

k , Xi:nr

goal,Mapi:nr )

10 Oj:nobs
← checkObstacles(Xi:nr

k , ri:nr ,Mapi:nr )

11 Xi:nr

k+1:k+N+1, U
i:nr

k+1 ←
SMPC(Xi:nr

ref , X
i:nr

k ,Oj:nobs
,Σi:nr

k:k+N+1)

12 if ∀robot i, j : nr within communication range:
13 Σi:nr

k:k+N+1, Xk:k+N+1 ←
CoopLocalization(Σi:nr

k:k+N+1, Xk:k+N+1)
14 end

III. METHODS

The SABER framework contains both learning (requiring
data collection) and non-learning components (traditional con-
trol schemes). The non-learning components consist of an
SMPC and a distributed Kalman filter, while the learning
components consist of an RNN and DQN agent. The RNN
and DQN components are trained separately and offline be-
fore being implemented into the overall system for online
deployment (note, that the RNN is supervised by the SMPC
controller on each robot, while the DQN is not integrated with
any other component during training). Overall, the algorithm
is structured as an SMPC problem, which moves a robot
toward a target location as formulated in III-A. By using
state uncertainties and obstacle locations, obstacles are rep-
resented as chance constraints within the SMPC cost function
(III-A1, III-A2). If two or more robots are in communication
range, their state and uncertainty values are updated using a
distributed Kalman filtering approach as described in III-B.
To quickly propagate state uncertainties for future timesteps,
we use different RNN models based on the robot’s sensor
configuration, as explained in III-C. In III-D, we formulate
a DQN approach, providing the SMPC with target locations
which help generate trajectories that move the robots toward a
global goal and prevent local minima solutions. See Algorithm
(1), Fig. 2, or the attached video1 for an overview of the
methods, and IV-A for implementation details.

A. Stochastic Model Predictive Control Formulation

The goal of the cost function (equation (1)) is to find the
optimal control value Uk that minimizes the distance between
the current and predicted states (Xk→N+1) with a reference
state or trajectory (X(ref)) while under equality and inequality
constraints – where Xi

k is given by the results of localization
for each robot i, and k is the current timestep (Q and R are
control matrices, and P is described further below):

min
Ui

k:k+N-1

k+N−1∑
k

‖Xi
k+1 −X

(ref)i
k+1 ‖

2
Qi + U i>

k RiU i
k

+‖Xi
k+N+1 −X

(ref)i
k+N+1‖

2
P i

(1)

s.t. Xi
k+1 = f i(Xk, Uk) = AiXi

k +BiU i
k +W i

k (2)

Xi
k ∼ N (X̄i

k,Σ
i
k),W i

k ∼ N (0, σ2i) (3)

Xi
limit ≥ |Xi

k|, U i
limit ≥ |U i

k| (4)

Obstacle Constraints:

Pr

NO∧
j=1

Oj

 ≥ 1−∆ (5)

Constraint (2) represents multiple shooting constraints,
which ensure that the next state is equivalent to a time-
invariant linear discretized model, where A and B represent
the robot’s dynamic matrices. Uncertainty in state as well as
the addition of a non-unit variance random Gaussian noise
(W ) is shown in (3). Note, that the propagation in state

1https://youtu.be/EKCCQtN5Z6A

https://youtu.be/EKCCQtN5Z6A
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uncertainty (Σi
k+1→N+1) is received from an RNN model

(Section III-C), and can be affected by cooperative localization
algorithms (Section III-B) at timestep k, if multiple robots are
in communication range at timestep k.

Limits on state and controls variables are imposed by
constraint (4). For robustness [17], a terminal cost is included
with a weighting matrix P which can be obtained by solving
the discrete-time Riccati equation (6):

Ai>P iAi − P i −Ai>P iBi(Bi>P iBi +Ri)−1Bi>P iAi+

Qi = 0
(6)

1) Chance Constraints for Obstacle Avoidance: Constraint
(5) represents chance constraints that enable obstacle avoid-
ance subject to uncertainty in convex regions as done in [8].
This constraint can be rewritten as a disjunction of linear
constraints for obstacle Oj :

Oj ⇐⇒
∨

k∈T(Oj)

∧
i∈G(Oj)

a>i X̄k − bi ≥ ci (7)

where G
(
Oj

)
is the set of linear constraints (indexed by i) for

each obstacle (indexed by j), T
(
Oj

)
is the set of timesteps in

the MPC prediction horizon (indexed by k), ai is the vector
normal to each line constraint and directed toward state X̄k,
r is the radius/size of the robot, and ci is given by:

ci =
√

2a>i Σkai · erf−1(1− 2δj), δj ≤ 0.5 (8)

Important to consider is that the degree of ‘risk’ can be
controlled by changing the values of δj (related to ∆) for
each obstacle Oj . Lower values lead to more evasive behavior
(robot moves further away from obstacles) while higher values
lead to more risky behavior (robot moves closer to obstacles).

If obstacles are assumed circular (centered at xoj , yoj ), we
can use the following equation, where ai is equal to an identity
vector, xk and yk is the center position of the robot, and only
a single cj value needs to be calculated per obstacle:

−
√(

xk − xoj
)2

+
(
yk − yoj

)2
+ (r + cj) ≤ 0 (9)

2) Mixed-Integer Nonlinear Programming: To more effec-
tively consider the disjunctive convex program for polygon-
shaped obstacles, as introduced by (7), we can change these
constraints into a mixed integer format (we assume the line
constraints are in the x-y plane, however, the same equations
can be used for the x-z, and y-z planes respectively):

Oj ⇐⇒
∨

k∈T(Oj)

∧
i∈G(Oj)

Ii,jdist(X̄k, ai,mi, bi) ≥ Ii,j(r+ci)

(10)

xl = a∗i xk − yk + bi/(a
∗
i −mi) (11)

yl = mixk + bi (12)

dist(*) = |−mxk + yk − bi| /
√
m2

i + 1 (13)

dist(*)

 IF sign(yl − yk) = sign(ay)
∨

sign(xl − xk) = sign(ax), −dist(*)
ELSE dist(*)

(14)

Ii,j = {0, 1}∀i, j (15)

size(Ij)∑
i=1

Ii,j ≥ 1 ∀j (16)

where mi and bi are the slope and y-intercept of each line
constraint i belonging to obstacle Oj , a∗i is ay/ax, xk and yk
are the x and y position retrieved from robot state X̄k, and the
coordinates of the point on the line constraint closest to X̄k is
represented by xl and yl (equations (11) and (12)). The dist(*)
function approximates the distance between X̄k and one of
the linear constraints of an obstacle as shown in equation
(13). Equation (14) returns a positive distance if the robot
is ‘outside’ the obstacle boundary, and a negative distance
if the robot is ‘inside’ the obstacle boundary (a negative
distance would cause the line constraint to fail). By definition
of constraint (10), only one or more of the line constraints
need to be satisfied per obstacle Oj , which is ensured by
using binary integer variables under constraints (15) and (16)
(e.g., for line constraint i belonging to Oj , if Ii,j = 1, the
robot is outside this obstacle). For simplicity, we assume we
have a ‘perfect’ object detection system. If the robot is close
enough to an obstacle, the obstacle is automatically ‘seen’ and
embedded into the SMPC cost function.

B. Cooperative Multi-Agent Localization

While the propagation of uncertainty for each robot is
calculated using an RNN (see III-C), updating the uncertainty
after information is exchanged with another robot is done
using a distributed Kalman filtering approach [18]. Thus, when
two or more robots are in communication range (as pre-
specified by the user), their individual uncertainty estimates
should be updated to correctly reflect the gain from additional
sensor information.

Equations (17) - (25) describe how the pose for robot i
is updated while in communication range of another robot j.
The same equations can be further extrapolated to consider
additional robots as explained in [18].
For ∀i, j and k → k +N + 1:
Propagation:

Σi
k+1,Σ

j
k+1 = RNN i(∗), RNN j(∗) (17)

Xi
k+1, X

j
k+1 = f i(Xi

k, U
i
k), f j(Xj

k, U
j
k) (18)

Update:

X̄+i
k+1 = X̄i

k+1 +Ki
k+1(Zij

k+1 − (X̄i
k+1 − X̄

j
k+1)) (19)

Sij
k+1 = Σi

k+1 + Σj
k+1 +Rij

k+1 (20)

Zij
k+1 = Xi

k+1 −X
j
k+1 (21)

Update A (first time robots meet):

Σ+ij
k+1 = Σi

k+1(Sij
k+1)−1Σj

k+1 (22)

Ki
k+1 = Σi

k+1(Sij
k+1)−1 (23)
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Fig. 3. Network structures. We show the RNN structure used to model an
EKF from a VIO SLAM algorithm in (A), or a particle-filter SLAM algorithm
in (B) (III-C). The inputs are shown in orange, and correspond to either
features/robot position (using VIO SLAM) or LiDAR scans/robot position
(using particle-filter SLAM). The outputs are shown in red, and correspond
to the x-y covariance matrix (which represents uncertainty in x-y position).
The layer type is color coded below, where green represents a simple RNN
layer, and purple a dense layer.
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Fig. 4. Training loss. Here we show the training loss for the RNNs, which
were trained on uncertainty covariance outputs (in position) of a Visual-Inertial
SLAM in (A) and a particle-filter SLAM in (B). The training was done using
500 epochs and on 4 different maps. Note, that the noise observed in (B) may
be due to the particle-filter estimations/simplifications done in [19].

Update B (all other times robots meet):

Σ+ij
k+1 = Σij

k+1− [Σi
k+1−Σij

k+1](Sij
k+1)−1Σj

k+1[Σij
k+1−Σj

k+1]
(24)

Ki
k+1 = (Σi

k+1 − Σij
k+1)(Sij

k+1)−1 (25)

where Zij
k+1 is the relative pose measurement between robot

i and robot j (Xk is received by current localization, and
Xk+1→k+N+1 can be retrieved by the SMPC solution), and
Rij is the relative measurement noise between robot i and
robot j.

C. Recurrent Neural Network for Uncertainty Propagation

Because our SMPC calculates the optimal control (Uk)
based on a prediction horizon (Xk+1→k+N+1, Uk→k+N ), we
must also provide as input the propagation of uncertainty
(Σk+1→k+N+1) at each timestep. As described in more detail
in [6], an RNN can provide a computationally fast prediction
of future state uncertainties (as it only requires a small net-
work) and can operate in continuous space, making it ideal for
online replanning in complex environments. This is achieved
as the RNN can model the behavior of a filter (e.g., particle
filter or EKF) from SLAM algorithms. However, in this study,
we have multiple robots with different sensor configurations,
which requires training separate RNN models for each.

In this work, we estimate state uncertainty using two
different SLAM algorithms, a Rao-Blackwellized particle-
filter SLAM (LiDAR camera configuration) and a Visual-
Inertial Odometry (VIO) SLAM (RGB camera configuration).
In the particle-filter case, the following equation is used for
factorization:

p
(
x1:k,m | z1:k, u1:k−1

)
=

p
(
m | x1:k, z1:k

)
· p
(
x1:k | z1:k, u1:k−1

) (26)

where x1:k = x1, ..., xk is the robot’s trajectory, z1:k = z1, ..., zt
are the given observations, d1:k−1 = d1, ..., dk−1 are the
odometry measurements, and p(x1:k,m | z1:k, d1:k−1) is the
joint posterior estimate about map m (see [20]). For training
the RNN for the particle-filter SLAM case, we have 362 input
units for each timestep k. The first 2 units is the center position
of the robot (x and y), and the 360 other units represent the
range distances from LiDAR scans (e.g., for timestep k, we
have d1:360k relative scan distances). The output layers, which
use a linear activation function, correspond to the robot’s 2×2
x-y covariance matrix which is flattened into a 4×1 array or
4 output units. For the VIO SLAM configuration, we used the
same methods for training the RNN as described in [6]. See
Fig. 3 for an overview of the network structure, and IV-A for
further implementation details.

D. Deep Q-Learning (DQN) for Global Planning

1) DQN formulation: To provide local target positions
(Xi:nr

ref ) that direct the robots toward a global goal (Xi:nr

goal),
we implement a DQN agent and use the Bellman equation:

Q(sk, ak) = r + γmax
ak+1

Q (sk+1, ak+1) (27)

where the state is represented by sk ∈ R(Nj×nr)+nr , action
by ak ∈ R9nr , learning rate by γ, nr is the number of robots,
and reward function by r (where Nj is the number grid spaces
required to represent each obstacle; described further below).
The idea of DQN is to use the Bellman equation (27) and
a function approximator (with neural networks) to reduce the
loss function (we use the Adam optimizer) [21].

Ultimately, the goal of the DQN-agent is to generate target
positions at each timestep k for multiple robots and to move
them towards a global goal position. To accomplish this and
generalize our methods to any map (or changing the location
of obstacles after each episode), we use the relative distances
between the robot and surrounding obstacles and the relative
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Fig. 5. DQN Training and Testing Procedure. In (A), we show the neural network structure used in our DQN algorithm (III-D). The network maps the
inputs (i.e., states or relative distances between robots and obstacles/goals) to the outputs (i.e., actions or next target positions for the robots). The states and
actions are connected by a linear neural network model (blue). In (B) we visually show the training process of the DQN for a 2 to 5 robot team, where all
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distance between the robot’s position and the global goal as
our states: sk = (di:nr

j , di:nr
j+1, d

i:nr
j+2, ...d

i:nr

NO
, di:nr

goal), where di:nr
j

is the relative distance between the robot and obstacles and can
be described by ‖Xi:nr

k −Oi:nr
j ‖, and di:nr

goal by ‖Xi:nr

k −Xi:nr

goal‖
(Xk is assumed to be the x and y position of the robot). Our
DQN agent is trained on a 2D-grid map, where the robots and
obstacles are represented as squares (1m2) within the grid.
Thus, the actions permitted by the robot is an 8-directional x-
y movement (or no movement) at each timestep. The reward
function is simply formulated by providing a positive reward
(+1) if the robot gets to the goal and a negative reward (−1)
if the robot hits an obstacle, which results in termination of
the episode (we allow the UAV to ‘fly’ over some obstacles
by modifying its reward function to not receive a penalty for
hitting that obstacle). To test different behaviors, we also added
a reward (+0.1) at each timestep when both robots are within
a 2 meter distance (see (D) in Fig. 5).

We also assume the dimensions of each obstacle are known
a priori (to estimate this without this assumption may require
an object detection pipeline). Thus, by knowing the height of
each obstacle, a UAV can use this value in its chance constraint
to fly over obstacles. Finally, mapping our states to our actions
is done through a linear neural network. For an overview of the
network structure, and the training/testing process, see Fig. 5.

IV. EXPERIMENTAL VALIDATION

A. Implementation details

SABER is demonstrated on a UGV (Turtlebot3) equipped
with a 360 degree LiDAR camera, and a UAV (Quadrotor)
equipped with a RGB camera in a Gazebo simulation running
in real-time with additive noise. The dynamic equation of
motion for the UGV assumes states composed of center of
mass position and heading angle (X = [x, y, θ]), actions

SMPC-RNN (UAV)

A)

SMPC-RNN (UGV)

B)

SMPC-RNN-DQN (UGV)

SMPC-RNN-DQN (UAV)DQN path (UAV)

DQN path (UGV)

D)

SMPC-RNN-DQN (UGV)

SMPC-RNN-DQN (UAV)

SMPC-RNN (UGV)DQN path (UAV)

DQN path (UGV)

C)

Fig. 6. SABER Algorithm Results. This figure demonstrates the overall
SABER planning algorithm. In (A) and (B) we first show the capability of the
SMPC-RNN to navigate the UGV and UAV in a densely populated space. In
(C), we show that the SMPC-RNN of the UGV cannot get to the goal state,
because of the occurrence of a local minima. However, with a DQN (which
provides a global path illustrated by triangles), the UGV (orange) can correctly
maneuver around the obstacle. The UAV (purple) can simply use it’s z-axis
to fly above the obstacle. A more complex example is shown in (D), where
both robots are directed towards different goal locations simultaneously.

composed of linear and angular velocity (U = [v, ω]) and
the following matrices for the discretized equation:

A = I ∈ R3×3, B =

 cos(θ)δt 0
sin(θ)δt 0

0 δt

[ v
w

]
The UAV assumes similar dynamics as in [22], where

the states are center of mass position, linear velocity (x,
y, and z components), angle, and angular velocity (we
consider pitch and roll but keep yaw fixed) or X =
[x, vx, θ1, ω1, y, vy, θ2, ω2, z, vz], and actions composed of
thrust U ∈ R3×1. The A and B matrices and their param-
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Fig. 7. RNN Results. In this figure, we show the true covariance value
(where ‘xx’ represents the covariance of the center of mass in the x position
as an example) in blue and the predicted covariance in orange for about
430 seconds of data. This is done when modeling the uncertainty using VIO
SLAM (A) and particle-filter SLAM (B) on a test map. Note, that the predicted
and true values almost perfectly align, demonstrating the RNN’s ability to
make valid uncertainty predictions. Lastly, we show more explicitly in the
graphs, that when more features are tracked (green arrow) the lower the
estimated uncertainty, while fewer features corresponded to higher uncertainty
(red arrow).

eters are fully described in [22], where A ∈ R10×10 and
B ∈ R10×3.

To solve the cost function (1), we use the mixed-integer
nonlinear programming (MINLP) solver ‘bonmin’ [23], as
we need to consider both integer and continuous variables.
Constraints and problem formulation were setup using CasADi
[24] running on a laptop with an Intel Core i7-8850H CPU,
and NVIDIA Quadro P3200 GPU.

To collect data for training our RNN model for the UGV,
we used the GMapping package [19] to create a map of the
environment, and then implemented the AMCL package [20]
to track the robot’s pose and receive the uncertainty covari-
ances using this map with particle-filter SLAM (uncertainty
outputs from the filter are considered as the ‘ground truth’).
In the UAV case, we used the XIVO SLAM package [25] to
make localization and covariance estimations (XIVO uses an
Extended-Kalman Filter). The Adamax optimizer was used for
training and the Mean Squared Error (MSE) was implemented
as the loss function for both RNN models (covariance matrices
need to be converted to be positive semi-definite during
usage, see [6]). For training (for both models), we created
4 different maps with obstacles randomly distributed, where
robots traverse about these maps via the SMPC. Note, that by
definition of a particle-filter and an EKF, the former assumes
non-Gaussian noise while the latter assumes Gaussian noise.
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Fig. 8. System performance. We compare the results of SABER (SMPC-
RNN-DQN) using the same map as (D) in Fig. 6) against baselines for the
UAV (A) and UGV (B) with distance to goal vs time as our metric. See IV-B2
for details.

B. Results

1) Analysis of learning components and their significance:
The training loss for the RNN networks are shown in Fig. 4.
The RNN networks for both SLAM algorithms were trained
for 500 epochs (validation loss was observed to be close to the
training loss), and shows a strong correlation between truth
(output of SLAM in training) and predicted covariance. We
also demonstrate that our RNN can model the behavior of
covariance outputs generated by different sensor configurations
(i.e., SLAM algorithms), as seen in (A) and (B) of Fig. 7 (e.g.,
we observed an increase in uncertainty for VIO SLAM when
too close to obstacles, while seeing the opposite behavior for
a particle-filter SLAM). Important to note, is that this result
indicates that the RNN can model both non-Gaussian (particle-
filter) and Gaussian (EKF) noise. By modeling the propagation
of uncertainty of different measuring systems and integrating
them into the SMPC prediction horizon through chance con-
straints, we ensure control values that avoid obstacle collision
(without over avoidance) for each individual robot.

In (B) of Fig. 5, we show that during training of our DQN,
the rewards would increase over a majority of the 35,000
episodes, reaching a steady-state at approximately 27,000
(except for the 5-robot team). In Table I, we also compared
our DQN to other 2D baseline algorithms (we chose resolution
settings for RRT, RRT-star, and A-star so that their path lengths
were similar to the DQN, then evaluated their computation
time). The results indicate that on average, the DQN had the
lowest computation time and was comparable to A-star in
terms of its path length to the goal (considered optimal for
our map resolution). Unlike the baseline algorithms, our DQN
also has the additional functionality of learning multi-agent
semantic behavior–it was successful at moving the robots
simultaneously to their goal points as shown in (C), and, as
expected, stayed closer to each other when rewarding them
based on close proximity as shown in (D) of Fig. 5. Although it
would be possible to modify the baseline planners to consider
multi-agent planning, the learning-based approach considers
potential semantics between agents that would be difficult to
quantify and define beforehand within a cost function.

The limitation of our DQN is that it’s currently most capable
in planning in 2D rather than 3D space, which helps lower
training time and increase convergence (more complex DQN
formulations may be necessary if the problem is either scaled
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TABLE I

High-level planner analysis (100 trials on map (D) of Fig. 6)
Planner Path

length(m)
std dev(m) Solve

time(s)
std dev(s)

RRT 10.83 ±1.28 0.120 ±0.091
RRT-star 10.40 ±1.20 0.084 ±0.073

A-star 9.66 ±0.00 0.154 ±0.002
DQN 9.68 ±0.00 0.051 ±0.001

Average Computation time of SABER components (10 minutes of data)
Component SMPC RNN VIO

SLAM
PF

SLAM
SABER

Solve
time(s)

0.0559 0.0212 0.030 0.073 0.193

std dev(s) ±0.0187 ±0.0077 ±0.003 ±0.005 ±0.110

to 3D, assumes a map bigger than 10×10m, or uses more than
3 robots, see (B) of Fig. 5). However, since we use an SMPC
to avoid obstacles in 3D space using chance constraints, a 2D
planner is sufficient for our application.

2) Validation of the SABER algorithm: The complete plan-
ner is exemplified in Fig. 6 on a UGV-UAV team. We show that
the SMPC of the UGV and UAV uses the state uncertainties
estimated by an RNN to avoid colliding in obstacles in dense
maps (see (A), and (B)). A special case is also shown in (C),
where the SMPC of the UGV (without the DQN) reaches
a local minima solution and is stuck behind the obstacle.
However, when using the DQN’s proposed path, the UGV can
successfully reach its global goal. Note, that the SMPC and not
the DQN considers both the dynamics of the robots and the
uncertainty provided by their RNN models, thus, the actual
path (shown in orange/purple) will differ slightly from the
proposed DQN path (marked by triangles). We also evaluate
the average computation time of the SABER algorithm (and
its individual components) in Table I, showing a computation
time of ' 0.19 seconds/timestep. Lastly, in Fig. 8, we verify
that SABER performs best compared to several baselines
(using distance to goal vs time as our metric on map (D)
of Fig. 6). The figure shows that MPC alone (no uncertainty
is considered) causes an obstacle collision for the UGV and
UAV (this likely occurred as the simulation contains noise, and
the MPC is unaware of this noise during optimization). Both
robots are able to get to their goals using a naı̈ve stochastic
MPC (uncertainty is considered by artificially inflating all
obstacle boundaries), but due to over avoidance take longer
to reach their goals. By adding our RNN to the SMPC allows
both robots to reach their goals more quickly (uncertainty is
now more accurately propagated within the SMPC prediction
horizon). However, we observed that without a global planner,
both robots run into local minima issues (i.e., robots would
sometimes get stuck behind an obstacle for some time before
reaching their goals). With a global planner (e.g., DQN, A-
star), the robots reach their goals in the quickest manner
(avoiding local minima issues). Although A-star and DQN
provide near-optimal paths, the reason the DQN shows slightly
better improvements (including better computation time) over
A-star is because the DQN also accounts for multi-agent
behavior, where robots were trained to stay close to each other
when possible before reaching their respective goals (staying
in close proximity decreases uncertainty via the Kalman filter).

V. CONCLUSION

In this work, we demonstrated that the SABER algorithm
(which combines several fields of robotics including controls,
vision, and machine learning into a single framework) is
computationally feasible (' 0.19 seconds/timestep) and plans
paths for heterogeneous robots to reach a global goal while
satisfying diverse dynamics, constraints, and consideration of
uncertainty. In future work, we plan to relax the assumption of
a perfect object detection system and will focus on expanding
our DQN to consider more complex behavior and tasks.
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