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Communicating Inferred Goals with Passive
Augmented Reality and Active Haptic Feedback
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Abstract—Robots learn as they interact with humans. Consider
a human teleoperating an assistive robot arm: as the human
guides and corrects the arm’s motion, the robot gathers infor-
mation about the human’s desired task. But how does the human
know what their robot has inferred? Today’s approaches often
focus on conveying intent: for instance, using legible motions or
gestures to indicate what the robot is planning. However, closing
the loop on robot inference requires more than just revealing
the robot’s current policy: the robot should also display the
alternatives it thinks are likely, and prompt the human teacher
when additional guidance is necessary. In this paper we propose
a multimodal approach for communicating robot inference that
combines both passive and active feedback. Specifically, we lever-
age information-rich augmented reality to passively visualize what
the robot has inferred, and attention-grabbing haptic wristbands
to actively prompt and direct the human’s teaching. We apply
our system to shared autonomy tasks where the robot must infer
the human’s goal in real-time. Within this context, we integrate
passive and active modalities into a single algorithmic framework
that determines when and which type of feedback to provide.
Combining both passive and active feedback experimentally
outperforms single modality baselines; during an in-person user
study, we demonstrate that our integrated approach increases
how efficiently humans teach the robot while simultaneously
decreasing the amount of time humans spend interacting with
the robot. Videos here: https://youtu.be/swq_u4iIP-g

Index Terms—Haptics and Haptic Interfaces, Virtual Reality
and Interfaces, Intention Recognition

I. INTRODUCTION

IMAGINE teaching an assistive robot arm how to put away a
coffee cup (see Fig. 1). You want the robot to place this cup

upright on the lower shelf — as the robot moves toward the
shelves, you correct its mistakes and guide the robot towards
your desired goal. The robot gathers information in real-time
from your corrections, updating its understanding of how and
where it should carry the coffee cup. But how do you know
what the robot has inferred? Ideally you would like to know
when you have taught the robot enough, so that you can step
away and do something else. But without feedback you are
stuck watching the robot throughout the entire task, unsure
whether it fully understands your goal, or what corrections
you should provide to remove any remaining confusion!

Existing research enables robots to convey their intent to
nearby humans [1]–[5]. These prior works study a spectrum
of different modalities, including legible motions, language,
gaze, gestures, and displays. Each new modality offers a
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Figure 1. Human teleoperating a 7-DoF robot arm. (Top) The robot believes
it should place the cup on a shelf, and passively visualizes the likely options
in augmented reality. (Middle) But the robot is still uncertain about the right
shelf. To elicit informative feedback, the robot actively signals the haptic
wristband, and prompts the human to guide the robot either up or down.
(Bottom) The human responds by moving down. In augmented reality, the
robot shows that it has inferred the bottom shelf is the human’s goal.

separate channel for providing intent feedback to the human.
But communicating inferred behavior requires more than just
intent: the robot learner must indicate what it thinks it should
do, display its confidence that this inferred behavior is correct,
and even prompt additional human teaching when unsure.
As robot learners move from communicating their immediate
intent to proactively involving human teachers, we propose
that robots synthesize multiple modalities to close-the-loop and
make it clear what they do and do not know.

Selecting the right modalities often depends on the current
user and task. But — whichever modalities we choose —
our central hypothesis is that combining passive and active
feedback will better bring the human into the learning loop

https://youtu.be/swq_u4iIP-g
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than systems which only leverage a single feedback type:

Robots should passively convey what they have inferred, and
actively prompt the human when teaching is required.

Specifically, in this paper we integrate augmented reality
displays and wearable haptic feedback to develop a multimodal
interface that passively communicates learning and actively
elicits teaching. We apply our system to shared autonomy
settings [6]–[8]. Here the robot arm knows a discrete set of
possible goals, and infers the desired goal from the human’s
teleoperation inputs. As shown in Fig. 1, our interface pas-
sively displays the different ways to complete the task that
the robot thinks are likely, and actively prompts the human
when further teaching is required. We conduct user studies
to test how this feedback system affects interactions between
human teachers and robot learners. When compared to single
modality baselines, we find that the combination of passive and
active feedback i) prevents users from continuing to teach the
robot after it has already learned what they want, ii) reduces
the amount of time users spend monitoring the robot, and iii)
improves user teaching so that the robot infers what the human
wants from fewer interactions.

Overall, our proposed system is a step towards transparent
robot learning and accelerated human teaching. We make the
following contributions:

Combining Multiple Feedback Modalities. Unlike related
works that only consider a single modality, we integrate
an existing augmented reality head-mounted display with a
novel haptic wristband to convey multimodal information and
proactive alerts about robot inference to human teachers.

Converting Robot Inference to Passive and Active Feed-
back. Specifically in the context of shared autonomy, we
formulate an approach that maps robot inference to intuitive
multimodal cues. The resulting algorithm determines when
to provide which type of feedback, identifies critical states
where additional human teaching is especially important, and
prompts the most informative direction of human input.

Conducting a User Study. We compare passive and active
feedback to single-modality visual, haptic, and augmented
reality baselines across an in-person user study. Participants
traded-off between teaching the robot arm and performing a
distractor task. We find that our approach reduces the amount
of time a user must spend focused on the robot learner, and
also improves the user’s teaching efficiency.

II. RELATED WORK

We build on prior work towards explainable robot learners.
This includes research that generally communicates robot
intent to nearby humans, research that specifically focuses
on augmented reality and haptic displays, and research that
reveals what the robot is inferring during shared autonomy.

Communicating Robot Intent. For humans and robots to
seamlessly collaborate it must be clear to the human what
the robot is trying to do [1]. Recent works have developed a
variety of different modalities that robots leverage to convey
their intent. For instance, robots can use legible motions
to make their goals clear to human onlookers [2], [9], or

incorporate natural language to communicate their objective
[3], [10]. Non-verbal communication such as gestures [5],
[11] or gaze [4] are also expressive channels for indicating
where the robot plans to go. Besides these implicit cues, robots
employ explicit indicators in the form of projections [12], [13]
— where they render 2D images onto the environment — or
on-board lights [14] — which are functionally similar to turn
signals on cars.

But while many distinct modalities are available for con-
veying intent, we emphasize that this is different from com-
municating robot inference. Think of our motivating example:
communicating the robot’s intent is equivalent to showing the
final cup location and orientation that the robot thinks is most
likely and currently intends to reach. Yet this alone is not
enough to make the robot’s learning transparent: we may also
need to highlight the alternative goals and trajectories the robot
is reasoning over, or ask the human for additional feedback to
determine which goal is correct.

Augmented Reality and Haptics. In order to convey detailed
and attention grabbing signals about robot inference we turn
to augmented reality and haptic feedback. Augmented reality
head-mounted displays have previously been used to facilitate
human-robot interaction [15], [16]. Most relevant here are
[17]–[20], where the authors leverage augmented reality to
convey the robot’s internal state, visualize where the robot
plans to go, and establish bidirectional communication with the
human. This visual overlay succeeds when users are looking
directly at the robot — but when users look away, these
graphics are no longer in view. We explore settings where
the human must split their attention between the robot and
other tasks. Accordingly, we incorporate haptic wristbands that
humans wear without encumbering their hands. Recent works
have designed similar wristbands to provide tactile feedback
for augmented reality [21], [22].

Overall, today’s research on augmented reality and haptic
feedback either develops these two modalities separately, or
else utilizes haptics to make interactions with the virtual
world seem more realistic. By contrast, we combine the two
modalities into a single framework to close-the-loop during
robot inference. Both active and passive feedback are im-
portant because they serve complementary roles: we leverage
augmented reality to visualize the high-dimensional behaviors
the robot has inferred, and apply haptics to spark and direct
user inputs when additional teaching is required.

Revealing Robot Inference. Creating learners that are in-
terpretable by human users is an active area of study [23].
For instance, in [24] the robot displays informative examples
of its learned behavior on a computer screen, enabling users
to extrapolate the robot’s underlying objective. Understanding
robot learning becomes especially challenging when that learn-
ing consists of networks with thousands of weights. However,
shared autonomy requires only low-dimensional inference:
here the robot is inferring the human’s desired goal from
a discrete set of options [6]–[8]. Related work has taken
advantage of this structure to visualize the robot’s inferred
goal using augmented reality [25], [26].

Importantly, this related research provides purely passive
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Figure 2. Our haptic wristband for delivering active feedback. This device can both gently squeeze the wearer’s wrist and render localized vibration patterns.
Left: Exploded view of the electronics housing. The microcontroller (1) sits over the battery (2) and squeeze mechanism (3). Three motor drivers responsible
for controlling vibration (4) are accessible behind the front panel. Middle-Left: Fully assembled haptic device with cord (5). Middle-Right: Vibrotactors (6)
are held in place by printed casings (7). Right: To prompt the human we squeeze their wrist and activate multiple vibrotactors in a pre-defined pattern. For
instance, powering the left and right vibrotactors encourages the human to guide the robot either right or left.

feedback to the user: i.e., while the user watches the robot they
see overlays indicating where the robot thinks it should go. But
we are also interested in active feedback which influences the
human to provide new and informative demonstrations. We
envision a system that prompts the human when the robot is
confused, and even suggests to the human the direction of
input that would best reduce the robot’s uncertainty about the
human’s desired goal.

III. DEVELOPING MULTIMODAL INTERFACES FOR
COMMUNICATING ROBOT INFERENCE

We seek transparent robot learners that involve humans in
the teaching process. Our hypothesis is that we can better the
human into the learning loop with multimodal feedback —
both in the form of passive visualizations, which display the
goals that the robot has inferred, and active prompts, which
direct the human towards effective teaching inputs. In this
section we develop complementary interfaces for each type
of feedback. We particularly focus on the design of a custom
haptic wristband for eliciting human teaching.

A. Passive Visualization: Augmented Reality

We start by leveraging an existing augmented reality head-
mounted display (Microsoft HoloLens) to overlay graphics
onto the real-world environment. These visualizations can
passively convey complex information — for example, as the
human looks at the robot arm, they see high-dimensional tra-
jectories that the robot has learned from their demonstrations.
But how should we design these visualizations to intuitively
convey what the robot does and does not know?

In order to create user-friendly visualizations we take in-
spiration from successful prototypes in prior work [18], [25],
[26]. After implementing these prototypes across short pilot
tests — where humans teleoperated the robot arm to perform
simple shared autonomy tasks — we arrived at a design
similar to NavPoints [17]. As shown in Fig. 1, here the
robot augments the environment by displaying the position
and orientation of end-effector waypoints along its likely
trajectories. The position of each waypoint is marked with
a sphere, while its orientation is denoted by an arrow.

This visualization design is suitable for shared autonomy
tasks where the robot reasons over multiple possible goals.

Returning to our motivating example, imagine the robot is
unsure whether it should place the cup on the top shelf or the
bottom shelf: our design visualizes this uncertainty through
two trajectories starting at the robot’s end-effector and going
to both of the shelves. The starting point of every trajectory is
affixed to the robot’s end-effector and moves with that robot.
When the robot updates its understanding of the human’s goal,
we now vary the color and transparency of each trajectory to
passively signal what the robot has inferred: our algorithm for
mapping inference to this augmented reality visualization is
introduced in Section IV.

B. Active Prompts: Haptic Wristband

To provide haptic feedback we designed and built a low-
cost, wireless, and lightweight wristband (see Fig. 2). Users
wear this device just like a watch. The wristband provides
two separate types of active haptic signals: gently squeezing
the human’s wrist and vibrating in patterns distributed around
the band. Together, these two alerts convey low-dimensional
and targeted information. For instance, when the robot needs
additional guidance, the device lightly squeezes the human’s
wrist and prompts the human by vibrating in the direction
where user inputs would be most informative.

Squeeze Feedback. The haptic wristband generates squeeze
forces through a cord and reel system. This system is con-
trolled by a high torque N20 DC motor which sits centrally
in the main housing of the device (refer to Fig. 2). When we
actuate the DC motor in one direction, the cord is retracted
into the central housing equally from both sides; actuating the
motor in the opposite direction releases the cord and relaxes
the band. The cord is routed through the components of the
haptic device and is never in direct contact with the wearer’s
skin. To make this device more comfortable, we normally keep
the band in a relaxed state, and only squeeze on the human’s
wrist at short intervals to provide notifications.

Vibrotactile Feedback. Localized vibrations are output by
six cylindrical ERM motors that are evenly spaced around
our flexible 3D printed wristband. Each ERM motor (i.e.,
each vibrotactor) sits rigidly in a resin-printed housing which
transfers vibrations directly onto the wearer’s skin. We created
a compliant accordion-style wristband so that the band fits
varying wrist shapes while isolating vibrations from adjacent
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vibrotactors. Activating multiple vibrotactors in sequence cre-
ates patterns which carry additional information: for example,
we can activate the top and bottom vibrotactors to indicate to
the human to guide the robot either up or down.

IV. MAPPING ROBOT INFERENCE TO
PASSIVE AND ACTIVE FEEDBACK

So far we have worked on two feedback modalities in par-
allel: we created visual designs for existing augmented reality
displays and developed a complementary haptic wristband.
In this section we combine these two feedback mechanisms
into a single formulation for communicating robot inference
within shared autonomy settings. We derive a decision rule for
providing each type of feedback — augmented reality is used
for passive, information rich visualizations of goals the robot
thinks are likely, while the haptic wristband is used to actively
signal the user and elicit additional teaching.
Setting. We start by returning to our example from Fig. 1.
Here the human is teleoperating a robot arm, and the robot is
inferring the human’s goal to autonomously assist the human.
Let s ∈ S be the robot’s state (e.g., end-effector position), let
a ∈ A be the robot’s action (e.g., end-effector velocity), and
let transition function T (s, a) capture the robot’s dynamics.
We consider systems with continuous state and action spaces.
The human has in mind a goal g ∈ G that they want the
robot arm to reach (e.g., placing the cup on the lower shelf ).
Their reward function Rg(s, a) depends upon this chosen goal.
The robot seeks to maximize the human’s cumulative reward
subject to uncertainty over the human’s goal1.

Consistent with prior work on shared autonomy [6]–[8], we
assume that the set of possible goals G is discrete and the robot
knows G a priori. In practice, these goals can be anywhere in
the robot’s workspace: the only constraint is that the robot
must know the possible goal locations G prior to interaction.
But while the robot knows the human’s candidate goals, it does
not know the human’s goal during the current task. Instead, the
robot maintains a belief b over the set of possible goals. This
belief is a probability distribution, i.e., b(g) = 1 indicates that
the robot is completely convinced that g ∈ G is the human’s
current goal.

Without any insight from the human the robot would have
no way of updating b and inferring the preferred goal. But
the robot is not performing this task alone — both the human
and robot share control over the robot’s motion. The human
applies joystick inputs to teleoperate the robot arm, so that
ah ∈ A is the human’s commanded action. The robot linearly
blends this human input with its own autonomous assistance
ar ∈ A to get the overall action [6], [8]:

a = (1− α) · ah + α · ar (1)

where α ∈ [0, 1] arbitrates control between human and robot.
During our user study we select α = 0.4 so that the human’s
actions are given more weight than the robot’s assistance.

If action ah results from the human’s teleoperation input,
how do we obtain ar? The robot selects this autonomous

1This is an instance of a partially observable Markov decision process where
g is the unknown state and Eq. (4) is the observation model [7].

action to assist the human based on what it has inferred so far.
Assuming that the robot will fully observe the human’s desired
goal at the next timestep, the optimal autonomous action at
state s given belief b becomes [7]:

ar = argmax
a∈A

∑
g∈G

b(g) ·Qg(s, a) (2)

Here Qg(s, a) is the cumulative reward of taking action a in
state s and then optimally completing the task to reach goal
g. We use Qg(s, a) = −‖T (s, a)− g‖2 in our user studies to
compute this in closed form and perform inference at 1 kHz.
Intuitively, Equation (2) encourages the robot to assist across
all likely goals. As the robot becomes increasingly confident in
a particular goal g, it leverages Equation (2) to move directly
towards that goal.

A. Conveying Inference with Passive Visualizations

The robot infers the human’s preferred goal by observing
their teleoperation commands ah. We propose to utilize aug-
mented reality head-mounted displays to visualize what the
robot is inferring. Augmented reality is suitable here because
it offers a user-friendly and intuitive way to convey dense,
high-dimensional information (e.g., trajectories).

Belief Conditioning. Jumping back to our motivating exam-
ple, imagine that you are trying to teach the robot arm. At
the start of the task the robot has a uniform belief b over
different ways to place the cup on the shelves. But you do not
know this — perhaps you think you need to teach the robot
to move towards the shelves in the first place. To reveal what
the robot already knows, here the visualization should show
multiple, equally likely trajectories reaching for the shelves.
As the robot starts moving to the shelves, you begin to correct
its behavior, and the robot updates it’s belief to place higher
likelihood on your desired goal. Now the visualization should
change: instead of showing equal trajectories for every goal,
the robot should emphasize the trajectories that correspond to
your likely goal(s). Put another way, the robot’s visualization
not only depends on where the robot and goals are located,
but it also depends on the robot’s belief.

Inference. In order to display the robot’s inference we must
map beliefs to visualizations. Before we do this, however, we
first need to determine how the robot infers the human’s goal.
Here we apply Bayesian inference to extract the human’s goal
from their action inputs. Assuming that the human’s inputs ah
are conditionally independent, we reach:

bt+1(g) = P (g | D) ∝ P (ath | st, g) · bt(g) (3)

where D = {(s1, a1h), . . . (st, ath)} is the set of human inputs
and t is the current timestep. Notice that Equation (3) only
depends on human actions and not the autonomous assistance
— this prevents the robot from incorrectly learning from itself
through a feedback loop. In practice, to evaluate Equation (3)
we need the likelihood function P (ah | s, g), which models
how probable it is that the human will choose action ah
given that their goal is g and the robot is in state s. Within
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shared autonomy, this likelihood function commonly follows
the Boltzmann-rational model [8]:

P (ah | s, g) =
e βQg(s,ah)∫
e βQg(s,a) da

≈ e βQg(s,ah)

e βQg(s,ag)
(4)

On the far right side we use Laplace’s method to approximate
the denominator, so that ag is the optimal action to reach goal
g. The constant β ≥ 0 is a tunable hyperparameter which
determines how sensitive the robot is to each human input.
When β → 0 the robot treats the human’s actions as random,
and when β → ∞ the robot models the human as perfectly
rational. We used β = 0.1 for our user study.

Visual Mapping. Combining Equations (3) and (4) we have
a way to update the robot’s belief. Our final step is to map
this changing belief into an augmented reality visualization.
Although there are an infinite number of valid possibilities,
we draw from prior work to identify a natural mapping that
requires minimal user interpretation [17], [18], [25].

Specifically, we map the robot’s inferred belief over each
goal to the color and transparency of the corresponding
waypoints (see Fig. 1). When the robot is sure that a given g
is not the human’s desired goal, i.e., b(g)→ 0, the trajectory
moving to that goal (and the goal itself) are rendered as
completely transparent. Conversely, as b(g)→ 1 and the robot
becomes more confident that g is the human’s goal, we linearly
interpolate the waypoint color between a dull gray and vibrant
orange. This mapping intuitively highlights goals the robot
thinks are likely while simultaneously hiding goals that the
human does not want.

B. Eliciting Teaching with Active Prompts

We hypothesize that our augmented reality feedback will
reveal the robot’s inference while the human is watching the
robot (and can see the visual overlays). But what happens
when the human looks away to do something else? So far the
feedback has been purely passive — providing information
only when the human seeks it out. Next we turn to active
haptic feedback that purposely alerts the human and guides
their teaching, even if they are not concentrating on the robot.
Wearable haptics is suitable here because it offers direct,
attention grabbing signals without encumbering the human.

We break this problem down into two parts: i) determining
when to provide haptic prompts and ii) selecting which haptic
prompts will elicit useful human teaching.

When to Prompt. In our motivating example you are trying
to teach the robot to place a coffee cup upright on the lower
shelf. At the beginning of the task you notice that the robot
is moving towards the shelves — and since the robot is going
in the right direction, you turn away to focus on something
else. The robot still needs to figure out whether it should
place the cup on the top shelf or the lower shelf; but when
is the right time to ask for your feedback? At the start of
the task the shelves are far away, and the trajectories to both
the top and bottom shelf are very similar. However, as the
robot approaches the shelves, the trajectories for the two likely
goals diverge, and the robot needs to make a decision (should

I move up or down?). Intuitively, we want to alert the human
at important decision points.

Drawing from prior research on critical states [27] and
inverse reinforcement learning [28], we define these decision
points as states s where taking the robot’s autonomous action
ar will produce a much worse result than acting optimally:

C(s) =
∑
g∈G

b(g) ·
(
Qg(s, ag)−Qg(s, ar)

)
(5)

Here C is a measure of how critical the state s is, and if C
exceeds some threshold σ then the robot is in a critical state.
Recall that ag is the optimal action for goal g (e.g., moving in
a straight line from s towards g). Our choice of Equation (5)
highlights states where multiple likely goals require very
different actions, and the robot needs more information in
order to select the correct action.

Which Prompt to Use. We keep track of Equation (5) during
the task, and use the haptic wristband to alert the human when
C(s) > σ. This prompt brings the human’s attention back
to the robot — but what feedback should the human teacher
provide when they receive an alert? In our running example,
the robot has reached the shelves and is unsure whether the
cup belongs on the upper or lower shelf. Here the robot would
learn the most from an input ah which moves the robot either
up or down. More generally, we want to encourage the user
to teleoperate the robot in the direction that best removes
uncertainty over the human’s goal.

Recall that our haptic device has vibrotactors distributed
around the wearer’s wrist (see Fig. 2). By actuating these
vibrotactors in patterns we render direction-based prompts to
the human [29]. Let U be the set of prompts we can render:
for instance, uz ∈ U alternates between actuating the top
and bottom vibrotactors to prompt the user to teleoperate the
robot up or down. Given that the robot has reached a critical
state, which stimuli u ∈ U should we send? Intuitively, we
search for the stimulus u which — if the human responds
— provides the most information about the human’s unknown
goal. Formally, we elicit the direction of human teaching that
greedily maximizes the robot’s expected information gain:

u∗(s) = argmax
u∈U

I(g, ah | u, s, b) (6)

Here I is mutual information and ah is the human’s response
to prompt u. When solving for u∗ we assume that the human
will comply with the robot’s prompt — so that if the robot
chooses uz , the human will input either ah = up or ah =
down. Expanding Equation (6), we obtain [30]:

u∗(s) = argmax
u∈U

∑
ah∈u

∑
g∈G

b(g)P (ah | u, s, g)

· log2
P (ah | u, s, g)∑

g′∈G b(g
′)P (ah | u, s, g)

(7)

The key to evaluating Equation (7) is modeling the likelihood
function P (ah | u, s, g), which captures how likely it is that
the human will respond with action ah to prompt u. In other
words, if we signal prompt uz , what is the probability the
human applies ah = up instead of ah = down? Just like
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Figure 3. Example robot and human behavior during the Avoiding task. The robot is trying to drop a strawberry on the plate, but does not know how to
avoid the obstacle. When users receive feedback on the GUI (top row), they are more tentative, and spend extra time watching and correcting the robot. This
leads to higher interaction time, lower teaching efficiency, and lower scores on the distractor task. By contrast, humans with AR+Haptic feedback (bottom
row) are free to focus on the distractor task. When the robot needs help they get an active haptic notification, and passively observe how the robot learns
from their corrections. This multimodal feedback enables the human to efficiently teach the robot without having to constantly monitor its behavior.

before, we leverage the Boltzmann-rational model:

P (ah | u, s, g) =
eβQg(s,ah)∑
a∈u eβQg(s,a)

(8)

Comparing Equation (8) to Equation (4), the only difference
is our assumption that the human will respond by moving the
robot in one of the two discrete directions suggested by u. We
emphasize that this assumption is purely used to solve for the
optimal prompt, and is not imposed in our user study.
Haptic Mapping. Putting it all together, Equation (5) lets
us know when to provide haptic prompts, and Equations (7)
and (8) tell us which direction-based prompts will elicit
the most information. Within the context of our motivating
example: as the robot nears the shelves it realizes that it needs
more information, and alerts the user by vibrating the haptic
wristband on the top and bottom — encouraging to the human
to teleoperate the robot either up or down.

V. USER STUDY

To test how passive and active multimodal feedback closes
the loop during robot inference, we conducted a user study
motivated by assistive robotics. Participants interacted with
a 2-DoF joystick to teleoperate a 7-DoF robot. The robot
shared autonomy with the participant: as the robot inferred the
human’s goal in real-time during the task, it leveraged different
types of feedback to communicate what it had inferred back
to the user. We designed experiments where participants had
to trade-off between teaching on the robot and focusing on a
distractor task.
Independent Variables. We compared four different feedback
conditions:
• A graphical user interface (GUI) on the computer screen
• Passive augmented reality feedback (AR)
• Active haptic feedback (Haptic)
• Augmented reality + haptic feedback (AR+Haptic)

Within the GUI baseline we displayed a graphical user inter-
face on the same computer screen as the distractor task. This

GUI provided both active and passive feedback: we displayed
the robot’s belief over each goal, and printed a text alert when
the robot reached a critical state. The AR and Haptic baselines
are suitable for purely passive or active feedback. In all cases
where we used Haptic to provide active cues the participants
responded by teaching the robot. Similarly, participants with
AR feedback were confident that they understood the robot’s
intent (see Fig. 5). Finally, the AR+Haptic condition is our
proposed approach from Section IV that combines both passive
and active feedback.

Experimental Setup. Participants completed four tasks with
every feedback condition. In the Placing task (see Fig. 1)
participants taught the robot to place a coffee cup on the shelf.
There were 8 candidate goals the robot considered: the front
or back of the top shelf, the front or back of the bottom shelf,
and putting the cup down either upright or on its side. In the
Avoiding task (see Fig. 3) users adjusted the robot’s motion to
avoid an obstacle. The robot initially moved directly towards
this obstacle and was unsure if it needed to avoid it, and if so,
which way it should go around. Here the robot had 4 discrete
candidate goals: moving through, to the left, to the right, or
above the obstacle. Both the Sorting task and the Forgetting
task started in the same way with the robot carrying a bottle
of glue towards the shelves. The robot had 4 candidate goals
corresponding to different locations on the shelf. In the Sorting
task the user taught the robot to sort the glue on the lower
shelf. By contrast, half-way through the Forgetting task the
robot automatically became confused about the human’s goal
(i.e., it forgot what it had learned), so that it required additional
teaching.

During all four tasks users divided their attention between
teaching the robot and playing a distractor game. Within this
game participants tried to track a moving target with their
mouse, and accrued points when their mouse was inside the
target. Because the game was played on a screen orthogonal to
the robot, users could not focus on both the game and robot at
the same time. The set of haptic cues U included three options:
i) alternating the top and bottom vibrotactors, ii) alternating
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Figure 4. Objective results from our user study. The study included four tasks, and here we report the aggregated results across all tasks. Asterisks denote
statistically significant comparisons (p < .01) and error bars show standard error. We found that AR+Haptic reduced interaction time and increased teaching
efficiency as compared to the alternatives. There was no significant difference in distractor score between AR+Haptic and Haptic (p = 0.65).

the left and right vibrotactors, and iii) actuating all vibrotactors
in a circular pattern.

Participants and Procedure. We recruited ten participants
from the Virginia Tech community to take part in our study (4
female, average age 24.3 ± 3.0 years). All subjects provided
informed written consent prior to the experiment. Half of the
participants had previous experience interacting with a robot
arm, and two participants had used augmented reality before.
Participants teleoperated the robot for up to five minutes to
familiarize themselves with each feedback method. We used
a within-subjects study design: every participant interacted
with all four feedback conditions. To mitigate the confounding
effect of participants improving over time, we counterbalanced
the order of the feedback conditions.

Dependent Measures – Objective. We recorded the amount
of time users spent teaching the robot with the joystick
(Interaction Time), as well as the total score users achieved on
the distractor game (Distractor Score). We also measured the
user’s Teaching Efficiency. To compute this we recorded b(g),
the robot’s learned belief in the human’s desired goal at the
end of the task. Recall that b(g) is a scalar, where b(g) → 1
indicates that the robot correctly inferred the human’s goal.
Following [31], we then divided this scalar by the user’s
interaction time (i.e., the amount of time they teleoperated the
robot). Intuitively, a high Teaching Efficiency indicates that the
human accurately taught the robot their desired goal through
a smaller number of well-timed corrections.

Dependent Measures – Subjective. Participants filled out a
7-point Likert scale survey after each method. Questions were
grouped into five multi-item scales (see Fig. 5): did the user
understand the robot’s intent, did the user know when the robot
needed more teaching (prompt), did the robot make it clear
what type of teaching to provide, did the robot reveal what it
knew and did not know, and did the user prefer this current
feedback method to the alternatives.

Hypotheses. We had three hypotheses in this user study:

H1. Users with passive visual feedback (AR) will
minimize interaction time.

H2. Users with active haptic feedback (Haptic) will
maximize score on the distractor task.

H3. Users with multimodal feedback (AR+Haptic)
will maximize teaching efficiency.
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Figure 5. Subjective results from our user study. Colors are consistent with
Fig. 4, and higher ratings indicate agreement (i.e., conveys intent, prompts
for help). Overall, participants preferred teaching the robot with multimodal
AR+Haptic feedback. We note that some users reported the AR device to be
uncomfortable, which may skew their perception of this condition.

Results – Objective. An example interaction is illustrated in
Fig. 3, and our aggregate results across all tasks are plotted
in Fig. 4. When interpreting these results, remember that we
want to minimize interaction time while maximizing teaching
efficiency and distractor score.

Because AR displays what the robot has inferred, we
anticipated that with AR participants would know when the
robot understood their goal, and would only interact as much
as needed. More specifically, we anticipated that AR would
minimize interaction time. This turned out not to be true: only
in the Avoiding task did AR reduce the interaction time. When
looking at the aggregated results, post hoc analysis shows no
significant differences in interaction time between AR and
GUI (p = .55) or AR and Haptic (p = .93).

Unlike passive AR, active Haptic feedback grabs the hu-
man’s attention when teaching is required. Since this method
provides alerts, participants can focus on the distractor game
until they receive a prompt. To test H2, we compared the
distractor score with and without Haptic. We found that
in either the Haptic or AR+Haptic condition participants
scored statistically significantly higher than with GUI or AR
(p < .01). This suggests that active feedback reduces the
amount of time users spent monitoring the robot.

Thus far we have looked at the results of AR and Haptic
individually; what happens when we combine these into mul-
timodal AR+Haptic feedback? Inspecting Fig. 4, participants
using AR+Haptic had lower interaction time and higher
teaching efficiency than the alternatives (p < .01). These
results support H3. We conclude that the synthesis of passive
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and active feedback was more effective for communicating
robot inference than either method in isolation.
Results – Subjective. The results from our 7-point Likert scale
survey are listed in Fig. 5. We first tested the reliability of all
five scales using Cronbach’s alpha, and found every scale to be
reliable (α > 0.7). Accordingly, we grouped the participants’
responses within each scale into a single combined score,
and ran a one-way repeated measures ANOVA. Post-hoc tests
revealed that users preferred AR+Haptic to the alternatives
(p < .05). One user commented that “the combination of
tactile and visual feedback made this method the easiest to
control the robot.”
Limitations. During our user study the AR was implemented
on a Microsoft HoloLens. Several participants indicated that
they disliked wearing this device for prolonged periods: “the
HoloLens is uncomfortable to wear.” We recognize that user
comfort may be a confounding factor that negatively affected
AR results. In addition, our results indicate that provid-
ing passive and active feedback on the GUI was roughly
on par with passive feedback in AR. This suggests that a
GUI+Haptic system (with passive visual feedback and active
haptic prompts) could potentially achieve similar performance
as AR+Haptic. However, here the GUI must be located in
a position where human teachers can readily view it while
interacting with the robot arm. Our future work will explore
intuitive GUI design for GUI+Haptic systems.

VI. CONCLUSION

From the human’s perspective robot inference is often
a black box. Without any feedback, humans have no way
of knowing what their robot has inferred or whether it is
confused. Accordingly, we developed a multimodal augmented
reality and haptic interface that combines passive and active
feedback. We derived a decision rule for mapping robot
inference to each type of feedback during shared autonomy
tasks. Our user study demonstrates that this passive and active
approach takes a step towards bringing the human into the
loop during robot inference.
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