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Spatial Tessellation of Infectious Disease Spread for
Epidemic Decision Support

Runsang Liu

Abstract—Infectious diseases such as COVID-19 have severe
impacts on both economy and public health in the US and the world.
Due to the heterogeneity of virus spread, there are spatial variations
in the demand for medical resources such as personal protective
equipment (PPE), testing kits, and vaccines. The availability of such
medical resources is critical to effective epidemic control. Although
these resources can be readily transported to designated areas for
fighting an epidemic, the demand is increasing and varying in
space that places significant stress on the supply and allocation of
medical resources. However, little has been done on the tessellation
of infection distributions for resource management. In this letter,
we develop new tessellation algorithms for decision support in
epidemic resource allocation and management. The objective is
to estimate resource locations and coverage based on the spatial
analysis of heterogeneous infection distribution. First, spatial tes-
sellation centroids are initialized through either greedy or cluster-
centric approaches. Next, the locations of tessellation centroids
are calibrated through a gradient learning algorithm. Lastly, the
spread tessellation is computed to provide an estimation of resource
coverages under the heterogeneous infection distribution. The pro-
posed methodology is evaluated and validated using a COVID-19
case study of infection data in Pennsylvania. Experimental results
show the proposed methodology effectively tessellates the spread
of infectious diseases. The new spread tessellation algorithms are
shown to have strong potentials for epidemic decision support in
infection modelling and resource allocation.

Index Terms—Agent-based systems, decision making, spatial
analysis, resource allocation, infectious diseases.

I. INTRODUCTION

HE outbreak of infectious diseases can cause severe im-
T pacts on both the economy and public health. Recently,
Coronavirus Disease 2019 (COVID-19) has been spreading
throughout multiple countries and is declared as a pandemic
by the World Health Organization (WHO) in March 2020. The
disease spreads quickly and heterogeneously in space, leaving
little time for healthcare professionals to react. As shown in
Fig. 1, there are only a few cases in the US in March, but the
disease has spread to almost all major cities on the east and west
coast in less than one month. The situation keeps deteriorating
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in the following months and has become a pandemic, causing
lockdowns and a high mortality rate for aged individuals [1].

Due to the heterogeneity of virus spread, there are spatial
variations in the demand for medical resources such as personal
protective equipment (PPE), testing kits, and vaccines. PPEs
such as facemasks and protective coveralls protect healthcare
professionals and individuals from infection. Testing kits help
identify positive cases, thereby enabling tracing protocols to
slow the spread of the disease. Vaccines help develop immunity
and thus reduce the risk of infection. The availability of such
medical resources is critical to effective epidemic control. Al-
though these resources can be readily transported to designated
areas for fighting the epidemic, the demand is increasing and
varying in the space that places significant stress on the supply
and allocation of medical resources [2].

The complexity of infection and demand distribution poses
great challenges to infection modeling and resource manage-
ment during an epidemic. As shown in Fig. 2, the spread of
COVID-19 in the state of Pennsylvania has large spatial vari-
ability. The number of infections is encoded by a colormap,
where red and blue color represents more and less infected
cases. Such spatial variability of infected cases over the region
is referred to as heterogeneous infection distribution. While the
demand for medical resources is closely related to the spread of
an epidemic, such complexity of the infection distribution poses
great challenges to resource decision making because directly
allocate resources to highly infected areas will create large
disparities across the spatial region. Therefore, spatial analysis
should be used to support the resource allocation process.

Traditionally, spatial analysis of resource allocations is per-
formed using locational optimization models such as the p-
median model [3] and set covering model [4]. Locational op-
timization models often use integer programming to find an
assignment of demand locations to resource locations by mini-
mizing the sum of weighted distances, which is computationally
expensive. The infection map creates a large-scale decision
space and thus discrete location models are less favored under
this setting. On the other hand, although traditional clustering
and Voronoi methods are computationally efficient, they cannot
be directly applicable due to the lack of considerations about
both demand locations and the heterogeneous infection distri-
bution. As a result, there is an urgent need to account for both
heterogeneous infection distribution and large-scale problem
settings.

In this letter, we develop new tessellation algorithms for
decision support in epidemic resource management. The ob-
jective is to estimate resource locations and coverage based
on the spatial analysis of heterogeneous infection distribution.

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-
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Fig. 1. COVID-19 infection map of the United States in a timeline.
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Fig. 2. COVID-19 infection map of Pennsylvania.

First, spatial tessellation centroids are initialized through either
greedy or cluster-centric approaches. Next, the locations of
tessellation centroids are calibrated through a gradient learning
algorithm. Lastly, the spread tessellation is computed to provide
an estimation of resource coverages under the heterogeneous
infection distribution. The proposed methodology is evaluated
and validated using a COVID-19 case study of infection data
in Pennsylvania. The proposed tessellation algorithm is bench-
marked with modified Voronoi tessellation and 3D K-means
clustering algorithm. Experimental results show the proposed
sequential optimization framework is effective to tessellate the
spread during the pandemic.

Furthermore, as the number of infections is changing over
time during an epidemic, spread tessellation should also be
adjusted according to the new infection data. As shown in
Fig. 3, the proposed tessellation algorithm can be integrated into
a decision support framework for mobile resource allocation.
The infection data in the region of interest are acquired to
monitor and update the spatial distribution of infected cases.
Such infection distributions are fed to the proposed algorithm to
tessellate infection regions for the decision support of optimal
intervention policies (e.g., resource allocation), which is critical
for the coverage and control of the epidemic. While the infection
data are updated each day, the tessellation is also re-computed
to cope with the latest situation. The proposed methodology is
flexible to support decision-makings during an epidemic.

The rest of the letter is organized as follows: In Section II,
we discuss the research background and the concept of spatial
tessellation. Section III shows the formulation of the proposed
methodology. We detail the experimental design and results in
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Fig. 3. Spread tessellation for decision support during an epidemic. The
infection data are acquired to monitor and update the spatial distribution of
infected cases. Such distributions are then processed by the spread tessellation
algorithm, which derives tessellation regions for decision makers to optimize

intervention policies (e.g., resource allocation) towards the coverage and control
of infectious disease spread.
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Section IV and Section V. The closing remarks are encompassed
in Section VI.

II. RESEARCH BACKGROUND

Locational optimization models are originated where indus-
tries need to leverage the locations of production warehouses,
distribution centers, and retail outlets [5]. In healthcare systems,
locational optimization models can be used to find an assignment
of medical centers during disasters [6], management of medical
resource supply [7], localization of public health services [8],
and analysis of optimal organ allocation boundaries [9].

A. Discrete and Continuous Locational Optimization

The p-median model is a discrete location model that orig-
inally aims to find the allocation of resources with the lowest
cost—a total of p resource locations is determined such that
the average of weighted distances between demand locations
and supply locations is minimized [10]. The modified p-median
model formulates the discrete location problem with integer
programming and uses simulated annealing metaheuristics to
find the optimal health center locations [11]. The large-scale
Emergency Medical Service (LEMS) framework [3] also utilizes
an integer programming framework that can be translated into
classical models such as the maximum coverage model and set
covering model.

However, the optimization process of integer programming
models is computationally expensive. Increased dimensionality
not only places computational burdens on the optimization
process, but the complicated allocation policy is also hard to
implement. On the other hand, there are fast algorithms based on
metaheuristics (e.g., genetic algorithm [12]). Although integer
programming problems may be complex, most of them are not
computationally expensive due to the use of metaheuristics and
matheuristics. However, discrete location models only compute
locations on networked nodes and are limited in the ability to
tessellate infection spread when the number of infected cases is
densely distributed over the region.

The proposed work consists of a continuum approximation
(CA) model in two-stage algorithms for handling the compu-
tational complexity of discrete facility location problems. CA
models rely on distribution functions instead of exact locations
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Fig. 4. 2-D Voronoi tessellation with 10 regions.

to optimize the cost objective. Therefore, they provide easier
and faster implementations than exact location models in the
presence of spatial densities [13]. Ouyang and Daganzo pro-
posed a CA-based algorithm to find terminal locations and their
coverage to minimize the total logistic cost by sliding influence
areas within the service region [14]. Nonetheless, the spread
of COVID-19 is different from slowly varying distributions of
demands considered in the literature, but rather brings highly
heterogeneous distribution of infected cases in a large spatial re-
gion. Therefore, new algorithms that can handle heterogeneous
infection distributions are urgently needed.

B. Clustering and Voronoi Tessellation

Traditional clustering algorithms such as K-means clustering
and variable clustering [15] group a set of data points into
homogeneous subsets based on a predefined similarity function.
Data points are “closer” to each other within the same cluster
than those in other clusters. Also, traditional clustering methods
cannot be directly used in spread tessellation because not only
spatial locations are involved, but also the infection distribution
should be considered, where the correlation between the number
of cases and 2-D spatial locations cannot be readily estimated
[16]. Notably, instead of using correlation-based metrics for
clustering, it is not uncommon that distance measures (e.g.,
Euclidean distance, and Manhattan distance) can be used to
compute the cluster of data points. These clustering methods
focus more on the spatial relationship between two data samples,
but are less concerned about the heterogeneous distribution of
infected cases over spatial locations. Through our experiments,
direct usage of the infection data as the third dimension may not
generate desired results.

Traditional Voronoi tessellation computes partitions in a spa-
tial domain using Lloyd’s algorithm. The Voronoi tessellation is
a partition of space into several sub-regions, where each region
is spawned by a Voronoi center . Anywhere within the region
satisfy the following inequality:

dist (p,0;) < dist (p,0;) ,Vp € Vi,i #j ey

where p is a location inside the i*" Voronoi region V;. Equation
(1) indicates that anywhere within a Voronoi region has a smaller
distance to its center than centers in other Voronoi regions. Com-
mon distance functions include 1-norm (Manhattan distance)
and 2-norm (Euclidean distance).

As shown in Fig. 4, a convex polygon can be divided into sev-
eral Voronoi regions. Note that any location from a color-coded
region has the smallest distance to its corresponding Voronoi
center than other centers. This indicates if we consider Voronoi
centers to be the location of resources, the spatial locations can be
partitioned into a number of sub-areas that satisfy this property.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 1, JANUARY 2022

@

Fig. 5. Illustrations of spread tessellation with weight using different com-
plexity levels of infection distributions, a) One Gaussian distribution; b) two
Gaussian mixtures and; ¢) three Gaussian mixtures; d)-f) are tessellation results
of traditional Voronoi tessellation with weights for Gaussian mixtures in a), b)
and c), respectively.

Therefore, spatial tessellation is conducive to infection modeling
and resource allocation.

However, traditional Voronoi tessellation only partitions a
polygonal space into regions based on spatial locations but does
not account for the number of infections. In other words, the
operation can only be done in the same dimension, e.g., from
R? — R2, while we want an assignment of R? (i.e., with the
added dimension of infection distribution) to RZ2. Thus, the
consideration of infection distribution is needed in the design of
tessellation algorithms for partitioning the spread regions of an
infectious disease (e.g., COVID-19).

C. Traditional Voronoi Tessellation With Weights

The infection distribution can be incorporated into the ob-
jective function of the tessellation algorithm as the weight
of the distances between spatial locations and centroids. The
optimization proceeds by updating the centroids of the tessel-
lations to the center of mass of the Voronoi region [17]. Fig. 5
shows the optimization results with different levels of spatial
variability (complexity) of infection distributions, i.e., single
Gaussian distribution (low), two Gaussian mixtures (medium),
and three Gaussian mixtures (heterogeneous). Red and blue
color indicates a higher and lower number of infected cases.
Green and orange squares are initial and final locations of
tessellation centroids. The trajectory shows the optimization
process of tessellation centroids.

As shown in Fig. 5, when the spatial variability of the
infection distribution is low and medium, more regions are
allocated near highly infected areas. However, when the com-
plexity is heterogeneous, traditional Voronoi tessellation with
weights tends to partition these regions uniformly. This is be-
cause the optimization is stuck at a local minimum. A high
level of spatial variability of the infected cases poses signif-
icant challenges to the ability of the existing algorithms to
handle heterogeneous infection distributions. It may be noted
that there are existing Voronoi tessellation methods that also
consider spatial heterogeneity. For example, heterogeneous
Voronoi tessellation (HVT) uses dynamic programming to esti-
mate the shortest heterogeneous distance for emergency drone
delivery from fixed agencies to demand locations [18]. This
present investigation focuses on spread tessellation algorithms
for decision support of mobile resource allocation, where the
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location of tessellation centroids can vary as the epidemic
evolves.

III. RESEARCH METHODOLOGY

In this section, we propose two spread tessellation algorithms
to handle heterogeneous infection distribution for resource de-
cision support during an epidemic. Because the spatial analysis
of infection distribution is conducive to infection modeling and
resource allocation, we study the spread tessellation on an in-
fection map. Given the number of partitions, two proposed algo-
rithms both follow a sequential optimization framework—in the
first stage, initial locations of tessellation centroids are roughly
estimated using either greedy or cluster-centric approach. In the
second stage, all tessellation centroids are being moved through
a gradient learning algorithm. The partition is further being up-
dated while the locations of tessellation centroids are optimized,
and the stable tessellation is obtained when all locations of
centroids are converged. The proposed methodology is evaluated
and validated with both simulated data and a real-world case
study with COVID-19 infection data in Pennsylvania.

A. Weighted Spatial Tessellation Formulation

Let o(s) be an injective mapping function: € — R™T that
maps a spatial location s inside a convex polytope space )
to a real value (the number of infected cases at a location s)
and © = {61,0,,...0;} be the set of locations of tessellation
centroids, each is allowed to move inside the convex region of
Q. Consider dist(0;, s) to be the distance function between a
centroid location #; and a spatial location s. Here we define
accessibility to be the sum of weighted distances between spatial
locations and tessellation centroids. Therefore, the cost function
is formulated as follows:

argmin C (©) = Z Jv, dist (0;,5) 0 (s)ds )
0

el

where Vj is the i*" Voronoi region, 6, is the i*" Voronoi center, T
is the number of partitions. Here, we use the squared Euclidean
distance to be our distance function, i.e., dist(6;,s) = ||0; —
s||? . Given the properties of Voronoi tessellation, it may be noted
that min |0k — sjl|?o(s;) =116; — sj ||> o(s;) forall s; € V.
This indicates the minimum weighted distance between a spatial
location and a centroid can only be found as the Voronoi center
of that region. It is worth noting that this formulation is different
from traditional clustering because both distance functions and
the number of infections are taken into consideration.

Because the Voronoi tessellation can be treated as a contin-
uous function of the tessellation centroid location set ® =
{61,02,...0;} , the objective function C(®) is continuously
differentiable with respect to centroid location 6;. Thus, we can
find the partial derivatives with respect to the location of the
tessellation centroid 6; as:

oC

0 :
S = v g6 = s 20 (5) ds ()

Because the integral and summation are both convex pre-
serving operations, and the squared Euclidean distance function
is convex, thus the resulting objective function is also convex.

Therefore, the objective function converges to a minimum lo-
cation where the partial derivative vanishes. We can further
compute the partial derivatives to simplify the gradient. Re-
call that the center of mass of the i** Voronoi region can be
computed as:

1
CM,=— [y d 4
oo (s 1127 () @
The moment of inertia (MOI) of the i** region is defined as:
Ii = [y, |6 — s |0 (s)ds 5)

According to the parallel axis theorem:
Iy, = Iv,.cum; + Jy, 0 (s)ds|| : — CM; ||? ()

which indicates the MOI of the 7*" Voronoi region can be divided
into two parts: the MOI associated with the center of mass
Iy, ¢, ,and the parallel axis passing through the center of mass.
See more details about the parallel axis theorem in [19]. Using
equation (6), the partial derivatives can be computed as:

oC 0
26, = 20, < E Iy, cm, + E fVi o (s)ds||0; — CM; ||2>
‘ v \iel

iel
(N
=2 [y, 0(s)ds(0; — CM;) (8)

which indicates the gradient direction of Voronoi center points
at the center of mass of that Voronoi region. To minimize sum of
weighted distances, a gradient learning algorithm is developed
to update Voronoi centers as:

0 (t+1)=6; (1) — 0L ©)

00;

where t is the current step, and « is the learning rate. During each
step, the tessellation is also updated using new Voronoi centers.
When Voronoi centers are moved towards centers of mass of
their corresponding region, new Voronoi centers will have closer
spatial distances to locations with more infections, and greater
distances from less infected areas. Therefore, highly infected
areas will be covered by more Voronoi regions, and areas with
less infection will be covered by fewer regions. Through our
experiments, optimizing such spatial tessellation purely relies
on gradient descent tends to be limited in the ability to handle
heterogeneous infection distributions. Therefore, two sequential
optimization algorithms are proposed to tackle this issue in the
next section.

B. Proposed Tessellation Algorithms to Address the
Heterogeneous Infection Distribution

Greedy-Voronoi tessellation (GVT): The greedy-Voronoi tes-
sellation first estimates the locations of partition centroids one
at a time until the number of partitions is equal to a fixed value
1. Next, all locations of the centroids are calibrated to find the
optimal spread tessellation.

As shown in Table I, the greedy Voronoi tessellation is ex-
ecuted in two stages—sequential optimization and global cali-
bration. The sequential optimization stage divides the original
problem into sub-problems and makes the optimal decision at
each sub-problem. As such, the GVT finds the best tessellation
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TABLE I
PSEUDOCODE FOR GREEDY-VORONOI TESSELLATION (GVT)

Infection mapping function o (s), Polygon space Q, number

of partitions /

1: Place the first centroid 6, at the center of mass of the
Q with density a(s)

2: Fori=2tol

3: Randomly place a new centroid 6; in the Voronoi
region with the largest mass
4: Compute Voronoi tessellation V based on the

location of current centroids using equation (1)
S: Compute the cost C(0) = Y; fV, dist(6;,s)o(s)ds

6: Compute the gradient % for this newly added

centroid 6;

7: Update 6; according to

6 =0 ac

=0 —-a 6_61

8: Repeat 5-7 until convergence
9: Update Voronoi tessellation V
10:  End For
11:  Compute the cost function c(0) =

Yioif, dist(6;,5)a(s)ds
12: Compute the gradient %, i=1,2,..,1 for all

centroid locations
13:  Update all 8;'s according to

ac
0, =0, —a—,i=12,..,1

69i ’

14:  Update Voronoi tessellation V

15:  Repeat 11-14 until convergence

16:  Return spread tessellation under
centroid locations 6;,i = 1,2, ..., 1

tessellation

centroid location one at a time. After placing an initial centroid
at the center of mass in the polygon space, the location of the
next centroid is randomly placed inside the Voronoi region with
the largest total sum of weighted distances, and a new Voronoi
tessellation and cost are computed. The sequential optimization
proceeds by moving a newly placed tessellation centroid towards
its gradient direction until the variation of the location are
converged. Note that during this process the locations of all
other centroids are fixed. This placement and refinement process
repeats until all I tessellation centroid locations are estimated.

After that, the global calibration stage is initiated where all
centroids are free to move. The cost and gradient for all centroids
are computed, and the corresponding locations are updated
according to step 13. With each movement of the centroid, the
tessellation is also updated. This process terminates when the
locational differences of tessellation centroids are converged,
and the cost function is on a plateau. Upon convergence, the
algorithm returns a tessellation of the infection distribution.

Cluster-Voronoi tessellation (CVT): The cluster-Voronoi tes-
sellation first utilizes clustering methods to estimate initial tes-
sellation centroid locations. Next, these locations are calibrated
using a gradient learning algorithm to find the optimal tessella-
tion of the infection distribution.

As shown in Table I, the infection distribution inside polygon
space € is first being filtered using a threshold parameter &,
which can be determined empirically. This step is to filter out
areas with the number of infections below a certain level (i.e., set
the number of infections to zero) and prioritize highly infected
areas. For example, using & = 0.5 will filter out regions with

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 1, JANUARY 2022

TABLE II
PSEUDOCODE FOR CLUSTER-VORONOI TESSELLATION (CVT)

Infection mapping function o(s), Polygon space €,

number of partitions /

1:  Filter the infection distribution with threshold &

2: Fori=1:t

3:  Randomly choose I locations as the initial cluster
centers

4:  (Re)assign each spatial location in Q to the cluster
where the cluster center is the closest

5: Update the location of the cluster center as the mean
of the spatial location within

6:  Repeat 3-5 until convergence

7:  End for

8:  Assign the initial location of the tessellation
centroids to be the mass center of the I clusters

9:  Compute Voronoi tessellation V based on the
location of I centroids

10: Compute the cost

% J, dist(6;,s)a(s)ds
L
11: Compute the gradient

function c(@) =

ac .
267 i=1,2,..,1 for all

centroid locations
12:  Update all ;s according to

ac
0, =6, —a—,i=12,..,1

13:  Repeat 9-12 until convergence
14: Return spread tessellation under tessellation

centroid locations 6;,i = 1,2, ..., [

Fig. 6. Illustration of tessellating the spread into 30 regions on the simulated
heterogeneous infection distribution in Fig. 5 using a) GVT and b) CVT.

the number of infected cases that are less than average. Next,
a total number of I tessellation centers are initialized in the
polygon space and spatial locations are assigned to its nearest
cluster centroid based on their spatial closeness. After that, we
iteratively move the location of cluster centers by averaging
the number of infections within the cluster until the sum of
distances between the spatial location and cluster center are min-
imized. These cluster centers are treated as initial locations of
tessellation centroids. Next, the Voronoi tessellation is computed
given current centroid locations, and the centroid locations are
updated using the gradient descent method. Each movement of
the centroid locations will result in another tessellation in the
polygon space. Upon convergence, we can obtain the spread
tessellation of the epidemic.

The proposed method is first examined with a simulated infec-
tion distribution. Three Gaussian mixtures are simulated as the
underlying infection distribution inside the polygon space. As
shown inFig. 6, both GVT and CVT places tessellation centroids
densely near the peak of infections and sparsely over regions
with a lower number of infections. The proposed methodology
shows promises to handle the simulated heterogeneous infection
distribution. In the next section, we conducted a case study using
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Fig.7.  Entropies of a) uniform distribution, b) normal distribution centered at
0, ¢) normal distribution, and d) skewed normal distribution.

COVID-19 infection data in Pennsylvania to further investigate
and evaluate the performance of proposed algorithms.

IV. EXPERIMENTAL DESIGN AND RESULTS
A. Case Study on COVID-19 Infection Map

The proposed methodology is evaluated using a case study
of COVID-19 infection data from the Pennsylvania Department
of Health website as shown in Fig. 2. Red color indicates more
cases of infections, while blue color means fewer cases. The
pixel locations of the infection map are set to be infection
locations and decision space for tessellation centroid locations
to create a large-scale problem setting. The total number of
infection locations are exceeding 860000, where algorithms
with poor scalability certainly encounter issues in computational
tractability.

B. Performance Measures

The performance of the proposed methodology is evaluated

using the accessibility score, and equity score:

1) Accessibility score: We compute the sum of dis-
tances between spatial locations to centroid locations
with the weight of the number of infected cases:
> [ dist(0;, s)o(s)ds. The s here is the spatial locations,
ielV;
with the corresponding number of infected cases o (s). The
0;’s are the locations of tessellation centroids and V; is the
i'" Voronoi region generated using 6;. The Accessibility
score is the reciprocal of the sum of weighted distance.
As such a higher accessibility score means the algorithm
is better at tessellating the spread of an epidemic.

2) Equity score: Equity measures the fairness of infection
severities among partitions within the region. To quantify
this concept, we use the entropy of the covered cases
within the Voronoi regions to be the measure of equity.

Entropy is a measure of information content in signals

Entropy = — ) p;log(p;), where p; here is the probability

that element ¢ cari be observed. As shown in Fig. 7, the entropy
varies when the data follow different distributions. When the
data follows a uniform distribution, it has the highest entropy.
When the data follow normal distributions with different mean
and standard deviation, we can observe that entropy is correlated

—@— Accessibility
== Equity

0.1 0.2 0.3 0.4 0.5
Threshold

Fig. 8. Variations of accessibility and equity scores of the CVT algorithm
when the threshold is increased from 0.1 to 0.5.

with the variation of the data. The larger the variation in distribu-
tion, the smaller the entropy. To evaluate the spread tessellation,
p; is computed as the normalized accessibility score in the i*
region.

The Accessibility score and Equity score are further nor-
malized to be in the range between 0 and 1, for the sake of
comparisons. We evaluate the performance of two proposed
algorithms using both scores by varying the parameters, i.e.,
the threshold ¢ for the CVT, and the number of partitions /.
Tessellation results are compared when the threshold is varied
from 0.1 to 0.5. Next, we choose the best performing threshold
for CVT in the following experiments. After picking the best
threshold &, we benchmark both GVT and CVT algorithms with
traditional Voronoi tessellation with weights and 3D K-means
clustering with a varying number of partitions I = 40, 60, 80,
100 and 120.

C. Experimental Results

The CVT algorithm leverages the threshold to prioritize
highly infected areas. Therefore, the choice of ¢ will impact the
performance of CVT algorithm, but not for the GVT algorithm
since it does not have the threshold parameter. If the threshold
is too large, the initialization of the tessellation centroids is too
radical, and if the threshold is too small, the optimization will
be trapped at a local minimum. Thus, tuning the threshold is the
first step to achieve better performance for the CVT algorithm.

Fig. 8 shows the comparison of tessellation results when the
threshold is varied among 5 levels (¢ = 0.1, 0.2, 0.3, 0.4, and
0.5) to identify the optimal threshold for the PA infection map
with 100 tessellations. Also, the number of tessellations can
be flexibly adjusted in our proposed algorithms to support the
decision-making process of policy makers. Experimental results
show that the CVT yields the best performance at £ = 0.4
in terms of both accessibility and equity scores. Therefore, we
choose the optimal threshold to be 0.4 for the CVT algorithm in
the following experiments.

Fig. 9 shows the comparison among GVT, CVT, as well as
Voronoi tessellation with weights and 3D K-means. The 3D
K-means algorithm considers both spatial coordinates and the
number of infected cases at a location s when computing the
Euclidean distance as the similarity measure. The number of
tessellations is set as parameter K. In the practice, parameter
K is often predetermined empirically by the policy maker, e.g.,
the number of resource locations under the budget constraint
to maximize the coverage and control of COVID-19 spread.
In this investigation, the value of K is set as the number of
tessellations for the consistence of performance comparison with
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of partitions is increased from 40 to 120.

Fig. 10.  Spread tessellation results with the GVT (a, b, and ¢) and CVT (d, e,
and f) when the number of partitions is varied from (a and d) 60 to (b and e) 100
and (c and f) 140.

other algorithms. On the other hand, if the objective is to identify
the best parameter K automatically, there is a need to set up
a new objective function and screen the possible range of K
for the optimality. Experimental results show that the proposed
GVT and CVT algorithms yield significantly better results than
traditional algorithms when the number of partitions is increased
from 40 to 120. The traditional Voronoi tessellation yields the
lowest accessibility and equity score among all four methods.
Although 3D K-means has a decent equity score comparing with
other methods, its acessibility scores are not satisfactory. This is
because traditional clustering methods focus more on the spatial
relationship between data samples, while concerning less on the
distribution of infections. The GVT yields the best performance
for different numbers of partitions because optimal learning is
performed on every sub-problems. On the other hand, the CVT
is better in terms of computational time. The runtimes for the
CVT with 40, 60 80, 100, and 120 partitions are 132.96, 150.13,
156.62, 171.55, and 179.43 seconds, while the GVT requires
654.11, 1290.56, 2117.52, 3019.04, and 3971.41 seconds, re-
spectively. The computation time is estimated with the use of
a laptop computer with Intel Core i7 2.60GHz, 16GB RAM.
Because all tessellation centroids are initialized at the same time,
the CVT has the advantage of computation efficiency over the
GVT. Moreover, when the number of partitions is increased, the
difference in the performance measures between GVT and CVT
algorithms is decreasing. In our experiment, when the number
of partitions is large, CVT can be used as a fast alternative to
GVT.

Fig. 10 shows the comparison of spread tessellation results
using the GVT and CVT algorithms when the number of parti-
tions is varied among 60, 100, and 140. Note that more regions
are obtained near highly infected areas for both approaches but
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Fig. 11.  Convergence curve of the cost function for 100 partitions using the
greedy-Voronoi tessellation (GVT) algorithm.

are much sparser in areas with fewer infected cases. It may also
be noted that tessellation results are slightly different between
the two proposed algorithms, achieving different levels of per-
formance scores. The GVT yields the accessibility of 0.292,
0.382, 0.459, and entropy of 5.72, 6.48, 7.02 when the number
of partitions is varied from 60 to100 and 140. However, the CVT
yields accessibility of 0.287, 0.382, 0.433, and entropy of 5.70,
6.44, 6.76 when the number of partitions is varied from 60 to
100 and 140. Recall that the tessellation with higher accessibility
and equity scores is better. Therefore, the GVT algorithm yields
better performance than the CVT.

Fig. 10 also shows the trend in the shape of tessellations when
the number of partitions is increased from 60 to 100 and 140. For
the GVT algorithm, when the number of partitions is increased,
new centroids are increasingly being placed near highly infected
areas, while regions with lower infected cases also have minute
shifts. This is also similar to the CVT algorithm. More partitions
are obtained in highly infected areas and less in areas with lower
infected cases. Such difference in the shape of Voronoi regions
is beneficial for spatial analysis of the infection distribution and
resource allocation decision support.

Fig. 11 shows the convergence curve for the GVT algorithm
with 100 partitions that demonstrate the tractability of the se-
quential optimization process. The curve of cost function keeps
decreasing with respect to the change of the location of centroids.
When a new tessellation centroid is being placed, the cost is
decreased to a larger extent when compared with the calibration
of tessellation centroid locations. After 1000 iterations, the cost
function is on a plateau, which indicates algorithmic conver-
gence. The optimization process can be controlled by the step
length a, the system may converge faster when the step length is
increased. The optimization process will be more conservative
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when the step length is smaller with the sacrifice of a higher
computation time.

Experimental results show the proposed GVT and CVT al-
gorithms are robust against heterogeneous infection distribution
in a spatial region and yield better performance than traditional
Voronoi tessellation with weights and 3D K-means clustering.
The proposed methods also provide zoning for the irregular and
complex distribution of infected cases. When the number of
partitions is increased, the difference in performance measures
is decreased between CVT and GVT. Therefore, a trade-off
can be established between two proposed algorithms between
performance and efficiency. The CVT can be first used to analyze
the situation as a fast solution, and the GVT can be used to
fine-tune and search optimal tessellation of the spread.

V. CONCLUSION

Infectious diseases have severe impacts on both public health-
care and the economy. For example, COVID-19 causes a global
pandemic and brings economic challenges. Due to the hetero-
geneity of virus spread, the demand for medical resources such
as PPEs, testing kits, and vaccines have large spatial variations.
The availability of such resources is critical to epidemic control.
To better analyze the spread and support epidemic decisions, new
tessellation methods of infectious diseases are urgently needed.
However, traditional discrete location models only compute
the locations on networked nodes and do not provide zoning
which is important to equity regulation and resource decision
making. In addition, integer programming-based discrete lo-
cation models are computationally expensive and are thus not
suitable for large-scale problem settings, e.g., partitioning the
infection distribution. On the other hand, traditional clustering
and tessellation algorithms cannot be directly applicable due to
the lack of considerations about both spatial distances and the
heterogeneous infection distribution.

This letter presents two sequential optimization algorithms to
solve the spread tessellation problem, namely greedy-Voronoi
tessellation (GVT) and cluster-Voronoi tessellation (CVT). We
implement and evaluate the proposed algorithms using both
simulation data and a real-world case study of COVID-19
infection data in the state of Pennsylvania. The objective is
to estimate resource locations that consider both accessibility
and equity based on the heterogeneous infection distribution.
The performance measures are defined to be accessibility and
equity scores, in which accessibility leverages spatial distances
and equity evaluates the fairness of coverage among Voronoi
regions. Next, we benchmark the proposed algorithms with
traditional Voronoi tessellation with weight and 3D K-means
using different numbers of partitions. Experimental results show
the GVT yields superior performance when compared with
benchmark models, but the performances of two proposed

algorithms are getting closer when the number of partitions
is increased. In addition, the CVT is shown to have a bet-
ter computation time compared to the GVT. The proposed
methodologies are shown to have strong potentials for epi-
demic decision support in infection modeling and resource
allocation.
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