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Abstract— We propose an optimization-based approach to
plan power grasps. Central to our method is a reformulation
of grasp planning as an infinite program under complementary
constraints (IPCC), which allows contacts to happen between
arbitrary pairs of points on the object and the robot gripper.
We show that IPCC can be reduced to a conventional finite-
dimensional nonlinear program (NLP) using a kernel-integral
relaxation. Moreover, the values and Jacobian matrices of the
kernel-integral can be evaluated efficiently using a modified
Fast Multipole Method (FMM). We further guarantee that the
planned grasps are collision-free using primal barrier penalties.
We demonstrate the effectiveness, robustness, and efficiency of
our grasp planner on a row of challenging 3D objects and high-
DOF grippers, such as Barrett Hand and Shadow Hand, where
our method achieves superior grasp qualities over competitors.

I. INTRODUCTION

Grasp planning remains a fundamental and perennial prob-
lem, although intense research efforts have been invested
over the past decades. A vast majority of prior works view
grasp planning as a non-smooth, noise-corrupted search
problem, and rely on model-free stochastic optimizations,
such as simulated annealing [1], Bayesian optimization [2],
and multi-armed bandits [3], to optimize the grasp qual-
ity. Although these methods make minimal assumptions on
geometries of objects and kinematics of grippers, they are
typically sample-intensive. Instead, several relatively recent
works [4, 5, 6] demonstrate the advantage of model-based
approaches in terms of fast convergence [7], amenability
to machine learning [6], and global optimality [8, 9, 10].
Model-based approaches utilize certain properties of grasp
metrics, object shapes, or gripper types, such as derivatives
[6], submodularity [9], and monotonicity [10], to guide the
search of optimal grasps and achieve improved efficacy.

Despite their various advantages, model-based approaches
are relatively less used due to a limited robustness and
generality in several ways. Most model-based algorithms [6,
8, 9, 10] are limited to precision grasps by pre-sampling a
small set of contact points either on the gripper or the object.
In comparison, model-free, sampling-based approaches are
agnostic to contact points and can easily handle power
grasps. Moreover, some model-based approaches [9, 11] only
plan grasp points without considering gripper fesasibility.
Other methods [10, 8, 7] can account for gripper kinematics,
but they either resort to model-free sampling-based method
[10], require a long computational time [8], or cannot handle
complex object shapes [7, 8].

If we switch gears from grasp planning to general contact-
rich path planning, there has been numerous efforts to
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sidestep the above limitations. In particular, contact-implicit
trajectory optimization [12, 13, 14] generates trajectories
with unprecedented complexity by allowing a numerical
optimizer to make or break contact points. In this paper,
we propose to borrow these techniques and design a model-
based grasp planner without using pre-sampled contact
points. Unlike contact-rich path planning where contacts only
happen on robot end-effectors, we propose to consider every
pair of points on the object and the gripper for potential
contacts, and allow the optimizer to determine their status.
However, there are infinitely many such point pairs, for
which a naı̈ve discretization is computationally intractable.

Main Result: We study the grasp planning problem
through the lens of IPCC formulation. We introduce a pair
of complementary constraints between each pair of points on
the object and the gripper. Complementary constraints allow
the optimizer to jointly choose contact positions, forces,
and gripper’s kinematic poses, during which the contact
state is implicitly determined. IPCC is one of the most
challenging optimization problems that are typically solved
by constraint approximation or instantiation [15]. However,
we show that, in the special case of grasp planning with
Q∞ metric objective function, IPCC reduces to a standard
NLP via the technique of kernel-integral relaxation, which
reduces an infinite set of constraints to a single constraint
involving an surface integral of a kernel function. Moreover,
we adapt the Fast Gauss Transform (FGT) [16], a variant
of Fast Multiple Method (FMM) [17], to efficiently evaluate
the surface integrals and its Jacobian matrix. This technique
leads to significantly speed-up over brute-force evaluation,
as shown in Figure 3. Our new approach provides much
larger solution space than prior works and inherently allow
both precision and power grasps. Finally, we use log-barrier
functions and robust line-search scheme to guarantee the
satisfaction of penetration- and self-collision free constraints.
We summarize the new features of our method in Table I.

Method Non-Convex Power Grasps Collision-Free Gripper

[6] ✓ ✓
[8, 18] ✓ ✓ ✓
[9, 19] ✓

[7] ✓ ✓
Ours ✓ ✓ ✓ ✓

TABLE I: We compare representative model-based grasp planners
in terms of handling complex non-convex objects, planning power
grasps, ensuring collision-free, planning both grasp qualities and
gripper poses. Note that some methods [7, 6] consider collision-
free constraints but the underlying numerical model cannot ensure
the constraints are satisified.

Our grasp planning method is fast and robust, which has
been verified by batch processing 20 objects with various
geometrical and topological complexities using a 3-fingered,
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15-DOF Barrett Hand and a 5-fingered, 24-DOF Shadow
Hand. Compared with prior state-of-the-arts, our algorithm
achieves considerably less computational time than [8],
higher robustness to penetrations than [7], or higher quality
of grasps than [6].

II. RELATED WORK

We briefly review related works in model-free and model-
based grasp planning. We then provide background on
contact-implicit path planning and fast multipole method.

Model-free grasp planners treat a grasp simulator as a
black-box. All the existing model-free planners are sampling-
based and inherit celebrated completeness and optimality
properties [20, 21]. Various techniques have been proposed
to improve their efficacy. Early works [22, 1] reduce the
dimension of search space by limiting the DOF of a gripper.
More recent approaches utilize correlation between samples
and formulate the grasp planning in Bayesian optimization
[2] or multi-arm bandits [3] settings. Model-free method
features a high versatility in generalizing to all kinds of
3D objects, gripper modalities, and types of grasps (see
e.g. [23]). These methods have recently witnessed significant
progress thanks to the use of data-driven techniques, e.g. [24,
25], but this topic is out of the scope of this work.

Model-based grasp planners exploit additional assump-
tions on a grasp simulator or use additional outputs from
the simulator to further improve the planning performance.
For example, Miller et al. [26] assumed the 3D objects
resemble some simple geometric primitives and Dai et al.
[7] assumed the 3D objects are convex. Other works make
assumptions on the grasp quality metrics, Hang et al., Liu
et al. [10, 8] relies on the grasp metric being monotonic and
Schulman et al. [9] proved that Q1,∞ metrics are submodular
and used this property to approximate optimal grasps with
bounded sub-optimality. Finally, a large body of model-based
planners [7, 5, 6, 8] formulate the problem as gradient-based
numerical optimization and require a grasp simulator to be
differentiable.

Contact-implicit optimization [27, 12, 13, 28] has proven
capable of generating complex robot motion trajectories
from trivial initialization. Central to these formulations is
the use of position-force complementary conditions as hard
constraints in a trajectory optimizer. Our method can be
interpreted as a generalization of these techniques to grasp
planning. The main application of contact-implicit optimiza-
tion lies in legged robotics, where contacts are assumed to
only happen on a few robot end-effectors. However, to enable
both precision and power grasps, we need to consider all
pairs of potential contact points, leading to an infinite number
of decision variables. We emphasize that two prior works [27,
28] lifted the contact-on-end-effector assumption, and allows
contacts to happen anywhere on the robot. However, these
methods rely on smooth contact models and do not pertain
(self-)collision-free guarantee.

Fast multipole method finds most applications in large
scale numerical simulation of N-body problems using
Boundary Element Methods (BEM), where each pair of two

bodies have influences on each other. As a result, summing
up the total influences on all bodies incur a computational
cost of O(N2). FMM reduces this cost to O(N log(N))

or even O(N) by aggregating bodies into clusters and
approximating the cluster-wise influences using truncated
Taylor or Laurent series, while the approximation error can
be arbitrarily bounded (see [17] for more details). A major
advantage of BEM over Finite Element Methods (FEM) [29]
is that BEM only uses a surface mesh while FEM requires
a volume mesh. This property has been exploited in [11] to
account for object deformations under grasp. In this work, we
show that infinite complementary constraints can be replaced
with a single constraint involving a kernel integration, whose
value and Jacobian matrix can be evaluated efficiently using
the FGT [16].

III. GRASP PLANNING AS IPCC

We first review the basics of grasp planning. We assume
that there is an object with surface So and a robot surface Sr
determined by the robot’s configuration θ, denoted as Sr(θ),
both of which are 2D manifolds. A robot can apply a wrench
w(x) on x ∈ So if and only if x is in contact or x ∈ Sr. The
wrench is associated with a contact force f(x) ∈ C(x) by
the relationship: w(x) = (f(x), x × f(x))

T
, where C(x)

is the friction cone at x defining feasible forces, x× is the
cross-product matrix, and we assume the object’s center-of-
mass is placed at the origin. When the object is undergoing
external wrench wo, the robot must immobilize the object via
an counteracting wrench wsum to maintain a grasp, defined
as wsum ≜ ∫So

w(x)dx. The quality of a grasp measured
using Q∞ metric is defined as:

Q∞ ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
∥wo∥=1

max
f(x)

⟨wo,wsum⟩

s.t. ⟨n(x), f(x)⟩ ≤ 1
,

where n(x) is the inward normal at x ∈ So. Intuitively,
Q∞ equals to the largest magnitude of external wrench that
the robot can counteract along all possible directions, using
bounded grip force. Note that the above integral must be
well-defined because the constraint ⟨n(x), f(x)⟩ ≤ 1 makes
the integrand bounded and the domain of integral is also
bounded. In this paper, we consider the following discretized
Q∞ by limiting wo to a finite set w1

o,⋯,w
D
o :

Q∞ ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
d=1,⋯,D

max
fd(x)

⟨wdo ,wsum⟩

s.t. ⟨n(x), fd(x)⟩ ≤ 1
, (1)

where fd is the contact force to resist external wrench
along wdo . Combining the definition of Q∞ and the force-
position complementary condition, a grasp planning problem
is defined by the following IPCC:

argmax
θ,fd(x)∈C(x)

Q∞

s.t. 0 ≤ ⟨n(x), fd(x)⟩ ⊥ dr(x, θ) ≥ 0,
(2)

which inherently handles power grasps using infinitely many
variables fd(x), each involved in a complementary con-
straint dictating that only points in contact can impose non-



TABLE II: Symbol Table.

Variable Definition

So object surface
Sr robot surface
θ robot configuration
x a point on object
y a point on robot in global coordinates
R, t local-to-global rotation, translation
yl a point on robot in local coordinates
C feasible force cone
n(x) outward normal on x
f,wsum force,sum of wrench on object
fd,wdo dth external force,wrench
Q∞ grasp quality metric
D number of sampled directions
dr distance to the robot
α complementary relaxation parameter
gd(x) resisting wrench on x

Variable Definition

Gd(θ) resisting wrench for direction d
K kernel function
L,Lo,r collision avoidance term
{P,R,n,n0}pq separating plane
Slr, V (l) lth link, number of vertices
L number of links
φ, ρ merit function, constraint weight
γ constraint weight in merit function
r radius of Poisson’s disk
N,M number of source, target points
c, b center point of source, target box
Hn, hn, h

j
n Hermite functions

An,B
j
n,Cn,{E,F,H, I}m FGT coefficients

n0 number of truncated terms in FGT
B clustering box of FGT
S(y) source strength

zero forces on the object. Here dr(x, θ) is the distance
between x and the robot surface at configuration θ.

IV. KERNEL-INTEGRAL REDUCTION

In this section, we propose a practical reformulation of
Equation 2 as a standard NLP by using the relaxed comple-
mentary constraint [30]. Each complementary constraint is
equivalent to three inequalities:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨n(x), fd(x)⟩ ≥ 0

dr(x, θ) ≥ 0

⟨n(x), fd(x)⟩dr(x, θ) ≤ 0,

and Hoheisel et al. [30] proposed to replace the third inequal-
ity with ⟨n(x), fd(x)⟩dr(x, θ) ≤ α for some small, positive
relaxation constant α, and then use Sequential Quadratic
Programming (SQP) to satisfy a sequence of relaxed, differ-
entiable constraints with a monotonically decreasing series of
α that tends to zero. However, SQP cannot handle our relaxed
form due to non-differentiable term dr, the distance between
a point and a general surface of the robot. To sidestep
this incompatibility, we rewrite dr(x, θ) = min

y∈Sr(θ)
∥x − y∥

and replace each relaxed complementary constraint with an
infinite set:

⟨n(x), fd(x)⟩ ∥x − y∥ ≤ α ∀y ∈ Sr(θ).

With a slight rearrangement and by introducing a so-called
kernel function K(●, α) ≜ α/●, each complementary con-
straint takes the form:

⟨n(x), fd(x)⟩ ≤K(∥x − y∥, α) ∀y ∈ Sr(θ)

0 ≤ ⟨n(x), fd(x)⟩ ≤ 1,
(3)

where we have merged the requirement of Q∞ that normal
force magnituide is less than 1. We show that, as α → 0,
the infinite set of constraint Equation 3 is equivalent to the
following single constraint for a specific choice of kernel
function K(●, α):

⟨n(x), fd(x)⟩ ≤ ∫
Sr

K(∥x − y∥, α)dy. (4)

Lemma 4.1: Suppose we choose:

K(●, α) =
−1

(2π logα)(●2 + α2)
,

and the constraint Equation 4 is satisfied for a monotonic
sequence 0 ≤ αk → 0:

0 ≤ ⟨n(xk), fd(xk)⟩ ≤ ∫
Sr

K(∥xk − y∥, αk)dy,

and there is a convergence subsequence that tends to
x∗, then we have ⟨n(x∗), fd(x∗)⟩dr(x

∗, θ) ≤ 0 and
⟨n(x∗), fd(x∗)⟩ ≤ 1.

Proof: Without loss of generality, we can assume the
entire sequence xk is convergent to x∗. Case I: If dr(x∗, θ) >
0, then by the choice of kernel function we have K(∥xk −
y∥, αk) → 0 and Equation 4 implies ⟨n(x∗), fd(x∗)⟩ = 0.
Case II: If dr(x∗, θ) = 0, then there is a unique point y∗ ∈ Sr
such that ∥x∗−y∗∥ = 0 and the integral is singular at y∗. The
integral is thereby nonzero only within an infinitesimal disk
around y∗ with radius δr. By changing the integral under
polar coordinates, we have:

lim
α→0
∫

δr

0

−r
logα(r2 + α2)

dr = lim
α→0

logα − 1
2

log(δr2 + α2)
logα

= 1.

We conclude that Equation 4 is an appropriate equivalence
of Equation 3 in the limit of α.
Note that K does not need to take the exact form as in
Lemma 4.1 in practice. This is because Lemma 4.1 only
considers the limiting behavior of K when α → 0, but we
would terminate optimization with a finite, positive α due
to limited machine precision. Our experiments show that it
suffice to choose any K that decay quickly as r →∞. Indeed,
we find that choosing K to be an exponential function would
lead to an efficient algorithm for evaluating the integral in
Equation 4 and refer readers to Section V for more details.

Next, we show that fd has closed-form solution. We notice
the inner max function in Equation 1 can be moved into the
integral, giving:

min
d=1,⋯,D∫So

max
fd(x)

⟨wdo ,w
d
(x)⟩dx,

where the integrand is the only term related to wd(x) and
wd(x) is positively proportional to Q∞. If we fix all other
variables, fd(x) is the solution of the following subproblem:

argmax
fd(x)∈C(x)

⟨wdo ,w
d
(x)⟩

s.t. 0 ≤ ⟨n(x), fd(x)⟩ ≤ ∫
Sr

K(∥x − y∥, α)dy.
(5)

Using a similar reasoning as [6, 9], the solution to Equation 5
has a closed form:

fd(x) = gd(x)∫
Sr

K(∥x − y∥, α)dy

gd(x) ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

argmax
fd(x)∈C(x)

⟨wdo ,w
d(x)⟩

s.t. 0 ≤ ⟨n(x), fd(x)⟩ ≤ 1
,

and we refer readers to [9] for the derivation of the expression
of gd(x). When plugged into Equation 2, the closed-form
solution already incorporates the relaxed complementary
constraints and eliminates all the complementary variables,
thus reducing the IPCC to the following standard NLP:

argmax
θ

Q∞ ≜ min
d=1,⋯,D

Gd(θ)

Gd(θ) ≜ ∫
So

gd(x)dx∫
Sr

K(∥x − y∥, α)dy

s.t. dr(x, θ) ≥ 0,

(6)

which provides a variational explanation of Q∞ that allows
any point on the robot surface to make contact with any other



point on the object, thereby unifying precision and power
grasps. The choice of grasp points is implicitly encoded in
the double integral over the object and robot surfaces. We
will show that such integrals can be approximately efficiently
using FMM.

A. Guaranteed (Self-)Collision-Free
Equation 6 is still semi-infinite due to the infinitely many

collision constraints: dr(x, θ) ≥ 0. In prior work [6], the
collision-free constraint dr ≥ 0 is imposed using soft penalty
terms, which is not guaranteed to be satisfied. We propose
to ensure collision-free via the log-barrier function:

Lo(θ) = −∫
So

log [dr(x, θ)]dx. (7)

Using a line-search algorithm, we can guarantee that Lo
takes a finite value throughout the optimization, which in
turn implies collision-free between the robot and the gripper.
In practice, we assume the object is provided as a point cloud
and replace the integral of So with a summation over each
point. Lo is differentiable as shown in [6] and the evaluation
of summation can be accelerated using a bounding volume
hierarchy and log-barrier function with local support (see
[31] for more details).

We further consider self-collision assuming each robot
link takes a convex shape. Assuming that the robot surface
is decomposed into L links Sr = ⋃

L
l=1 S

l
r where each Slr

is the convex hull of V (l) vertices {yl1(θ),⋯, y
l
V (l)(θ)}.

Then a separating plane P pq(y) = ⟨npq, y⟩ + npq0 could be
introduced to avoid collision between a pair of links Sp,qr ,
where npq, npq0 are plane normal and offset. The log-barrier
function for self-collision takes the following form:

Lr(θ, n
pq, npq0 ) = − ∑

1≤p<q≤L

V (p)

∑
i=1

log [⟨npq, ypi (θ)⟩ + n
pq
0 ]

− ∑
1≤p<q≤L

V (q)

∑
j=1

log [− ⟨npq, yqj (θ)⟩ − n
pq
0 ] .

We propose to use block coordinate descend algorithm
and interleave the optimization for θ and P pq , so that the
optimization for each plane P pq is independent. To ensure
the plane normal has unit length, we use reparameterize
npq = Rpqe with Rpq ∈ SO(3) represented using Rodriguez
formula and e being an arbitrary unit vector.

B. Simplified SQP for Minimizing Q∞

Putting everything together, we recast NLP (Equation 6)
as an unconstrained optimization:

argmin
θ,Ppq

L(θ) −Q∞(θ) L ≜ Lo +Lr, (8)

which can be solved using a simplified SQP algorithm. The
non-differentiable min operator in Q∞ can be replace with
hard constraints:

argmin
θ,Ppq,Q

L(θ) −Q s.t. Q ≤ Gd(θ), (9)

where Q is a slack variable. We show in our appendix that
SQP takes a simplified form when solving Equation 9 by
observing that the QP subproblem is always feasible.

V. NUMERICAL INTEGRAL EVALUATION

Although we have derived the standard NLP Equation 9,
the integrals involved in Gd and L(θ) do not have analytic
expressions and need to be evaluated numerically. The double
integral involved in Gd is known as Fredholm integral of
the first kind, where the integrand is a multiplication of a
source term gd(x) and a kernel function K(∥x − y(θ)∥, α)
that is singular when x is close to y(θ) and decay quickly as
the distance increases. An intuitive method to discretize Gd

would sample the two surfaces So, Sr with dense set of N
points {x} ∈ So and M points {y(θ)} ∈ Sr(θ) using Poisson
disk sampling with radius r and approximate Gd with double
integral:

Gd ≈ (πr2
)
2
∑
x

gd(x)∑
y

K(∥x − y∥, α),

which incurs a cost of O(NM). We introduce a modified
FGT [16], a variant of FMM that can be applied if K is
chosen to be K(●, α) = exp(− ●2 /α). The standard FGT
would only computes Gd and we derive extra equations to
evaluate ∂Gd/∂θ as required by SQP. (We use the same
set of samples to discretize the integral in Equation 7, the
computational cost of which is O(N). Compared with Gd,
the cost to evaluate Equation 7 is marginal.)

We use x to denote a point on the object and y denotes a
point on the gripper. As illustrated in Figure 1, FGT first
cluster all the sampled points into boxes of side length
2
√
α, where each of Bx and By denotes a box that contains

some point x, y, respectively. For each By , FGT first uses
Multipole-to-Multipole (M2M) step to approximate their
contribution (to the integral) via Hermite expansion. Then
for each Bx,y pair, FGT uses Multipole-to-Local (M2L) step
to transfer the contribution from By to Bx. Finally, FGT uses
Local-to-Local (L2L) step to distribute the contribution from
the Bx to each x.

Algorithm 1: FGT

Input: Initial error threshold ε and n0(ε)
1: Cluster all x, y into boxes of side length 2

√
α

2: for By do
3: c← center of By
4: Precompute An,Bjn,Cn (Equation 10,11)
5: for Bx,y pair do
6: c← center of By
7: b← center of Bx
8: Precompute Em, Fm,Hm, Im (Equation 12,13)
9: for Bx do

10: Compute Gd, ∂G
d

∂θ
(Equation 14)

A. M2M Step

Assuming x, y are two 1D points, the FGT is based on
the Hermite expansion of exponential function:

exp(−(
y − x
√
α

)
2
) =

∞
∑
∣n∣=0

1

n!
(
c − y
√
α

)
nhn(

x − c
√
α

),



(a) (b)

(c): M2M

(d): M2L

(e): L2LB

y

c

b

x

Fig. 1: We illustrate FGT applied to
grasp planning. (a): We sample possible
contact points both on the gripper (red)
and the object surface (green). (b): The
number of sample points is large and we
cluster them into axis-aligned boxes B
(blue). FGT works in three steps. (c):
M2M step substitutes the contributions
(to Gd) of source point y with the
center point c using Hermite expansion
(red line). (d): M2L step substitutes the
contributions of center point c with the
center point b using Taylor expansion
(blue line). (e): L2L step evaluates Gd

for target point x around b (green line).

where Hn are Hermite polynomials and c is the center point
of By . If x, y, c are 3D points, then we use subscript to
denote the coordinate index and the expansion takes the
same form as above but n is a vector (n1, n2, n3 ). We
have n! ≜ n1!n2!n3!, ∣n∣ ≜ n1 + n2 + n3, rn ≜ Π3

i=1r
ni

i , and
hn(r) ≜ Π3

i=1hni(ri). The gradient with respect to yi has
the following Hermite expansion:

∂

∂yj
[exp(−(

y − x
√
α

)
2
)] =

2(xj − yj)

α
exp(−(

y − x
√
α

)
2
)

=
∞
∑
∣n∣=0

−2
√
αn!

[(
c − y
√
α

)
n+ejhn(

x − c
√
α

) + (
c − y
√
α

)
nhjn(

x − c
√
α

)] ,

where hjn(r) ≜ rjhn(r). The two above expansions form the
Multipole-to-Multipole (M2M) step of FGT. If there is a set
of points y ∈ By around a center point c, then we have:

∑
y∈By

S(y) exp(−(
y − x
√
α

)
2
) =

∞
∑
∣n∣=0

Anhn(
x − c
√
α

)

An ≜ ∑
y∈By

S(y)
1

n!
(
c − y
√
α

)
n.

(10)

Similarly for the gradient, we have:

∑
y∈By

S(y)
∂

∂yj
[exp(−(

y − x
√
α

)
2
)]

=
∞
∑
∣n∣=0

Bjnhn(
x − c
√
α

) +
∞
∑
∣n∣=0

Cnh
j
n(
x − c
√
α

)

Bjn ≜ ∑
y∈By

S(y)
−2

√
αn!

(
c − y
√
α

)
n+ej Cn =

−2
√
α
An,

(11)

where S(y) is some y-dependent coefficients. The M2M
step involves dividing the space into a set of axis-aligned
boxes By with side length 2

√
α. For all the source points y

belonging to a By , M2M identifies their contributions with a
single center point c using Hermite expansion (Equation 10
and Equation 11). FGT only retains terms with n ≤ n0, where
n0 is chosen to ensure error is small than a user chosen
threshold (see [16] for more details).

B. M2L Step

The center points c can still be faraway from target points
x. M2L step identifies the contributions of center points c
with some other points b that is close to target points using
Taylor expansion. A Hermite expansion has the following

equivalent Taylor expansion:
∞
∑
∣n∣=0

Anhn(
x − c√
α

) =
∞
∑
∣m∣=0

Em(x − b√
α

)m

Em ≜ (−1)∣m∣

m!

∞
∑
∣n∣=0

Anhn+m(c − b√
α

).
(12)

For the gradient, we have:

∑
y∈By

S(y) ∂

∂yj
[exp(−(y − x√

α
)2)]

=
∞
∑
∣m∣=0

[Hm(x − b√
α

)m+ej + (Fm + Im)(x − b√
α

)m]

Fm ≜ (−1)∣m∣

m!

∞
∑
∣n∣=0

Bjnhn+m(c − b√
α

)

Hm ≜ (−1)∣m∣

m!

∞
∑
∣n∣=0

Cnhn+m(c − b√
α

)

Im ≜ (−1)∣m∣+1

m!

∞
∑
∣n∣=0

Cnh
j
n+m(c − b√

α
).

(13)

Again we only retain all the terms with m ≤ n0. The M2L
step involves dividing the space into another set of axis-
aligned boxes Bx with side length 2

√
α. For each pair of

boxes with center points c, b, M2L transfers the contribution
from c to b (Equation 12 and Equation 13). This only needs
to be done for pairs of boxes that are certain distances away.

C. L2L Step
After substituting the center of expansion from b to c,

L2L step evaluates Gd around some target point x contained
in a box, Bx, with center point b using (Equation 12 and
Equation 13). In summary, the cost of evaluating each Gd is
O(N +M) by setting S(y) = (πr2)2. To evaluate ∂Gd/∂θ,
we assume that the rigid object is an articulated body so
that y(θ) = R(θ)yl + t(θ) where R(θ), t(θ) are the rotation
and translation of a rigid link, and yl is the point y in local
coordinates of the robot link. By the chain rule, we have:

∂Gd

∂θ
= ∂Gd

∂(R, t)
∂(R, t)
∂θ

∂Gd

∂tj
= ∂G

d

∂yj

∂Gd

∂Rij
= ∂G

d

∂yi
ylj .

(14)

We first evaluate ∂Gd

∂(R, t)
and then multiple by

∂(R, t)
∂θ

.

Each evaluation of ∂Gd

∂tj
can be performed using FGT by



Fig. 2: We apply our method to grasp 10 complex objects using Barrett Hand (left) and Shadow Hand (right).

Barrett Hand 1 2 3 4 5 6 7 8 9 10

Ours 1.9 × 10−6 2.29 × 10−6 1.26 × 10−5 2.43 × 10−6 7.05 × 10−6 2.31 × 10−5 2.17 × 10−5 5.29 × 10−6 2.14 × 10−6 1.69 × 10−5

Q1-[6] 2.15 × 10−7 1.34 × 10−14 2.45 × 10−6 1.78 × 10−6 1.51 × 10−6 1.41 × 10−5 7.96 × 10−6 1.88 × 10−6 1.97 × 10−6 3.22 × 10−6

Closeness 1.9 × 10−6 6.76 × 10−7 1.05 × 10−5 2.22 × 10−6 7.61 × 10−6 1.64 × 10−5 2.11 × 10−5 1.67 × 10−6 2.96 × 10−6 3.43 × 10−6

Q1-[23] 1.61 × 10−6 2.18 × 10−6 9.4 × 10−8 3.13 × 10−6 3.37 × 10−6 1.48 × 10−5 1.94 × 10−7 1.11 × 10−8 2.38 × 10−6 5.12 × 10−9

Shadow Hand 1 2 3 4 5 6 7 8 9 10

Ours 5.32 × 10−6 6.47 × 10−6 1.17 × 10−5 7.71 × 10−6 1.48 × 10−5 1.78 × 10−5 1.16 × 10−5 1.14 × 10−5 1.01 × 10−5 8.96 × 10−6

Q1-[6] 3.76 × 10−6 1.13 × 10−6 4.94 × 10−19 2.2 × 10−6 2.61 × 10−6 4.34 × 10−6 8.11 × 10−6 9.66 × 10−6 7.05 × 10−6 2.8 × 10−6

Closeness 4 × 10−6 7.41 × 10−6 2.94 × 10−6 4.43 × 10−6 6.34 × 10−6 8.3 × 10−6 5.18 × 10−6 5.77 × 10−6 3.54 × 10−6 2.71 × 10−6

Q1-[23] 7.94 × 10−7 3.99 × 10−6 8.03 × 10−6 4.91 × 10−6 4.31 × 10−7 3 × 10−6 4.15 × 10−6 7.46 × 10−6 7.62 × 10−6 2.68 × 10−7

TABLE III: A comparison of grasp quality (Q∞) using different algorithms on Barrett Hand (top row) and Shadow Hand (bottom
row). From top to bottom: our method, differentiable grasp planner [6] guided by sub-gradients, our method with objective replaced by
closeness measure, and EigenGrasp [23] using Q1 objective function.

setting S(y) = (πr2)2, and each evaluation of ∂Gd

∂Rij
can

be performed by setting S(y) = (πr2)2ylj . Using the artic-

ulated body algorithm [32], the multiplication by
∂(R, t)

∂θ

incurs O(∣θ∣). Altogether, the cost of evaluating Gd, ∂G
d

∂θ
is O(13(N +M) + ∣θ∣) and the cost of evaluating all the
constraint gradients is O((13(N +M) + ∣θ∣)D). We further
notice that M2M and M2L steps are irrelevant to the D
wrench directions and need to be done only once, so the
ultimate cost is: O(13(N +MD) + ∣θ∣D). We summarize
FGT in Algorithm 1.

VI. RESULTS

To validate the effectiveness of our approach, we employ
a small dataset (Figure 2) containing 20 models from the
Thingi10k object dataset [33], which is divided into two
groups. The first group of 10 objects are to be grasped using
the (6+4)-DOF three-fingered Barrett Hand [34] and the
second group is to be grasped using the (6+22)-DOF Shadow
Hand [35]. All experiments are carried out on a machine with
2.3 GHz 8-Core Intel Core i9 CPU. For all the experiments,
we choose D = 128, α = 10−3, γ = 0.1, β = 0.5, c = 0.1, τ =

10−10. We choose n0 to ensure FMM approximation error is
less than 10−6 according to [16].

Robustness: Our algorithm successfully processed the
entire dataset, where the objects exhibit high geometrical
and topological complexities including both thin and tiny
features that are oftentimes challenging in terms of collision-
avoidance and contact point selection. However, our method

can find human-like solutions (red poses in Figure 2) from
trivial initializations (blue poses in Figure 2). The grasp
quality optimized using different algorithms are summa-
rized in Table III (Larger numbers in Table III indicate
better quality and all the numbers have small absolute
values due to scaling of objects). As compared with GraspIt
[23], our method achieves Min/Average/Max Q∞ improve-
ment rate of 0.78/402.30/3292.72 on the BarrettHand and
1.33/9.07/34.37 on the ShadowHand. This is the first time
for model-based, optimization-based grasp planners to gen-
erate results of this level of complexity.

Comparisons: We have also compared our method with
two prior gradient-based grasp planner. The first method is
our prior work [6], where we use sub-gradients of the Q1

metric to optimize grasp poses. The second method uses the
closeness energy as objective function, which minimizes the
distance between point on grippers and object surfaces. The
closeness energy has also been used by [23]. Note that we
compare all these methods in terms of the Q∞ metric for
fairness. According to Table III, our method significantly
outperforms both these methods. We found that the method
in [6] requires a near-optimal initial guess and they rely on
groundtruth data to derive initial guesses. By starting from
trivial initial guesses as in Figure 2, sub-gradients cannot find
meaningful grasps. On the other hand, the closeness energy
does not consider force equilibrium condition.

FMM Acceleration: In Figure 3 we plot the averaged
iteration cost of SQP, with and without FMM acceleration.
The accelerated SQP solver achieves up to 5.6× speedup as



2 4 6 8
Rel. Point Cloud Density

0

10

20

30

40

50

A
v
g

. 
S

Q
P
 I
te

ra
ti

o
n
 C

o
st

 (
s)

Cost - Point Cloud Density

with FGT

without FGT

Fig. 3: The averaged computational cost of each SQP
iteration plotted against the relative sample density. FMM
acceleration achieves up to 5.6× speedup over brute-force
summation at the highest sample density.
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Fig. 4: The averaged grasp quality plotted against the relative
sample density. FMM acceleration generates almost identical
Q∞ metric values as compared with brute-force summation.

compared with brute-force summation at the highest density
of sampled contact points. The use of FMM never deteriorate
the quality of planned grasps, achieving almost identical
results as compared with brute-force summation as illustrated
in Figure 4. For reference, we plot the Q∞ metric computed
via brute-force summation for small densities, because the
cost for larger densities. We also observe improved optimized
qualities when using a higher density, which will ultimately
converge.

VII. CONCLUSION & FUTURE WORK

We present a full-featured, model-based, differentiable
grasp planner that can plan both precision and power grasps.
We first establish the connection between grasp planning and
contact-implicit path planning, which takes the form of an
IPCC. We further show that IPCC can be rewritten as an

NLP via the kernel-integral relaxation. Finally, we propose
a SQP-based practical algorithm to solve the NLP, where
the kernel-integral is approximately and efficiently evaluated
using FMM. Our method achieves a higher level of generality
in terms of 3D object types and gripper types, and we provide
guaranteed (self-)collision-free results. In the future, we plan
to apply our method to the training of robust, real-time grasp
policies as in [6]. Our method can only find locally optimal
grasps, and we plan to integrate our method with a stochastic
global optimizer, such as Bayesian optimization [2], which
can also handle uncertainties in object shapes.
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Aubry, K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg,
“Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated
rewards,” in 2016 IEEE international conference on robotics and
automation (ICRA), IEEE, 2016, pp. 1957–1964.

[25] H. Y. Li, M. Danielczuk, A. Balakrishna, V. Satish, and K. Gold-
berg, “Accelerating grasp exploration by leveraging learned priors,”
in 2020 IEEE 16th International Conference on Automation Science
and Engineering (CASE), 2020, pp. 110–117.

[26] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen,
“Automatic grasp planning using shape primitives,” in 2003
IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 2, 2003, 1824–1829 vol.2.

[27] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization
of complex behaviors through online trajectory optimization,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, 2012, pp. 4906–4913.

[28] Z. Pan, B. Ren, and D. Manocha, “Gpu-based contact-aware tra-
jectory optimization using a smooth force model,” in Proceedings
of the 18th annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2019, pp. 1–12.

[29] D. L. Logan, A First Course in the Finite Element Method Using
Algor, 2nd. USA: Brooks/Cole Publishing Co., 2000.

[30] T. Hoheisel, C. Kanzow, and A. Schwartz, “Theoretical and numer-
ical comparison of relaxation methods for mathematical programs
with complementarity constraints,” Mathematical Programming,
vol. 137, no. 1-2, pp. 257–288, 2013.

[31] R. Ni, T. Schneider, D. Panozzo, Z. Pan, and X. Gao, “Robust
& asymptotically locally optimal uav-trajectory generation based
on spline subdivision,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[32] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[33] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-

printing models, https : / / ten - thousand - models .
appspot.com,” New York University, Tech. Rep., 2016.

[34] Barretthand, https : / / advanced . barrett . com /
barretthand, Accessed: 2021-02-28, 2021.

[35] Shadow hand, https : / / www . shadowrobot . com /
dexterous-hand-series/, Accessed: 2021-02-28, 2021.

APPENDIX: SQP OPTIMIZER

We provide our main algorithm, which is a simplified, line-
search-based SQP optimizer. We observe from Equation 9
that we can always reduce Q to satisfy the constraints Q ≤

Gd(θ). Therefore, the underlying QP subproblem is always
feasible and we do not need to use any feasibility relaxation.
We assume the following exact l1-merit function:

φ(θ, r) = L(θ) −Q + ρ∑
d

∣min(0,Gd(θ) −Q)∣, (15)

and we assume following QP subproblem using approximate
positive-definite Hessian H:

argmin
∆θ,∆Q

1

2
∆θTH∆θ + (∆θT ,∆QT )(

∂L
∂θ
−1

)

s.t. Q +∆Q ≤ Gd(θ) +
∂Gd
∂θ

∆θ.

(16)

This problem must be feasible using sufficient small ∆Q.
The size of matrix H is small, typically less than 10 × 10,
so we use eigen-decomposition and clamp the negative
eigenvalues below 10−6 to ensure positive definiteness. The
directional derivative of φ along (∆θT ,∆QT ) is:

Dφ(θ, r) ≤ (∆θT ,∆QT )(
∂L
∂θ
−1

) − ρ∑
d

∣min(0,Gd(θ) −Q)∣.

To ensure that the directional derivative to be negative, we
can choose:

ρ ≥

(∆θT ,∆QT )(
∂L
∂θ
−1

)

(1 − γ)∑d ∣min(0,Gd(θ) −Q)∣
γ ∈ (0,1).

(17)

The final SQP algorithm for grasp planning is illustrated in
Algorithm 2. Note that the optimization of the separating
planes P pqk are not included in the SQP framework. Instead,
we update them in an alternating manner after each iteration.
This treatment makes each iteration efficient and keep the
Hessian matrix to have a small, fixed size. On the downside,
the convergence speed degrades from second- to first-order,
but the practical performance is satisfactory according to our
experiments.

Algorithm 2: SQP for Grasp Planning

Input: Initial θ0,Q0, P pq0, γ, β, c ∈ (0,1), ρ0, τ > 0
Output: Locally optimal θ to Equation 9

1: φ0 ← φ(θ0,Q0)

2: for Iteration k = 1,2,⋯ do
3: Use Algorithm 1 to compute Gd, ∂Gd/∂θ
4: Solve Equation 16 for (∆kθ,∆kQ)

5: Increase ρk−1 to ρk to ensure Equation 17
6: Θ← 1 ▷ Line search
7: while true do
8: θk ← θk−1 +Θ∆kθ
9: Qk ← Qk−1 +Θ∆kQ

10: φk ← φ(θk,Qk)
11: if φk ≤ φk−1 + cΘDφ(θk−1,Qk−1) then
12: Break
13: else
14: Θ← βΘ

15: for 1 ≤ p < q ≤ L do ▷ Update separating plane
16: P pqk ← argmin

Rpq∈SO(3),npq
0

Lr(θ
k, npq, npq0 )

17: if

XXXXXXXXXXXXXXXXXXX

⎛
⎜
⎜
⎜
⎜
⎝

∆kθ
∆kQ

npqk − npqk−1

npq0
k
− npq0

k−1

⎞
⎟
⎟
⎟
⎟
⎠

XXXXXXXXXXXXXXXXXXX

< τ then

18: Return θk

https://graspit-simulator.github.io/
https://ten-thousand-models.appspot.com
https://ten-thousand-models.appspot.com
https://advanced.barrett.com/barretthand
https://advanced.barrett.com/barretthand
https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/
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