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Case Relation Transformer:
A Crossmodal Language Generation Model for Fetching Instructions

Motonari Kambara® and Komei Sugiura

Abstract— There have been many studies in robotics to
improve the communication skills of domestic service robots.
Most studies, however, have not fully benefited from recent
advances in deep neural networks because the training datasets
are not large enough. In this paper, our aim is to augment the
datasets based on a crossmodal language generation model. We
propose the Case Relation Transformer (CRT), which generates
a fetching instruction sentence from an image, such as “Move
the blue flip-flop to the lower left box.” Unlike existing methods,
the CRT uses the Transformer to integrate the visual features
and geometry features of objects in the image. The CRT can
handle the objects because of the Case Relation Block. We
conducted comparison experiments and a human evaluation.
The experimental results show the CRT outperforms baseline
methods.

I. INTRODUCTION

Domestic service robots (DSRs) that naturally communi-
cate with users to support household tasks are a promising
solution for older adult or disabled people. There have been
many studies in robotics to improve such communication
skills, however most of them have not fully benefited from
recent advances in deep neural networks because the corpora
are not large enough. This is mainly because it is very
costly to build a crossmodal corpus in which text data are
grounded to real-world data such as images. In particular,
text annotation of images is often done by human labelers,
which is tedious and expensive.

Given this background, in this study, we focus on aug-
menting text data from images. We assume that a limited
number of images have been annotated by human labelers.
Our aim is to augment the data by generating sentences
for a given image, such as “Grab the blue and white tube
under the Coke can and move it to the right bottom box.”
Hereafter, we call this target task the fetching instruction
generation (FIG) task. Such data augmentation should con-
tribute to improving the accuracy of the crossmodal language
understanding models. Indeed, Zhao et al. reported that
crossmodal language generation could improve crossmodal
language understanding [1].

The FIG task is challenging because ambiguity in a
sentence depends not only on the target object but also
on surrounding objects. Indeed, the quality of generated
sentences for the FIG tasks was far worse than that for simple
image captioning tasks [2]. In fact, there is a big gap in the
quality between reference sentences and generated sentences
by conventional methods, as shown in Section E
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Fig. 1: Overview of the CRT: the CRT generates fetching
instructions from given input images. CRB represents the
Case Relation Block.

Although the FIG task was handled in previous studies
[2], existing models did not handle the target object and
destination simultaneously [2]. Therefore, they could not
generate instruction sentences, such as “Move the blue flip
flop to the lower left box.,” where the target object is “the
blue flip flop,” and the destination is “the lower left box.”
Moreover, they needed a long time for training because
their methods are based on the Long Short Term Memory
(LSTM). In contrast, in this paper, we propose a model based
on the Transformer encoder—decoder [3].

In this paper, we propose the Case Relation Transformer
(CRT), which generates a fetching instruction sentence that
includes a spatial referring expression of a target object
and a destination. The CRT consists of three main mod-
ules: Case Relation Block (CRB), Transformer encoder, and
Transformer decoder. Unlike existing methods [2], the CRT
uses the Transformer to integrate the visual and geometry
features of objects appearing in the FIG task. Moreover,
unlike the Object Relation Transformer (ORT [4]), the CRT
can handle both the target object and destination.

Fig. [1| shows a schematic diagram of the approach. In
the figure, CRB, orange arrows, and green arrows represent
the CRB, the visual features, and the geometry features,
respectively. A demonstration video is available at this URI_E

The main contributions of this paper are as follows:

« We propose a crossmodal language generation model,
the CRT, for the FIG task based on the Transformer

Uhttps://youtu.be/Tmzxmz2BeBg
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model.
« We extend the ORT by introducing the CRB to handle
the target object, destination, and context information.
II. RELATED WORK

There have been many attempts on crossmodal language
processing. Baltrusaitis et al. surveyed recent advances in
crossmodal language processing [5]. The paper summarizes
representative models (e.g., [6] [7]). Mogadala et al. also pro-
vided a comprehensive summary of tasks, existing research,
and standard datasets in the vision and language area [8].

As explained in Section [ we focus on the fetching
instruction generation (FIG) task. The FIG task is one of
the vision and language tasks, and is very relevant to the
image captioning task [2].

The image captioning task is closely related to the con-
ditional language model [9] and natural language generation
[10]. The goal of the image captioning task is to give a
human-readable description to the input image [8]. In the
image captioning task, there are some methods that combine
attention mechanism and reinforcement learning (e.g., [11]
[12]).

There are some models regarding the FIG task in the
WRS-PI dataset [2], such as the Multi-ABN [13] and the
ABEN [2]. The Multi-ABN raised the issue of automating
dataset generation for DSRs. The MTCM-AB [14] is a
crossmodal language understanding model that identifies the
target object from the instruction sentences. It dealt with the
task that connects the crossmodal language processing and
the DSRs.

There are several standard datasets used in vision and
language tasks [8]. These datasets contain images and cap-
tions, which consist of descriptive text about the images.
These datasets are mainly used for image captioning tasks.
In contrast, our aim is to generate instruction sentences for
the target object in the image. Therefore, in this study, we
use a dataset that explicitly includes a target object.

There are some crossmodal language processing models
using the Transformer [3] (e.g., [15] [16]). The VLN-BERT
[17] is a crossmodal language understanding transformer-
based model for scoring the compatibility between an in-
struction and a sequence of panoramic RGB images captured
by the agent.

The VL-BERT [18] is similar to the CRT in terms of a
crossmodal language processing model that utilizes geometry
features. Unlike CRT, the VL-BERT cannot generate fetching
instruction sentences which include the destination. The ORT
[4] is also a crossmodal language generation model using
Transformer, which uses geometry features in the same way
as the VL-BERT. The ORT is similar to the CRT in that both
of them handle positional relationships of objects, however,
the ORT cannot handle the target object and destination. This
means the ORT could not generate an instruction sentence,
such as “Move the blue flip-flop to the lower left box.”

ITII. PROBLEM STATEMENT
A. Task description

This study targets crossmodal language instruction gener-

ation for DSRs, that is, the FIG task. We assume that the

Fig. 2: Typical scene of the FIG task. The target object is
the blue and white tissue box (light blue) and the destination
is top right (red). An instruction sentence like “Move the
blue and white tissue box to the top right bin.” should be
generated.

sentences contain spatial referring expressions. The spatial
referring expressions are referring expressions described by
the positional relationship between the object being described
and the objects around it to identify the object. Specific
examples of them include “books on the desk” and “cans
next to the plastic bottles.” In this task, the desired behavior
is to generate an unambiguous instruction sentence that can
accurately identify the target object and the destination for
a given image.

Fig. 2] shows a typical scene of the FIG task. In this figure,
light blue and red bounding boxes represent the target object
and the destination, respectively. The target object is the blue
and white tissue box and the destination is the top right
corner of the view. In this case, an instruction sentence like
“Move the blue and white tissue box to the top right bin.”
should be generated.

The task is characterized by the following:

o Input:

— An image containing a target object, a destination,
and context information.

— The coordinates of the regions of the target object
and destination.

o Output:

— An instruction sentence to move the target object to
the destination.

The inputs are explained in detail in Section [[V}
We define the terms used in this paper as follows:

« Target object: an everyday object, e.g., a bottle or can,
that is to be grasped by the robot.

« Destination: one of the four moving directions for the
target object: top right, bottom right, top left, or bottom
left.

« Context information: the set of regions in the image
detected by an object detector (e.g., Up-Down Attention
[19]).

We use the Up-Down Attention model pre-trained on the

MSCOCO dataset [20] to extract the context information.
We assume that up to 30 objects are detected in a scene
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Fig. 3: The network structure of the CRT. The CRT comprises the Case Relation Block (CRB), Transformer encoder, and
Transformer decoder. FC, EL, FFN, DL, MHA, and “head” represent the the fully connected layer, the encoder layer, the
feedforward network layer, the decoder layer, the multi-head attention layer, and the attention head [3], respectively.

image. We evaluate the generated sentences using standard
automatic evaluation metrics for natural language generation
tasks such as BLEU4 [21], ROUGE-L [22], METEOR [23],
CIDEr-D [24], and SPICE [25]. These metrics are commonly
used for image captioning studies. We also use the Mean
Opinion Score (MOS) for human evaluation.

IV. PROPOSED METHOD

A. Novelty

Our model is based on the Object Relation Transformer
(ORT [4]) because it can model spatial referring expressions
based on the relative positions of objects. We use the Up-
Down Attention [19] for feature extraction according to [4].
The attention mechanism enables spatial referring expres-
sions to be acquired. The CRT differs from existing methods
in the following ways:

e Unlike the ABEN [2], which follows an encoder—
decoder structure based on the ResNet-50 [26] and the
LSTM, the CRT is based on the Transformer encoder—
decoder [3].

e The difference between the ORT and the CRT is
whether a target object and destination can be handled.
In the CRT, the Case Relation Block (CRB) is intro-
duced to accommodate those information.

B. Input
The network inputs x are defined as follows:

xr = (:L,<t(1,7'g>7 w<dest>7 ){<com‘/>)7
X<Cont> — ($<1>, ZI}<2>, ...,113<N>),
$<z> — (w‘</z>’$éz>)7 (1)

where x<terg> g<dest> X <cont> and N denote the
features of a target object, destination, context information,
and the number of objects contained in the context informa-
tion, respectively. 3"~ and 5> denote visual features and
geometry features of the i-th object, respectively.

We use ResNet-50 for preprocessing the target object and
destination information. The output from the conv5_x layer
is used as x3'*"9” and 39>, We extracted 1 x 2048
dimensional features for each of the target object, destination,

and objects contained in the context information.

When preprocessing the context information, we use the
same procedure for object detection and feature extraction as
[19]. We use the Faster R-CNN [27] for object detection, and
we use the output from the conv5_x layer in the ResNet-101
as X‘fcont>.

The geometry feature of the i-th object, 5", is defined
as follows:

<i> <> gy p<i> <i> gy p<i>
Ta - [Ta:min/ ’ Tymin/H7 T:L’mam/ ’ rymam/HL (2)
<i> <i> <i> . <i> .
where (132 7o T ars Tymas) denotes the minimum

z coordinate, the minimum y coordinate, the maximum x
coordinate, and the maximum x coordinate for each region.
Further, W and H denote the width and height, respectively.
C. Structure

Fig. [3] shows the network structure of the CRT. In the
figure, g, and yi.,, denote the geometry features and a
sentence, respectively. The orange and green arrows rep-
resent the visual and geometry features, respectively, and
hidec> represents a token sequence. In the figure, FC, EL,
FFN, DL, MHA, and “head” represent the fully connected
layer, encoder layer, feedforward network layer, decoder
layer, multi-head attention layer, and attention head [3],
respectively.

The CRT consists of three main modules: the CRB,
Transformer encoder, and Transformer decoder. The details
of each module are described below.

1) Case Relation Block: The CRB first transforms the
inputs x linearly using a fully connected (FC) layer, frc(-).
The output hy € RV*dmodet js obtained as follows:

hy = {frc(zy' 7)), fro(@y®™), fro(zy™)},

where d,,,4c; denotes a dimension (e.g., 512). We concate-
nate them in this order to condition the output. hg € RV*4
is also obtained by concatenating 25"~ (i = 1,2,...,N) in
this order. hy and h¢ are input to the Transformer encoder.

2) Transformer encoder: The Transformer encoder con-
sists of six encoder layers, each of which consists of a box
multi-head attention layer and the FFN layer. The inputs to
each encoder layer are h®> and hg, where h ¢~ is the

output of the previous encoder layer, and hy for the first
layer.



First, in the box multi-head attention layer, a displacement
vector A(m,n) for regions m and n is calculated from their
information as follows:

A(m,n) = {A(0w, wp), A(6h, b)), Mwp, W), M hp, hin) }
Az, y) = log(z/y),

where w; and h; denote the width and hight of a region 1,
respectively. dw and 0h denote |r}} ;. — 75, | and |7 —
Tyminl> r€spectively. The geometric attention weights we;™
are then calculated as follows:

w@" = ReLU(fem (A(m,n)Weg), 3)

where fe,,(-) denotes the positional encoding used in the
Transformer. Query Qp, Key Kg, and Value Vg are also
calculated as follows:

QE = quhi<nd>a
Kp = Wi hit>, @)

wm

VE = erh‘<61>7

m

where W, Wy, and W, denote the weights for the Q g,
Kpg, and Vg, respectively.

Next, w#", Qr, Kg, and Vg are input to N attention
heads. At this time, Qg, Kg, and Vg are divided into Ng
pieces. The attention heads are implemented in parallel inside
the box multi-head attention layer. In each attention head, the

visual-based attention weights w’}'™ is calculated as follows:

mn _ QueKj
(.UA = 5
Vi
where d, = dpoder/NE denotes the number of dimensions
of K. the attention weights w™” € RY*V are calculated
from the visual-based attention weights w’}'"™ and wg™ by
the softmax function as follows:
_ wE expwi"
= —% ,
Yoo wi expwit
where w™ is calculated from h; ¢~ using Equation .
Then, the self-attention hg,, which is the output of each
head is calculated as follows.

hsa = fsa(QEa KEa VE)

®)

wmn

(6)

The outputs from the Np attention heads are concatenated
and transformed as follows:
b = frmn(QE, KE, Vi)
= {h3 7 A3 RGTETIWH (@)

hS = QWS KgWE VW),

where WM denotes the weight for the h,,;. h,,; is com-
bined with the inputs h°’>. The output of each encoder
layer h=¢> is calculated as follows:

out
h5d” = fren (Bmn), )

where frpry(-) denotes the FEN layer. h5¢> is then input
to the Transformer decoder.

3) Transformer decoder: The decoder is a stack of six
decoder layers consisting of a masked multi-head attention
layer, a multi-head attention layer, and the FFN layer. The
inputs of the Transformer decoder are hi<nd€C> and Y1.m,
which are the output from the encoder h3S"*” and the
sentence, respectively. y1.; and h9°> (k € N) represent

the following sequence:

Yk = (ylv Y2, - yk)a
higec> _ (h1<dec>,h2<dec>’ . hljdec>). (10)
In training, we set m = N, where N denotes a sentence
length. In testing, we set m = 1: j —1, n = j to predict the
j-th word.

First, in the masked multi-head attention layer, y;.,, is
masked to prevent the decoder from receiving the ground
truth. The self-attention of y1.,,, Rems, 1S calculated in the
same way as from Equation (4)) to Equation , where h;fl>
and w™" are replaced by Y., and softmax(w’y™). Next,
in the multi-head attention layer, Qp, Kp, and Vp are
calculated as follows:

QD = quhemba
— <dec>
Kp = Wyqh; o7,
<dec>
Vb = Wyah;, 7,

Y

where W4, Wi4, and W4 denote the weights for the Qp,
Kp, and Vp, respectively. Then the same processing as in
the Equations (8) and (9) are performed. For this processing,
we can generate an embedded token sequence using the
information acquired by the encoder. The output is denoted
the token sequence hy%°>. The token sequence hi %>,
which is the output of the decoder layer, is calculated by the
FFN layer.

4) Generator: The input to the Generator is b, € R!*?12,
h, is set as h9%°> in testing, and hy%“> in training.
The probability p(§) is then calculated for each word in
the dictionary as follows:

p(§) = softmax(frc(hyg)), (12)

where ¢ denotes the predicted sentence sequence. This word
prediction is performed sequentially.
We use the following loss function:

1~
L=—7 3 log(p(iig),

i=1 j=1

(13)

where I and J denote the number of samples and length of
each sentence, and ¢ and j denote their indexes. Further, and
p(9i;) denotes prediction probability of the predicted word
15, respectively. The sample is defined as a set consisting
of a target object, destination, context information, and an
instruction sentence.

We set m = N and n = N in training, where N denotes
a sentence length, and set m = 7 — 1 and n = j in testing,
where j denotes the number of words to be predicted.



V. EXPERIMENTS
A. Dataset

From the viewpoint of reproducibility, we use the standard
dataset, PFN-PIC, which is publicly available [28]. The
dataset contains information about the target object’s region
and the destination, which is sufficient for the evaluation in
this study. In the experiments, we validated our model with
the PFN-PIC dataset.

The PFN-PIC dataset contains object manipulation in-
structions in English [28]. The sentences were given by
annotators via crowdsourcing using Amazon Mechanical
Turk. They were asked to give sentences using intuitive
and unambiguous expressions about the target object and
destination. The dataset contains ambiguous or incorrect
expressions, as reported in [28]. Such expressions were not
filtered out in this study.

The dataset consists of the coordinates of the target
objects, information about the destination (top right, bottom
right, top left, or bottom left), and instruction sentences. In
this study, we did not make any changes to the dataset itself
except for small changes to the format.

The PFN-PIC dataset was annotated with instruction sen-
tences by at least three annotators for each target object. The
dataset is divided into two parts: a training set and validation
set. The training set consists of 1,180 images, 25,900 target
objects, and 91,590 instructions. The validation set consists
of 20 images, 352 target objects, and 898 sentences of
instructions.

We split the training set of the PFN-PIC dataset into a
training set and validation set. We used the training set for
training the parameters and the validation set for selecting the
appropriate hyperparameters. We used the validation set of
the PEN-PIC dataset as the test set and used it to evaluate the
performance. The training, validation, and test sets contained
81,087, 8,774, and 898 samples, respectively.

B. Parameter settings

The parameter settings of the CRT are shown in Table
In this table, “#Layers” represents the number of encoder
layers in the Transformer encoder and decoder layers in the
Transformer decoder, and “#Attention heads” represents the
number of attention head layers in a multi-head attention
layer. The values of hyperparameters were based on the ORT.
The total number of trainable parameters was 59 million.
The training was conducted on a machine equipped with a
GeForce RTX 2080 Ti with 11 GB of GPU memory, 64 GB
RAM, and an Intel Core 19 9900K processor. The feature
extraction by Up-Down Attention [19] was performed on
a machine equipped with a TITAN RTX with 24 GB of

TABLE I: Parameter settings of the CRT

Optimizer Adam (87 = 0.9, 5, = 0.999)
Learning rate 5.0 x 10~%
Batch size 15
#Epochs 10
#Layers 6
# Attention heads | 8

TABLE II: Quantitative comparison. The methods have been
compared on the PFN-PIC dataset by using the five standard
metrics. The mean and standard deviation were calculated
on five experimental runs. The best scores are in bold.

Method ‘ BLEU4 ROUGE-L METEOR CIDEr-D  SPICE
SAT [29] 9.6+0.5 36.1+0.5 172403 15.4+0.7 9.4+0.6
ABEN [2] | 15.2105 46.8+1.0 21.2+08 182418 23.442.
ORT [4] 8.0+1.2 39.4+0.7 17.3+0.7 279425 264413
Ours 14.941.1 49.7+1.0 23.1+07 96.6+120 44.0+23

GPU memory, 256 GB RAM and an Intel Core i9 9820X
processor.

Pre-training and fine-tuning took approximately one hour.
To select the best model, we evaluated the performance of
the validation set every 3,000 samples during training. We
saved the model with the highest SPICE [25] score and used
it for the evaluation on the test set.

C. Quantitative results

We compared the CRT and the SAT model [29], the ORT
[4], and the ABEN [2]. Table [IT] shows the quantitative re-
sults. We conducted five experimental runs for each method,
and the table shows the mean and standard deviation for each
metric.

The SAT was used as a baseline because it is one of
the most basic models for the image captioning task. We
compared the ORT and the CRT to confirm how much the
CRB contributed to performance. We also compared the CRT
and the ABEN, which did not use the Transformer encoder—
decoder architecture. The SAT and the ORT were trained for
20 epochs. We show the result with the best parameter setting
on the PFN-PIC dataset [28] regarding the ORT. The ABEN
was trained for 30 epochs. We used 4,000 samples in the
training set for the ABEN because when we used all samples,
the training did not satisfy the termination condition.

In this evaluation, we used the standard metrics described
below. The primary metric are SPICE and CIDEr-D [24], that
are standard metrics for image captioning tasks. BLEU4 [21]
shows the n-gram precision of the generated sentence with
the respect to the reference. ROUGE-L [22] is mainly used
for summarization and shows the rate of concordance rate
with the reference. METEOR [23] considers the precision
and recall of the generated sentences with respect to uni-
grams. CIDEr-D is used for image captioning, and it shows
the similarity between a generated sentence and a reference
sentence. SPICE is another metric for image captioning tasks.

First, we compare the CRT and the SAT. In Table [[I, the
SPICE and the CIDEr-D were improved by 35.5 and 81.7
points, respectively. The other three metrics scores were also
improved.

Next, we compare the CRT and the ABEN. The table
shows that the SPICE and the CIDEr-D were drastically
improved by 20.6 and 78.4 points, respectively. This indi-
cates that the Transformer encoder—decoder was an effective
approach to the FIG task.

Finally, we compare the CRT and the ORT. The table



TABLE III: Ablation studies on the types of input information. The methods were compared on the PFN-PIC dataset by

using the five standard metrics. The best scores are in bold.

Ablation condition BLEU4 ROUGE-L METEOR CIDEr-D SPICE
Condition ‘ X<cont> ‘ w<dest> ‘ w<targ>
(a) v T.1+1s 39.6+0.6 16.5+1.0 27.6+2.3 27.3+2.2
(b) v 126446 42707 19.7225  34.04s5  29.5464
© v 9.5x0.7 43.9x0.7 19.310.5 74.6x4.9 33.4x1
(d) v v 13.3+1.0 44.0+0.5 20.4+x0.4 37.0x2.8 33.0+0.5
(C) v v 10.3+0.6 44.6+1.1 19.7+0.7 81.8+7.0 34.5+2.5
(f) v v 14.941.0 49.3+1.1 23.0+0.5 92.1161 425425
(g) v v v 14.941.1 49.7+1.0 23.1+0.7 96.6+12.0 44.042.3

shows that the SPICE and the CIDEr-D were drastically
improved by 17.3 and 67.3 points, respectively. The CRT
outperformed the ORT with respect to the other three metrics
as well. This indicates that the CRT, using the CRB, success-
fully handled the referring expressions of a target object and
destination.

D. Ablation studies

We conducted ablation studies on the types of input
information. Table quantitatively shows the mean and
standard deviation of five experimental runs. We investigated
which input features contribute the most to the performance
improvement. We considered the seven conditions (a) to (g)
shown in Table regarding the combination of the input
information w<targ>’ x<dest>, and X<cont>.

Comparing the conditions (a) and (b) with the condition
(c), the SPICE decreased by 6.1 and 3.9 points, respectively.
Comparing the condition (d) with the condition (e) and (f),
the SPICE decreased by 1.5 and 9.5 points, respectively.
These results indicate that the £ <*"9> contributed the most
to performance improvement.

Comparing the condition (a) with the condition (b), the
SPICE decreased by 2.2 points. Comparing the condition (e)
with the condition (f), the SPICE decreased by 8.0 points.
From this, <%"> contributed to the performance improve-
ment more than X <¢°**>. On the other hand, comparing
the condition (f) with the condition (g), the SPICE decreased
by 1.5 points. From this, X <¢°**> also contributed to the
performance improvement.

E. Qualitative results

Fig. ] shows the qualitative results. In the figure, the top
panels show the input scenes, and the bottom box shows
a reference sentence and the sentences generated by the
ABEN and the CRT. The light blue and red bounding boxes
represent the target object and the destination, respectively.

The left-hand sample in the figure shows a sentence that
was generated successfully. In the sample, the target object
and the destination are “the cola can in the bottom right
box,” and “top right,” respectively. In this sample, there
are two Coke (referred to as “cola”) cans, therefore, an
instruction sentence must clearly specify the target object. In
the reference sentence, the can was specified as “the cola can

near to the white gloves.” In the sentence generated by the
CRT, the target object was referred to as “the red can from
the bottom right box.” This indicates that the CRT succeeded
in identifying it using a spatial referring expression that was
different from reference but still reasonable. On the other
hand, in the generated sentence by the ABEN, the target
object and the destination were referred to as “the white
bottle with black labels from the upper left box” and “the
upper left box,” respectively. Neither of these expressions is
correct.

Similarly, the second sample in the middle column il-
lustrates the successful results obtained by the CRT. In
the sample, the target object and the destination is “black
mug,” and “bottom left,” respectively. The reference sentence
described the target object as “the rectangular black thing,”
which was ambiguous. On the other hand, in the generated
sentence by the CRT, the target object was referred to as “the
black mug,” which was valid. In the generated sentence by
the ABEN, both the target object and the destination were
incorrectly referred to as “the red bottle” and “the right upper
box.”

The right-hand sample illustrates a failure case of the
CRT. In the sample, the target object and the destination
were “silver can,” and “top left,” respectively. The reference
sentence referred to the target object and the destination
as “the round container in the right gand corner of the
bottom right corner” and “the top left corner,” respectively. In
this sentence, “gand” is a misspelling of “hand.” Moreover,
“in the right gand corner of the bottom right corner” is
redundant, i.e., “of the bottom right corner” is enough. The
generated sentence by the baseline referred to the target
object as “the white bottle with black cap from the upper
left box.” This is incorrect because the target object is not
“the white bottle with black cap.” Furthermore, the target
object is not in “the upper left box.” The sentence generated
by the CRT referred to the target object as “the white tin.”
It indicates that this is because the target object looks white
due to the reflection of the light.

F. Subject experiment

We conducted a subject experiment in which we compared
the reference sentences, sentences generated by the baseline



Ref: “grab the cola can near to the
white gloves and put it in the upper

right box™

Ref: “move the rectangular black
thing from the box with an empty
drink bottle in it to the box with a

Ref: “grab the round container in
the right gand corner of the bottom
right corner and place it in the top

ABEN: “move the white bottle coke can in it

left corner™

with black labels from the upper

left box to the upper left box™ right upper box”

ABEN: “move the red bottle to the

ABEN: “move the white bottle
with black cap from the upper left

Ours: “move the red can from the

bottom right box to the top right lower left box™

Ours: “move the black mug to the

box to the upper left box”

Ours: “move the white tin to the

box”™

left upper box”

Fig. 4: Three samples of qualitative results. Top figures show input images with bounding boxes of target objects (light blue)
and destinations (red). Bottom tables show a reference sentence and sentences generated by the ABEN and CRT.

[2], and sentences generated by the CRT. We used the Mean
Opinion Score (MOS) as a metric.

Five subjects in their twenties participated in the experi-
ment. Researchers and students specializing in crossmodal
language processing were excluded from the subjects to
avoid biased evaluation by experts. We asked the subjects
to perform the evaluation at their own work speed.

In the experiment, 50 images were randomly selected from
the test set. Those images and reference and generated sen-
tences were randomly presented to the subjects. The subjects
evaluated the sentences in terms of their intelligibility on a
5-point scale as follows:

1: Very bad, 2: Bad, 3: Normal, 4: Good, 5: Very good.

Table [V] shows the mean and standard deviation of the
MOS. In Table [[V] the MOS of reference sentences was 3.8,
which was considered to be the upper bound in this study.
The MOS of the CRT was 2.6 and the MOS of the ABEN
was 1.2. Statistical significance between the CRT and the
ABEN is p = 8.8 x 10735 (< 0.001). It is indicated that the
CRT outperformed the ABEN in the subjects experiment as
well.

G. Error Analysis

We analyzed failure cases by the CRT below. We randomly
selected 100 samples from the generated sentences for 8§98

TABLE IV: MOS results in subject experiment. The mean
and standard deviation are shown.

Method | MOS
Reference sentences (upper bound) | 3.8 1.2
ABEN [2] (baseline) 1.24+04

Ours 26+1.5

samples of the test set, and confirmed a total of 43 failures
in 42 samples.

Table [V] shows the error analysis. We categorized the erro-
neous generated sentences based on main cause as follows:

o STE (serious target object error): The generated sen-
tence contains a serious error regarding the color and/or
shape of the target; e.g., white gloves were represented
as “white and green box.”

« MTE (Minor target object error): The generated sen-
tence contains a minor error regarding the color or shape
of the target; e.g., blue and white striped sandals were
represented as “blue and white tube.”

« DE (Destination error): A generated sentence contains
an incorrect expression about the destination; e.g., the
top-right box in the image was incorrectly expressed as
“the left lower box.”

o SE (Spatial referring expression error): A generated sen-
tence contains an incorrect spatial referring expression
to identify the target object and destination; e.g., the
destination was expressed as “to the box with the blue
flip flop” even though there were no blue sandals.

e O (Others): This category includes cases where an
instruction sentence contains other errors.

From Table [V the major error of the CRT is STE.
Therefore, there is room for improvement in the process of
correctly expressing the characteristics of the target object.
In particular, some improvement in the image preprocessing
(e.g., using EfficientNet [30] or Vision Transformer [31]
instead of the ResNet-50) may be envisioned to decrease
the number of STE.

VI. CONCLUSIONS
Most data-driven approaches for crossmodal language
understanding require large-scale datasets. However, building



TABLE V: Error analysis on the CRT. Categories of error

types.
Error ID | Description #Errors
STE Serious target object error 22
MTE Minor target object error 12
DE Destination error 0
SE Spatial referring expression error 7
o Others 2
Total - 43

such a dataset is time-consuming and costly. We hence pro-
posed the Case Relation Transformer (CRT), a crossmodal
language generation model that can generate an instruction
sentence that includes referring expressions with a target
object and destination.

Our contributions are as follows:

e In the CRT, the Case Relation Block was introduced

to handle the relationships between the target object,
destination, and context information.

The CRT outperformed the baseline models on five
standard metrics in the fetching instruction generation
task.

The results of the subject experiment using the MOS
also shows the CRT could generate statistically signifi-
cantly better sentences than the ABEN [2].

In future research, we will train a crossmodal language
understanding model using the dataset augmented by the
proposed method.
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