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Abstract—A typical scenario-based evaluation framework
seeks to characterize a black-box system’s safety performance
(e.g., failure rate) through repeatedly sampling initialization con-
figurations (scenario sampling) and executing a certain test policy
for scenario propagation (scenario testing) with the black-box
system involved as the test subject. In this letter, we first present
a novel safety evaluation criterion that seeks to characterize the
actual operational domain within which the test subject would
remain safe indefinitely with high probability. By formulating the
black-box testing scenario as a dynamic system, we show that
the presented problem is equivalent to finding a certain “almost”
robustly forward invariant set for the given system. Second, for
an arbitrary scenario testing strategy, we propose a scenario
sampling algorithm that is provably asymptotically optimal in
obtaining the safe invariant set with arbitrarily high accuracy.
Moreover, as one considers different testing strategies (e.g., biased
sampling of safety-critical cases), we show that the proposed
algorithm still converges to the unbiased approximation of the
safety characterization outcome if the scenario testing satisfies
a certain condition. Finally, the effectiveness of the presented
scenario sampling algorithms and various theoretical properties
are demonstrated in a case study of the safety evaluation of a
control barrier function-based mobile robot collision avoidance
system.

Index Terms—Robot Safety, Probability and Statistical Meth-
ods, Black-box System, Scenario Sampling, Invariant Set

I. INTRODUCTION

ATypical black-box safety evaluation method seeks to
justify the system’s ability to avoid unaccepted risk

events such as physical collisions and explosions. In this
letter, we consider the class of intelligent decision-making and
control systems as the black-box, which appears in various
robotic applications including autonomous vehicles (AV) [1]
and unmanned aerial vehicles (UAV) [2]. Without access to the
underlying models or parameters of the black-box system, one
common approach for safety evaluation relies on a data-driven
methodology of repeatedly (i) sampling initialization states of
testing cases, (ii) executing a certain testing policy, and (iii)
observing the resulting outcomes. This is known as the “sce-
nario sampling” testing method. Given the significant amount
of required tests and potentially catastrophic consequences of
performing them in real life, the scenario sampling based test
is typically performed in high-fidelity computer simulators,
and is occasionally complemented with a limited number of
trials in a controlled real-world proving grounds.

In general, scenarios are defined in a concrete manner,
where the set of testing cases (scenarios) are predetermined
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and the scenario propagation is often independent of the test
subject’s response. Every time the black-box test subject is
updated, it is expected to go through the same set of concrete
testing scenarios. This is commonly observed in computer soft-
ware regression tests [3] and the standard testing procedures
for Advanced Driving Assistant System (ADAS) [4]. However,
as the black-box system becomes more advanced, the concrete
scenario becomes less effective as it becomes “hackable” and
incomplete [5], [6]. An adaptive scenario design becomes thus
a natural alternative.

Existing efforts related to the adaptive scenario sampling-
based black-box system safety evaluation can be classified
into two categories, (i) the falsification-based approaches and
(ii) the validation approaches [7]. In general, the falsification-
based method is biased towards corner-case generation with
safety-critical instances. This is often formulated as a path
planning problem where the unacceptable risky event becomes
the target state and one seeks to derive a sequence of actions
that drives the given initial state to the risky outcome [8].
As the Operational Design Domain (ODD) has become more
complex and the black-box system more sophisticated, some
recent work also formulate the falsification problem as a
reinforcement learning (RL) problem [9], and RL solutions
are derived correspondingly [10], [11].

On the other hand, the validation approaches seek to derive
an overall safety characterization of the black-box system,
where the most well-adopted characterization is the failure
rate (e.g. crash rate for AVs). This typically requires sufficient
coverage over the given ODD through the Monte Carlo
sampling technique, which can be sample inefficient [12].
To deal with this, the “importance sampling” methodology
is introduced with success in AV safety evaluation [13], [14]
and has also been extended to other robotic safety validation
applications [15]. The method focuses on sampling “impor-
tant” scenarios that are safety-critical, and manages to obtain
the failure rate by associating the sampled scenario with its
importance function (i.e., exposure rate) to the nominal dis-
tribution. Note that such a biased sampling towards important
scenarios still requires sampling and executing some obviously
safe and normal cases to ensure that the failure rate estimate
is unbiased.

In general, neither the falsification assessment nor the
failure rate validation is sufficient to characterize the test
subject’s safety performance profile. For example, it is unclear
which states could lead to failure/non-failure events with high
probability. To take advantage of the domain knowledge,
some “gray-box” methodologies are introduced [16], such as
the Backtracking Process Algorithm [17], and temporal logic
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Fig. 1: A conceptual comparison among the falsification-based safety
validation methodology, the failure rate characterization, and the
proposed safety evaluation scheme with data-driven invariant set
characterization.

approaches [18]. Such methods often rely on heuristics, expert
knowledge, and the modeling of (part of) the black-box system
(i.e., system identification).

In this letter, we propose a novel black-box system safety
characterization framework with scenario sampling by ap-
proximating the safe operable domain as a robustly forward
invariant set using the data-driven approach. We propose an
algorithm that is provably asymptotically optimal in obtaining
such an approximation with arbitrarily high accuracy. We
further summarize the contributions as follows.

A novel safety characterization criterion: We propose
a safety characterization that approximates the actual safe
operable domain of the black-box system as an “almost” ro-
bustly forward invariant set. This complements the commonly
adopted safety characterization that focuses on the unbiased
estimate of the failure rate, by considering more detailed
safety performance properties. The difference between the
proposed criterion and other safety characterization methods
is conceptually illustrated in Fig. 1.

A formal safety evaluation framework: For the proposed
safety characterization, we further present an algorithm that
is provably asymptotically optimal. That is, as the number
of sampled scenarios tends to infinity, the probability for the
presented algorithm to obtain the actual forward invariant safe
operable domain tends to one.

Asymptotic safety characterization consensus: In gen-
eral, the “safety characterization consensus” represents the
phenomenon where different scenario testing policies lead to
the same safety characterization outcome. This is generally
difficult to achieve as, for example, the “worst-case-only”
testing policy will not derive the same estimate of failure rate
as that found with Monte Carlo sampling. However, supplied
with a rigorously defined condition, we show that the proposed
algorithm ensures the asymptotic safety characterization con-
sensus. We also present empirical evidence that supports the
derived theoretical property.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section begins by presenting the black-box system
testing scenario with the dynamic system. Such a system inter-

pretation further gives rise to the definition and validation of
the “almost” safe set and the proposed safety characterization
problem formulation.

A. The black-box system testing scenario

In general, consider a black-box system that admits the
discrete-time nonlinear motion dynamics in the form of

s0(t+ 1) = f0(s0(t),u0(t);ω0(t)), (1)

where t ∈ Z will be subsequently omitted unless needed. Then
s0 ∈ S0 ⊆ Rn0 is the state, u0 ∈ U0 ⊆ Rm0 is the actions and
ω0 ∈ Ω0 ⊆ Rw0 represents the disturbances and uncertainties.
Taking such a black-box system as the test subject, one then
involves other participants and controlled features to form
a testing scenario. The black-box system admits a certain
feedback control policy based on a perceivable subset of state
observations as the input, i.e.,

u0 = π0 (φ(s0, ss;ωφ);ωπ0) , (2)

where ss ∈ Ss ⊆ Rns represents all non-test-subject states.
The mapping φ : S0 × Ss × Ωφ → Sp ⊆ Rp is a perception
function that takes a subset or a projected subset of observed
states in the neighborhood of the test subject. With the
uncertainties ωπ0

∈ Ωπ0
, we have the test subject policy

π0 : Sp×Ωπ0
→ U0. Moreover, the state of all non-test-subject

actors also admits certain motion dynamics, in the form of

ss(t+ 1) = fs(ss(t),us(t);ωs(t)). (3)

where the action us ∈ Us ⊆ Rms and the uncertainties ωs ∈
Ωs. Note that both the dynamics transition f0 in (1) and the
control policy for the test subject (2) remain unknown, hence
the name “black-box”. Integrating (1) with (3), we have the
scenario dynamics in the expanded form as

s(t+ 1) =

[
s0(t+ 1)
ss(t+ 1)

]
=

[
f0(s0(t), π0 (φ(s0(t), ss(t);ωφ(t));ωπ0(t)) ;ω0(t))

fs( ss(t), us(t); ωs(t) )

]
= f̂(s(t),us(t); ω̂(t))

(4)
The safety evaluation with scenario sampling thus relies on (i)
providing an initialization state s(0) = s0 for the test subject
and all other participants, and (ii) executing a (centralized)
feedback control policy

us = πs(s;ωπs), (5)

for the run of a scenario. Note that with the uncertainties
ωπs ∈ Ωπs , the policy (5) is essentially stochastic. Another
equivalent configuration is to formulate (5) as a Markov
Decision Process [10] or an automaton [6]. We are now ready
to present the formal definition of a black-box system testing
scenario.

Definition 1. [Black-Box System Testing Scenario] A black-
box system testing scenario is a dynamic system that admits
the motion of

s(t+ 1)= f̂(s(t),πs(s(t);ωπs(t));ω̂(t))=f(s(t);ω(t)), (6)



Fig. 2: Interpreting the black-box system testing scenario as a
dynamic system.

with state s ∈ S = S0 × Ss and the composed uncertainties
ω ∈ Ω.

Present an initial condition s(0) = s0 and a scenario testing
policy in the form of (5), we then have that a run of a scenario
is {s(t)}t=0,...,K . It is a finite-step run of scenario for K <∞
and an infinite-step run of scenario if K = ∞. In this letter,
we consider a run of scenario of finite steps and K ≥ 2 for
practical applicability, and the obtained property generalizes
to K =∞ as well.

B. The “almost-safety”: definition and validation

Let C ⊆ S be the set of states deemed with unaccepted risk,
such as collisions. The definition of safety is thus naturally
obtained from a set invariance perspective.

Definition 2. The test subject is safe in Σ ⊆ S \ C for (6) if
and only if ∀s(0) ∈ Σ,∀ω ∈ Ω, s(t) ∈ Σ,∀t > 0. That is,
the test subject is safe in Σ if Σ is robustly forward invariant
for (6).

In the practice of the data-driven methodologies, the abso-
lute safety defined as above is of very little practical value as
real-world safety evaluation is primarily interested in safety
assurance up to a sufficiently high level (e.g., sufficiently
small fatality rate [12] and sufficiently low risk [19]). We
then, inspired by [20], [21], introduce the idea of having a
black-box system being safe for “almost” everywhere except
for an arbitrarily small subset. We start from the “extended
δ-covering set”, which is a special discretization scheme.

Definition 3. [Extended δ-Covering Set] Given x ∈ X ⊂ Rx
and δ ∈ Rx>0, let Nδ(x) be the “extended δ-neighbourhood”
of x, i.e.,

∀x′ ∈ Nδ(x), |x− x′| ≤ δ. (7)

We claim that ΦXδ is an extended δ-covering set of X if for
some k ∈ Z and xi ∈ X , i = 1, . . . , k, we have

ΦXδ =
⋃

i∈{1,...,k}

Nδ(xi) ⊇ X and ΦXx ={xi}i∈{1,...,k} ⊆ X .

(8)
Furthermore, ΦXx are centroids of ΦXδ .

Note that the inequality in (7) is element-wise, i.e., |x| ≤ δ
implies |xi| ≤ δi,∀i ∈ Zx where xi and δi indicate the
i-th element of x and δ, respectively. Comparing with the

previous covering set definition [21], Definition 3 enables a
covering set that considers the system of unbalanced states
(e.g., a state space with both wide-range positioning states
and periodic angular states defined over a small interval in
R). In practice, the extended δ-covering set for Σ can be
built in two ways, (i) a grid-based decomposition of the
state space where all centroids are manually selected, or (ii)
an “experience replay” manner where one takes points from
randomly collected runs of scenarios to ensure the desired
coverage. Note that the second approach also “connects” some
of the centroids through the dynamics (6), thus ΦXσ can also
be denoted as a δ-disk graph as

G(ΦXσ , E
X
σ ), (9)

with the vertices ΦXσ and the edges EXσ . It is also immediate
that given X , the corresponding extended δ-covering set is
not necessarily unique, and limδ→0 ΦXδ = X . The notion of
“almost” safe is then formally presented through the following
definition.

Definition 4. [εδ-Almost Safe] Consider S ⊆ Rn, δ ∈ Rns>0

and ε ∈ R>0. The test subject is εδ-almost safe in Σ ⊆ S \ C
for (6) if there exists an extended δ-covering set of Σ, ΦΣ

δ

and its corresponding centroids ΦΣ
σ , such that for all ωπs ∈

Ωπs ,ω ∈ Ω,

P
({
σ ∈ ΦΣ

σ : f (σ, πs(σ;ωπs);ω) 6∈ ΦΣ
δ

})
≤ ε. (10)

Finally, in order to claim that given set is an εδ-almost safe
set, one would require observing a sufficient amount of “safe”
sampled runs of scenarios. Such a sampling sufficiency is
formally defined through the following theorem proven in [20],
[21].

Theorem 1. [εδ-Almost Safety Validation] Consider S ⊆ Rn,
δ ∈ Rns>0 and ε ∈ R>0. Let ΦΣ

δ be an extended δ-covering
set of Σ ⊆ S . Consider N runs of scenarios with K
steps (K ≥ 2), leading to the collected set of states as
R = {si}i=1,...,NK . Let the initial set of states {s0

i }i=1,...,N be
i.i.d. w.r.t. the underlying distribution on ΦΣ

σ . The test subject
is εδ-almost safe in Σ with probability no smaller than 1−β
if

R∩ C = ∅ and N ≥ lnβ

ln (1− ε)
. (11)

C. The optimal safety characterization problem

In general, the designer specified ODD of an engineering
product is not necessarily the true ODD within which the
product will remain safe persistently. The scenario sampling
approach is thus a natural solution to identify the real ODD
in a data-driven manner. Formally speaking, the scenario sam-
pling algorithm ALG for safety characterization considered in
this letter is defined as

ALGπs(N,S0),ALGπs : Z× S → S. (12)

When presented with the initialization set S0 (e.g.,S0 = S\C)
and the feedback control testing policy πs(·) as defined in (5),
the algorithm seeks to determine the actual safe subset Σ ⊆ S0

by sampling N runs of a scenario. Note that the actual safe



domain is not necessarily unique. Throughout this study, we
are interested in finding the particular safe state set with the
maximum cardinality, or equivalently, we seek to find the
tightest sup-set of all safe subsets, which presents an extra
challenge to the algorithm design. Before introducing the
method, let us formally define the optimal safety character-
ization problem as follows.

Problem 1. [The Optimal Safety Characterization Problem]
Consider a black-box system of dynamics (1) operating in the
state space S ⊆ Rn. Suppose that the optimal safe subset
S∗ ⊆ S \ C exists and has cardinality c∗. Let c(Σ), c : S →
R≤0 be the cardinality of the set Σ ⊆ S . Given an initial set
S0 ⊆ S \C, the optimal safety characterization problem seeks
to find an asymptotically optimal scenario sampling algorithm
ALGπs(N,S0) in the form of (12) such that

lim sup
N→∞

P
({
c(ALGπs(N,S0)) = c∗

})
= 1 (13)

That is, as one samples more runs of scenarios, the proba-
bility of obtaining the optimal safe set tends to one. Moreover,
the following remark reveals an intrinsic property that connects
the desired outcome of Problem 1 with the classic failure rate
characterization.

Remark 1. Comparing the cardinality of the optimal safe set
|S∗| with the cardinality of the complete non-failure set |S\C|,
we immediately obtain the failure rate as 1− |S∗|

|S\C| .

The above remark also reveals a fundamental comparison
between the safety characterizations through the failure rate
and the proposed method from the statistician’s perspective.
That is, the failure rate estimate is from the “frequentist”
inference, where the probability estimate is inferred through
infinite sampling of runs of scenarios. On the other hand,
the idea of the almost safe set corresponds to the “Bayesian”
view of probability as ε implies the prior probability, and the
scenario sampling is simply a way of obtaining the posterior
probability within a certain confidence interval. Such different
views of probability will not affect the final safety evaluation
outcome (as discussed in the above remark), but may lead to
algorithms of different properties, such as sampling efficiency
as we will demonstrate in Fig. 8 later.

Note that Problem 1 is in general challenging with some
seemingly working but theoretically invalid solutions as dis-
cussed in [21].

Finally, we conclude this section with the following remark
emphasizing the scenario-based nature of the testing approach
shared by many related work in the literature [16], [14], [6].

Remark 2. Throughout the letter, we are primarily interested
in the scenario-based testing methodology [7], which typically
occurs in computer simulators and self-contained test proofing
grounds. As a result, we further assume that all traffic partic-
ipants specified by the operable domain are controllable, and
the states of all non-specified participants are considered as
uncertainties and disturbances characterized by ω in (6). All
states of interest specified by the domain definition are fully
observable. Finally, the test subject policy π0(·) remains stable
throughout the testing process.

Fig. 3: A conceptual example of the set boundary and the critical
state set. Note that S consists of a continuous set and two extra
points. Those two points are also part of ∂S by definition.

III. MAIN METHOD

Our proposed solution to solve Problem 1 is given by
Algorithm 1 considering Definition 4. The key step in Al-
gorithm 1 is in line 3 where one is expected to find a εδ-
almost safe set with at least (1 − β) confidence level in
a finite number of sampled runs of scenarios. If such an
expectation is satisfied, with λε, λδ, λβ ∈ (0, 1), it follows that
Algorithm 1 is asymptotically optimal in solving Problem 1.
The algorithm referenced at line 3 is referred to as the εδ-
almost safe set quantification. The remainder of this section
will primarily focus on (i) the critical set of states (“where”
the quantification should be performed), and (ii) the state
pruning and exploration with scenario sampling (“how” the
quantification should be performed). We will also discuss
different choices of scenario testing policy πs(·) and how they
affect the performance of the proposed algorithm.

A. Critical state set

We start with the critical set of states, which shows that the
εδ-almost safe property only requires investigating a subset of
states. This significantly reduces the computational burden of
the proposed algorithm. Consider the following assumption.

Assumption 1. Consider the dynamics (6), assume ∃s̄ > 0
such that ∀ω ∈ Ω, ‖f(s;ω)− s‖∞ ≤ s̄,∀s ∈ S.

The above property is a direct outcome of f being Lipschitz
continuous and is also valid in practice. For some practical
systems that are not necessarily Lipschitz continuous (e.g. the
locally Lipschitz system and the hybrid system), the above
property may still hold. Let ∂S be the “boundary” of the
compact set S.

Note that the boundary of a set is connected to both the
interior and the exterior of the set (as shown in Fig. 3). The

Algorithm 1 Scenario sampling with εδ-decay ALGεδπs(N,S
0)

Require: N,S0(S0 ⊆ S \ C), scenario control πs(·) in (5),
decay coefficients λε, λδ, λβ ∈ (0, 1), S̄0 ⊆ S \ S0.

1: Initialize: ε, δ, β, i = 1.
2: While i < N :
3: εδ-Almost Safe Set Quantification: Find εδ-almost

safe set ΦΣ
δ such that Σ = S∗ with confidence level at

least (1− β) and update S̄0 with Nσ runs of scenarios
4: δ′ ← λδδ

5: S0 = Φ
ΦΣ
δ

δ′

6: δ ← δ′, ε← λεε, β ← λββ
7: i← i+Nσ

Ensure: limN→∞ΦΣ
δ = limN→∞ΦS

∗

σ = S∗



Fig. 4: A simple example of the key procedures, pruning and ex-
ploration, in the proposed εδ-almost safe set quantification algorithm
(Algorithm 2), and δ-decay described in Algorithm 1 (line 5). The
round dots and the colored rectangles denote the centroids and the
δ-neighbourhood of the centroids, respectively

following definition denotes a specific neighbourhood region
near the boundary.

Definition 5. [s̄-Critical State Set] Let s̄ defined as in
Assumption 1. ∂Ss̄ is the s̄-critical state set of S if

∂S⊆∂Ss̄⊆S and ∀si∈∂Ss̄, sj ∈∂Ss̄, ‖si − sj‖∞≤ s̄. (14)

Combining Assumption 1 and Definition 5, we have the
following theorem that gives an equivalent condition to the
safe set defined in Definition 2.

Theorem 2. The test subject is safe in Σ ⊆ S\C for (6) if and
only if the s̄-critical state set of Σ, ∂Σs̄ ⊆ Σ by Definition 5,
satisfies

∀ω ∈ Ω,∀s ∈ ∂Σs̄, f(s;ω) ∈ Σ. (15)

That is, to investigate the safety property of the test subject
in the set Σ, one is only required evaluate the s̄-critical state
set of Σ. The proof of Theorem 2 can readily be adapted
from [21] and is omitted. In the remainder of this letter, the
set Σ and the s̄-critical state set of Σ are often interchangeable,
given the equivalence implied by Theorem 2 in terms of safety
property evaluation.

B. State pruning, exploration, and almost-safety quantification

In general, given ε, δ, β, and the initial S0, the proposed
εδ-almost safe set quantification algorithm starts with a δ-
covering set of S0, ΦΣ

δ (Σ = S0) (or equivalently by
Theorem 2 ΦΣs̄

δ if supplied with an appropriate s̄), as shown
in Fig. 4 (a) and (b). One then removes states that propagate
motion trajectories to C from the instantaneous ΦΣ

δ (i.e.,
pruning as shown in Fig. 4 (c) and (d)), and expands ΦΣ

δ with
states that do not belong to S̄0 or C (i.e., exploration as shown
in Fig. 4 (e) to (g)). The pruning and exploration procedures
are performed synchronously until no more states are added
to or removed from ΦΣ

δ for a sufficient number of sampled
runs of scenarios to claim the almost-safe property with the
desired confidence level of 1− β by Theorem 1.

Algorithm 2 εδ-Almost Safe Set Quantification
Require: ε, δ, β,S0, S̄0,K, C, s̄

1: Let Φ∂Σs̄
σ ⊆ ∂Σs̄ = ∂S0

s̄ ⊆ Φ∂Σs̄
δ and G(Φ∂Σs̄

σ , E∂Σs̄
σ )

2: Let N = ln β
ln (1−ε) , i = 1

3: While i < N :
4: i.i.d. sample of s0 ∈ ΦΣ

σ

5: collect a run of scenario, {sj}j=1,...,K initialized at s0

6: For j = 1, . . . ,K do
7: If sj ∈ C:
8: Φ∂Σs̄

σ .remove(reachable(s0, G(Φ∂Σs̄
σ , E∂Σs̄

σ )))
9: S̄0.add(reachable(s0, G(Φ∂Σs̄

σ , E∂Σs̄
σ )))

10: i = 1
11: Else If sj /∈ Φ∂Σs̄

δ :
12: E∂Σs̄

σ .append((s0, sj))
13: i = 1
14: End If
15: End For
16: i← i+ 1
Ensure: Φ∂Σs̄

δ , (optional: S̄0, G(Φ∂Σs̄
σ , E∂Σs̄

σ ))

Theorem 3. Algorithm 1 with the εδ-almost safe set quantifi-
cation step executed as specified by Algorithm 2 is asymptot-
ically optimal.

Let reachable(s, G(·, ·)) be all vertices that directly or
indirectly connect to s on the graph. We have the above
description formally summarized in Algorithm 2. Note that
.remove and .add are notionally methods for the class of set
operations. The conceptual illustration of the pruning (line
7-10) and the exploration (line 11-13) are also presented in
Fig. 4. We also have Theorem 3 presented with the sketch
of proof. The proof sketch for Theorem 3 is in three steps.
First, consider Algorithm 2 with fixed ε, δ, and β, one can
prove the algorithm is probabilistically complete as the process
always converges to a stationary set as the number of sampled
runs of scenarios tends to infinity. Second, one can show that
such a stationary set is the optimal set specified in Prob-
lem 1 through contradictions. Finally, considering the decaying
mechanism introduced in Algorithm 1, the asymptotic optimal
property can be directly obtained with all decaying coefficients
λε, λδ, λβ ∈ (0, 1).

In practice, Algorithm 1 does not run indefinitely, and the
termination is determined with sufficiently appropriate ε, δ,
and β, as we show in Section IV.

C. Towards the safety characterization consensus with differ-
ent scenario testing policies

Up to this point, all of the analyses have been based upon
a pre-determined scenario testing policy πs(·). In practice, the
testing policy is not necessarily unique. But it is expected that
the final safety characterization remains persistent regardless
of the selected scenario testing policy. This property is referred
to as the “safety characterization consensus”.

Consider the dominant characterization of failure rate in AV
safety validation. It is well-known that the Monte Carlo sam-
pling of states with naturalistic driving behavior model [22]
of πs(·) and the various importance sampling based tech-
niques [13], [14], which have a biased focus towards high-risk



state-actions, are all capable of approximating the unbiased
estimate of failure rate. However, as one considers testing
policies that are dedicated to safety-critical cases [10], [6],
many such “worst-case-only” methodologies fail to reach the
safety characterization consensus (as shown conceptually in
Fig. 5).

As one moves from the classic collision rate characterization
to the proposed Problem 1 and Algorithm 2, the safety
characterization consensus property is also strengthened. In
particular, as long as the policy induces a sufficient coverage
of a subset of “critical” actions, all algorithm variants with
different scenario testing policies converge to the same safe set
asymptotically. This is formally presented as follows. Recall
that Us denotes the nominal action space for the controllable
factors in the scenario. Let U = Us.

Definition 6. [Feasible Action Set] Consider the scenario
testing policy πs(·) as defined in (5). Given s ∈ S, let the
feasible action space for πs(·) and s be defined as:

U(s) = {u ∈ U | ∃ωπs ∈ Ωπs , πs(s;ωπs) = u}. (16)

Definition 7. [Critical Action Set] Consider the scenario
dynamics (6). The critical action set for s ∈ Σ and Σ ⊆ S is
defined as

U ′(s,Σ) =
{
u ∈ U | ∃ω̂ ∈ Ω̂, s.t. f̂(s,u; ω̂) /∈ Σ

}
. (17)

That is, the feasible action set includes all actions that are
“reachable” from s. It is also obviously dependent upon the
policy πs(·). On the other hand, the critical action set specifies
a set of all actions in U that could drive the next-step state to
reach the exterior of the given set Σ from s, hence it is depen-
dent upon the instantaneous state-set pair. As a result, we have
the critical feasible action set U∗(s,Σ) = U ′(s,Σ)∩U(s). We
are now ready to present the asymptotic safety characterization
consensus property as follows.

Theorem 4. [Asymptotic Safety Characterization Consen-
sus] Let π̂s(·) be the nominal testing policy with the critical
feasible action set Û∗(s,Σ) for the state-set pair (s,Σ)(s ∈
Σ). Let Φ̂∂Σs̄

δ be the εδ-almost safe set obtained with proba-
bility at least 1− β for π̂s(·). Consider an arbitrary scenario
testing policy πs(·) in the form of (5) with the critical feasible
action set U∗(s,Σ) and the εδ-almost safe set Φ∂Σs̄

δ obtained
with probability at least 1− β for πs(·). We have

lim
ε→0,β→0,δ→0

Φ̂∂Σs̄
δ = lim

ε→0,β→0,δ→0
Φ∂Σs̄
δ , (18)

if for all s ∈ Φ∂Σs̄
δ sampled throughout the execution of

Algorithm 2,

Û∗(s,Φ∂Σs̄
δ ) = U∗(s,Φ∂Σs̄

δ ). (19)

The sketch of proof for the above theorem is as follows.
By Theorem 3, Algorithm 1 is asymptotically optimal, hence
it suffices to show that the condition (19) remains valid for
all state-set pairs during the execution of Algorithm 2. This
further ensures the uniqueness of the optimal set and can be
proved through contradiction. Note that pruning and explo-
ration are the only two operations that could make changes to
the instantaneous set, and the critical action set is the only

Fig. 5: Compare the safety characterization consensus between the
traditional failure rate characterization and the proposed safe set char-
acterization among various choices of scenario testing policies πs(·).

set of actions that could activate pruning and exploration.
That is, as long as the set of critical feasible actions of the
given policy is the same as the nominal critical feasible action
set, the safety characterization algorithm converges to the
same outcome asymptotically. In practice, it is not necessary
to sample from the exact critical action set, as long as the
conditions in Theorem 4 are satisfied.

We conclude the discussion of the safety characterization
consensus by emphasizing that a more “dangerous” πs(·) satis-
fying Theorem 4 will also take fewer samples for convergence.
This is intuitive given that the risk biased policy “prunes” the
unsafe states from the instantaneous set more frequently. The
case study in the next section also provides empirical evidence
to support this point. However, the design of the testing policy
πs(·) is essentially case-specific. Without knowing the explicit
formulation of πs(·), it is difficult to identify how sampling
efficiency can be improved rigorously. In theory, regardless
of the design of πs(·) (as long as Theorem 4 is satisfied),
Algorithm 2 has the following property.

Remark 3. The computational complexity of Algorithm 2 is
O(N logN) with the brute-force algorithm’s complexity being
O(N). Without the critical state set ∂Ss̄ (i.e., the algorithm
explores all states in S), the complexity becomes O(N2).
Moreover, as N is determined by the number of vertices on the
graph, it essentially grows exponentially as the state dimension
increases. In practice, for high-dimensional problems, one can
relax the problem with appropriate choices of δ and ε.

Although the proposed method still suffers from the curse-
of-dimensionality in theory, the presented computational com-
plexity is better than some of the model-based solution in
approximating the backward reachable set [23], which is
conceptually similar to the εδ-almost safe set studied by this
letter. A more effective algorithm design is of future interest.



IV. CASE STUDY: CONTROL BARRIER FUNCTION BASED
MOBILE ROBOT COLLISION AVOIDANCE SYSTEM

In this section, we consider a mobile robot system based
on the Control Barrier Function (CBF) [24] for collision
avoidance. The CBF method has been explored extensively in
various robotic applications [25], [24]. More importantly, the
method naturally comes with the notion of a forward invariant
set to ensure the robot’s safety in theory, which aligns with our
notion of safety by Definition 2. This is a very unique property
as very few methods have the capability to derive the explicit
operable domain (i.e., very few methods know exactly where
the subject is safe in expectation). This inspires our exploration
in characterizing the discrepancies, if applicable, between the
theory-driven safe set and the data-driven safe set in practice.

A. Collision avoidance with control barrier function

The following CBF construction is mostly adapted
from [24]. Consider the linear double integrator dynamics as

ẋ =

[
ṗ
v̇

]
=

[
v
a

]
, (20)

with position states p = [px, py] ∈ R2, velocity states v =
[vx,vy] ∈ R2, and acceleration control actions a = [ax, ay] ∈
A ⊆ R2. Note that the above dynamics take a general control-
affine system formulation as ẋ = f(x)+g(x)a for f(x) being
zero and g(x) =

[
0 0 1 1

]
. Consider a pair of robots

admitting the same motion dynamics of (20), denoted with
the subscript 0 and 1 (e.g., p0 and p1 for the position states).
Consider the following set defined by a level-set function h :
R8 → R≥0:

Ψ01 =
{
x01 =

[
x0 x1

]
|h(x01) := h(x0,x1)≥0

}
(21)

Intuitively, Ψ01 induces the set of states within which one
expects both robots to operate without collisions. Furthermore,
the function h is referred to as a zeroing control barrier
function (ZCBF) if there exists a locally Lipschitz extended
class K function α(·) such that

Lfh(x01)+Lgh(x01)ẋ01+α(h(x01))≥0,∀x01∈Ψ01. (22)

By (20), the coupled control action a0, a1 can be obtained
by applying a linear projection of ẋ01, and the essential form
of (22) induces a set of linear inequalities associated with the
coupled control of a0 and a1 in a centralized manner. By the
analysis results of the CBF method, if the actions, a0(t) and
a1(t), satisfy (22) for all t ≥ 0 and for all x01(0) ∈ Ψ01, then
x01(t) ∈ Ψ01,∀t ∈ R>0. This further implies the forward
set invariance similar to our previous Definition 2. That is,
the CBF-based collision avoidance algorithm naturally induces
a forward invariant set as the safe operable domain of the
robot. This can be treated as the original ODD of the test
subject. However, note that the derivation of the CBF-based
methodology is essentially done in continuous-time, but it is
executed at discrete time steps in practice. Moreover, the high-
level planner is not considered in the original CBF design.
Both factors could cause discrepancies between the expected
performance by theory and the actual performance in scenario
sampling.

B. Safety characterization

Consider the scenario system of two CBF-driven robots
driven by the dynamics (20) and the CBF design the
same as [24]. We have the 6-dimensional state s =[
px py v0

x v0
y v1

x v1
y

]
∈ S ⊆ [−10, 10]2 × [−1, 1]4

with the distance offsets px and py between two robots on
the planner domain (subject robot is at the origin), and the
global velocity of both robots as v0

x, v0
y , v1

x, v1
y . Note that

sufficiently large distance between robots will break the for-
ward invariant condition by Definition 2, but is not of practical
value for safety considerations. Hence the collected states for
the runs of scenarios are clipped by the maximum positioning
magnitude (10 m) as specified above. Although the velocity
state is unbounded in theory, we have customized braking
reference motion to ensure the satisfaction of the given bound
in practice. This leaves the “collision” as the only failure event
of interest. Consider the circular robot with safety radius 0.5m,
hence the failure set C = {s ∈ S | ‖[px, py]‖ ≤ 1}. Note that
S \ Ψ01 is not necessarily the same as C (see the red zone
in Fig. 6). Let the acceleration controls for each robot satisfy
aix ∈ [−1, 1], aiy ∈ [−1, 1],∀i ∈ {0, 1}. For the subject robot
(subscript 0), a target position is uniformly sampled within
the admissible state space and remains persistent throughout
the run of a scenario. The robot first propagates a goal-to-goal
reference action based on the current position and the target
position, and then calculates the nearest feasible action within
the CBF induced safe admissible action space by solving
a convex Quadratic Programming (QP) problem with linear
constraints. This is the same policy as presented in [24].

For the other robot control (i.e., the scenario control),
we consider two different policy constructions. The nomi-
nal policy πCBF

s (·) executes the same policy as the subject
robot control including the goal-to-goal planner and the CBF
constrained QP. The predictive policy πPred

s (·) executes a
predictive capturing strategy adapted from [6]. Instead of
tracking the goal-to-goal reference, πPred

s (·) “predicts” the
future trajectory of the subject robot and seeks to track
the predictive reference while admitting the CBF induced
action constraints. It is immediate that πPred

s (·) implies higher
risk than πCBF

s (·). Furthermore, we also assign the predictive
motion with (i) randomly selected look-ahead time horizon in
[0.2, 5] seconds, (ii) added Gaussian noise near the nominal
predictive capturing policy, and (iii) action constraints induced
by the same CBF condition with πCBF

s (·). Hence, the condition
of Theorem 4 is satisfied (both policies share the same feasible
action set induced by the CBF action constraints). In the
practical execution of Algorithm 1 and Algorithm 2, we
initialize the algorithms using S0 = S \ C and S̄0 = ∅. The
time step for the discrete-time execution is 0.1 second. The
run of a scenario has a maximum time duration of 10 seconds.
δ decays from [5 5 1 1 1 1] to [0.5 0.5 0.2 0.2 0.2 0.2]. The
minimum s̄ is 0.2 in theory, we set s̄ = 0.5 throughout the
execution. Unless specified otherwise, β = 0.1 (confidence
level of 0.9).

The experimental results are presented in Fig. 6, Fig. 7,
and Fig. 8. We further emphasize the following observations.
In Fig. 6, the white region shows the difference between



Fig. 6: Some selected subsets of the characterized εδ-almost safe set (ε = 0.001, δ = [0.5 0.5 0.2 0.2 0.2 0.2]) with a confidence level
of at least 0.9 and the scenario policy of πCBF

s (·). The first-row subplots illustrate the velocity for both robots. Given the velocity pair, the
second-row subplots induce the theoretical safe operable set (complement of the red color region S \ Ψ01) and the characterized safe set
(blue region) in practice.

Fig. 7: The cardinality of the characterized εδ-almost safe set with
different choices of ε. Each cardinality value is obtained over 20 trials
of Algorithm 2 over the same group of 20 random seeds.

Fig. 8: An empirical sample efficiency comparison among the im-
portance sampling based failure rate estimation (dashed orange line),
the Monte Carlo sampling of failure rate characterization (continuous
blue line) and the proposed safety characterization scheme of different
configurations (various vertical colored bars).

the theoretical safe set Ψ01 and the actual safe set under
the given configurations. The instantaneous velocity states
play an important role in causing such discrepancies. For
example, consider the second column (b) in Fig. 6. If the
other robot is located at the upper left side of the subject
robot, they are almost heading towards opposite directions,
hence the boundary of Ψ01 (upper left boundary of the red
zone) aligns with the characterized safe set boundary. On
the other hand, if the other robot is located at the lower
right side, the fact that the robots are heading towards each
other and the CBF-based control is executed at discrete-time,
results in an extra gap required to ensure safety. In Fig. 7,

as ε decreases, the average cardinality for the characterized
safe set also decreases for both scenario testing policies.
Moreover, πPred

s (·) tends to give a more accurate estimate of
the safe set (with smaller cardinality) for the same value of ε.
However, as ε = 0.001, the two policies tend to achieve the
same approximated cardinality value, which aligns with the
theoretical analysis provided by Theorem 4. Finally, in Fig. 8,
within the group of 4 different characterizations, smaller ε
with the predictive capturing scenario policy requires fewer
samples to converge. Moreover, let |Φ0.001

δ | be the averaged
approximated cardinality of the εδ-almost safe sets obtained
from πPred

s (·) and ε = 0.001 using 5250 runs of the scenario
on average. We have 1 − |Φ

0.001
δ |
|S\C| ≈ 0.01078. This is very

close to the collision rate estimate obtained from the Monte
Carlo sampling approach (0.01089 with 50000 samples), but
the collision rate estimate requires nearly 10 times more runs
of the scenario. The observation also empirically validates the
analysis in Remark 1. A similar observation also generalizes to
the comparison against the importance sampling based failure
rate estimate adapted from [13]. Note that the pre-collected
data for initializing the importance function estimate is not
counted in the runs of scenarios illustrated in the figure. As a
result, within the particular case being studied, most variants
of the proposed method exhibit better sampling efficiency than
other sampling-based failure rate estimate techniques.

V. CONCLUSION

In this letter, we have presented a novel black-box system
safety characterization criterion, an asymptotically optimal
algorithm that solves the proposed optimal safety character-
ization problem, and an asymptotic safety characterization
consensus property of the proposed algorithm. It is of future
interest to explore the method with more complex problems
of practical interest. That will primarily rely on a more case-
specific design of testing policy πs(·) that satisfies Theorem 4.



Another possible line of research is to expand the applicability
of the method to non-scenario-based testing regime such as the
on-road test [12].
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