
1

Explanation-Aware Experience Replay in
Rule-Dense Environments

Francesco Sovrano1,∗, Alex Raymond2,∗, and Amanda Prorok2

Abstract—Human environments are often regulated by ex-
plicit and complex rulesets. Integrating Reinforcement Learning
(RL) agents into such environments motivates the development
of learning mechanisms that perform well in rule-dense and
exception-ridden environments such as autonomous driving on
regulated roads. In this paper, we propose a method for organis-
ing experience by means of partitioning the experience buffer
into clusters labelled on a per-explanation basis. We present
discrete and continuous navigation environments compatible
with modular rulesets and 9 learning tasks. For environments
with explainable rulesets, we convert rule-based explanations
into case-based explanations by allocating state-transitions into
clusters labelled with explanations. This allows us to sample expe-
riences in a curricular and task-oriented manner, focusing on the
rarity, importance, and meaning of events. We label this concept
Explanation-Awareness (XA). We perform XA experience replay
(XAER) with intra and inter-cluster prioritisation, and introduce
XA-compatible versions of DQN, TD3, and SAC. Performance
is consistently superior with XA versions of those algorithms,
compared to traditional Prioritised Experience Replay baselines,
indicating that explanation engineering can be used in lieu of
reward engineering for environments with explainable features.

I. INTRODUCTION

HUMAN-REGULATED environments often rely on legis-
lation and complex sets of rules. At present, Reinforce-

ment Learning (RL) methods are usually tested in environ-
ments with relatively sparse rules and exceptions [17]. Denser
regulations appear in applications of RL for autonomous
vehicles research, but such rulesets are often fixed in terms of
complexity [20]. We are interested in observing how learning
can be affected by the depth of the rulesets governing such
systems. With large numbers of corner cases arising as a
consequence of dense rulesets, generating a sufficiently diverse
set of experiences and exposing these exceptions to an RL
agent can be challenging. Some works in literature propose to
sample past experiences related to those exceptions, heuristi-
cally revisiting potentially important events. Among them, the
technique of Prioritised Experience Replay (PER) [29] looks
at over-sampling experiences that are most poorly captured by
the agent’s learned model. However, this mechanism does not
necessarily focus on the cause of events or their exceptional
nature.

Alex Raymond is supported by the Royal Commission for the Exhibition
of 1851 and L3Harris ASV. Amanda Prorok is supported by the European
Research Council (ERC) Project 949940 (gAIa). Their support is gratefully
acknowledged.

1Francesco Sovrano is with the Department of Computer Science, Univer-
sity of Bologna, Italy francesco.sovrano2@unibo.it

2Alex Raymond and Amanda Prorok are with the Department of Com-
puter Science and Technology, University of Cambridge, United Kingdom
alex.raymond@cl.cam.ac.uk, asp45@cam.ac.uk

*Authors contributed equally to this work and are listed as co-first authors.

In this letter, we pursue the intuition that explanations are
a pivotal mechanism for human intelligence, and that this
mechanism has the potential to boost the performance of RL
agents in complex environments. This is why we draw inspira-
tion from user-centred explanatory processes for humans [31],
and design a set of heuristics and mechanisms for prioritised
experience replay to explain complex regulations to a generic
off-policy RL agent. A central design challenge towards this
goal is integrating explanations into computational representa-
tions. Approaches such as encoding the ruleset (or part of it)
into the agent’s observation space may incur severe re-training
overhead even under minimal ruleset changes, as the semantics
of the regulation are explicitly provided as input [18]. This
minimises compatibility with extant methods and may obscure
whether differences in performance are due to changes to the
architecture or the complexity of the ruleset. We propose a
solution that is agnostic to explicitly engineering state and
observation spaces, using an explanation-aware experience
replay mechanism.

In our approach, we avoid explicit representations of the
ruleset (i.e. rule-based explanations [7]) by instead represent-
ing the meaning of the regulations as organised collections
of examples (i.e. case-based explanations [1]). These expla-
nations do not need to be understood by the agent in the
traditional sense, but can still convey meaning if the example
was labelled/explained in a semantic and meaningful process.
In a ludic example, suppose a young man, called Luke, is
taking hyperspace flight lessons from his exasperated friend
Chewbacca. However, he does not understand a single word
of Shyriiwook, the tutor’s language. With sufficient repetition,
Luke can associate distinct Wookiee growls (and punishments)
to categories of experienced episodes, even if the content of
the message is in an unknown language. Eventually, Luke
would learn the meaning of the most relevant utterances by
associating them to the experienced consequences. Hence, our
approach modifies conventional experience replay structures
by partitioning the replay buffer (or memory) into multiple
clusters, each representing a distinct explanation associated
with a collection of experiences that serve as examples. We call
this process Explanation-Aware Experience Replay (XAER)
(see Figure 1) and integrate this technique into three seminal
learning algorithms: Deep Q-Networks (DQN) [23], Twin-
Delayed DDPG (TD3) [11], and Soft Actor-Critic (SAC) [13].

In summary, we state the following contributions:
• We show how distinct types and instances of explanations

can be used to partition replay buffers and improve the
rule coverage of sampled experiences.

• We design discrete and continuous environments (Grid-
Drive and GraphDrive) compatible with modular rulesets

ar
X

iv
:2

10
9.

14
71

1v
2

 [
cs

.L
G

]
 1

6
D

ec
 2

02
1

2

of arbitrary complexity (cultures). This leads to 9 learning
tasks involving both environments with different levels
of rule complexity and reward sparsity. These serve as
a platform to evaluate how RL agents react to changes
in rulesets whilst keeping a consistent state and action
space.

• We introduce XAER-modified versions of traditional al-
gorithms such as DQN, TD3, and SAC, and test the
performance of those modified versions in our proposed
environments.

Upon experimenting on the proposed continuous and discrete
environments, our key insight is that organising experiences
with XAER improves agent performance (compared to tradi-
tional PER) and can be able to reach a better policy where
traditional PER may fail to learn altogether.

Environment

Agent

Interacts
with

XA Experience Clusters

Appends
explanation 𝑒 to
state-transition τ

𝐶𝑒2

Explainer

𝐶𝑒3

𝐶𝑒7𝐶𝑒

𝜏𝑒
n

Prioritised sampling

Processes action and
produces new

state-transition τ

n
𝜏

(XA Experience Replay)

Fig. 1. Overview of XAER. The explainer labels a state-transition τ with an
explanation e, which is stored in a cluster (Ce) containing other experiences
labelled with the same explanation.

II. RELATED WORK

In this section we give the necessary background to under-
stand our proposed solution and the following experiments,
along with prior related work.

A. Model-Free Reinforcement Learning

A Reinforcement Learning problem is typically formalised
as a Markov Decision Process (MDP). In this setting, an agent
interacts at discrete time steps with an external environment.
At each time step t, the agent observes a state st and chooses
an action at according to some policy π, that is a mapping (a
probability distribution) from states to actions. As a result of
its action, the agent obtains a reward rt, and the environment
passes to a new state s′ = st+1. The process is then iterated
until a terminal state is reached.

The future cumulative reward Rt =
∑∞
k=0 γ

krt+k is the
total accumulated reward from time starting at t. γ ∈ [0, 1] is
the discount factor, representing the difference in importance
between present and future rewards. The goal of the agent is
to maximise the expected cumulative return starting from an
initial state s = st. The action value Qπ(s, a) = Eπ[Rt|s =
st, a = at] is the expected return for selecting action a in
state st and prosecuting with strategy π. Given a state s and
an action a, the optimal action value function Q∗(s, a) =

maxπ Q
π(s, a) is the best possible action value achievable by

any policy. Similarly, the value of state s given a policy π
is V π(s) = Eπ[Rt|s = st] and the optimal value function is
V ∗(s) = maxπ V

π(s).
Two of the major approaches to RL are value-based and

actor-critic algorithms. Value-based algorithms, such as Deep
Q-Networks (DQN) [23], use temporal difference learning,
where policy extraction is done after an optimal value function
is found. Actor-critic methods, such as and Twin-Delayed
DDPG (TD3) [11] and Soft Actor-Critic (SAC) [13], rely
on evaluating and improving a policy (via gradient descent)
together with a state-value function. DQN is one of the
very first value-based deep RL algorithms, designed to work
on discrete action-spaces only. Adaptations for continuous
action-spaces, as DDPG and then TD3, propose to address
value overestimation problems by means of clipped double
Q-learning, delayed update of target and policy networks, and
target policy smoothing. However, one of the main limitations
with TD3 is that it randomly samples actions using a pre-
defined distribution. To overcome the issue of being limited
by a fixed distribution, Soft Actor Critic (SAC) empowers
the agent with the ability to also learn the distribution with
which to sample actions, empowering the agent to explore
more different strategies through entropy maximisation.

B. Explanations in RL

The most important field studying explanations in AI and
RL is eXplainable AI (XAI) [3]. Among the many surveys
on XAI, a common dimension used to classify explanations
is the representative format used to convey them. Within
this domain, explanations are commonly conveyed via tex-
tual/visual descriptive representations of the decision criteria
(i.e. rule-based), or with similar examples (i.e. case-based).
An example of rule-based explanation is ‘you will get a penalty
for reaching 75, which is above the speed limit of 50’, based on
the rule ‘if speed is above 50, you will get a penalty’. While
an example of case-based explanation is ‘you get a penalty
because you are in a situation similar to this other vehicle
that reached speed 74 and was previously penalised’.

Dietterich and Flann [9] frame explanation-based RL as a
case-based explanatory process where prototypical trajectories
of state-transitions are used to tackle similar but unseen
situations, while Chow et al. [8] implement a rule-based
method, constraining the Markov Decision Process by means
of Lyapunov functions.

Generally speaking, many rule-based methods for explain-
ing to RL agents usually fall under the umbrella of a sub-
discipline called Safe RL [12]. Safe RL includes techniques
for both: encoding rules in the optimality criterion [8], [28]
and incorporating such external knowledge into the action/state
space [4]. Although not generating explicit explanations, those
methods engineer safety rules into the learning process, im-
plicitly explaining to the agent what not to do. Alternatively, a
famous example of case-based methods for explaining to RL
agents is that of Imitation Learning [15], where demonstrations
(as trajectories of state-transitions generated by a human or
expert algorithms) are used to train the RL agent. These can
be seen as high-quality cases/examples provided by an expert

3

human or algorithm. However, access to human expert data
may not scale well to every domain, and not all problems
dispose of accessible expert algorithms.

We are interested in sampling the most useful experiences to
cover a particular agent’s gap in knowledge. An agent-centred
explanatory process is an iterative process that follows the
agent through the process of learning and selects the most
useful explanations for it, at every time-step. Below, we look
at how experience replay techniques tackle this issue in off-
policy RL.

C. Prioritised Experience Replay

Algorithms such as DQN, TD3, and SAC aim to find a
policy that maximises the cumulative return, by keeping and
learning from a set of expected returns estimates for some past
policy π. This set of expected returns is kept in an experience
buffer, enabling experience replay. Experience replay [29]
consists in re-utilising information from the space of sampled
experiences. The agent’s experiences at each time-step t are
stored as transitions et = (st, at, rt, st+1), where st, at, rt
represent the state, action, and reward at time t, followed by
the next state st+1. These transitions are pooled over many
episodes into a replay memory, which is usually randomly
sampled for a mini-batch of experiences.

Experience sampling can be improved by differentiating
important transitions from unimportant ones. In Prioritised
Experience Replay (PER) [29], the importance of transitions
with high expected learning value is measured by the magni-
tude of their temporal-difference (TD) error. Experiences with
larger TD are sampled more frequently, as TD quantifies the
unexpectedness of a given transition [19]. This prioritisation
can lead to a loss of diversity and introduce biases. Bias in
prioritised experience replay occurs when the distribution is
changed without control. This effect therefore changes the
solution that the estimates will converge to. This bias can be
corrected through importance-sampling (IS) weights.

Many approaches to Prioritised Experience Replay (PER)
in RL [29] can be re-framed as mechanisms for achieving
agent-centrality, re-ordering experience by relevance in the
attempt of explaining to the agent and selecting the most
useful experience, as indirectly suggested by Li et al. [19].
Over the years, many human-inspired intuitions behind PER
drove researchers towards improved, more sophisticated and
agent-centred mechanisms to RL [32], [33], [34]. Among
these works, the closest to a fully agent-centred explanatory
process is Experience Replay Optimisation [34], which moves
towards agent-centrality by providing an external black-box
mechanism (or experience sampler) for extracting arbitrary
sequences of information out of a flat (no abstraction involved)
experience buffer. The experience sampler is trained to select
the most ‘useful’ ones for the learning agent. However, due
to its non-explainable nature, it is not clear whether the
benefits given by Experience Replay Optimisation are due to
the overhead given by the experience sampler increasing the
number of neurons in the agent’s network.

Another work trying to achieve agent-centrality in this sense
is Attentive Experience Replay [32], suggesting to prioritise
uncommon experience that is also on-distribution (related to

the agent’s current task). However this work, as the previous
one, also falls short of explicitly organising experience in an
abstract-enough way by conveying human-readable explana-
tions to the agent. Hierarchical Experience Replay [33] has
attempted to address the abstraction issue in an attempt to
simplify the task to the agent, decomposing it into sub-tasks.
However, they do not do so in an agent-centred and goal-
oriented way, given that its sub-task selection is uniform and
not curricular.

On the other hand, a curricular approach for training RL
agents was proposed by Ren et al. [27], exploiting PER and the
intuition that simplicity is inversely proportional to TD-errors,
but not exploiting any abstract and hierarchical representation
of tasks. Similarly to ours, [30] aims to organise experience
abstractly, based on its explanatory content — framed as the
ability to answer how good/bad a sequence of state-transitions
is with respect to average experience. This work only considers
explanations about the immediate performance of the agent
(i.e. HOW explanations), and lacks any consideration of other
and richer types (i.e. WHY), as well as curricular prioritisation
facilities.

III. EXPLANATION-AWARENESS

Our use of explanations is aligned to Holland’s [14] and
Achinstein’s [2] philosophical theories of explanations. In fact,
in the former, the act of explaining is framed as a process
of revising belief whenever new experience challenges it. In
the latter, explaining is the attempt to answer questions (such
as ‘why’, ‘what’, etc [31]) in an agent-centred way. Specifi-
cally, we propose a transformation of rule-based explanations
(e.g. given by a ruleset/culture) to case-based explanations
(experience), which are compatible with experience replay.
Leaning on the concept of Explanation-Awareness (XA), our
heuristics facilitate information acquisition via the organisation
of experience buffers.

Drawing from an epistemic [22] interpretation of explana-
tions, we argue that a central aspect of providing case-based
explanations to an RL agent comes from meaningfully re-
ordering experience to a greater degree. The intuition behind
how we construct our case-based explanations is: ‘a simple
set of relevant state-transitions representing abstract-enough
aspects of the problem to be solved.’ This intuition motivates
the heuristics of abstraction, relevance, and simplicity (ARS,
in short). We adapt these heuristics from prior work [31] in the
HCI domain, where they are presented in greater abstraction
to form a higher-level taxonomy and knowledge graph for an
interactive explanatory process.

Consider a problem where an RL agent has to learn a
policy to optimally navigate through an environment with
sophisticated rules and exceptions (e.g. a real traffic regulation
with exceptions for special types of vehicles). Let the state-
transition τ = (st, at, rt, st+1) denote the transition from state
st to state st+1 by means of action at, yielding a reward rt.
We assume the environment is imbued with explanatory capa-
bilities via an explainer. Note that the explanations generated
by the explainer can have virtually any representation, be it
human-understandable or not, provided they are distinct and
serve the purpose of labelling different clusters.

4

Definition 1 (Explainer): The explainer ε : Ω → ES is a
function that maps a list of state-transition tuples τ ∈ Ω to an
explanation er ∈ ES, where Ω is the space of possible state-
transitions and ES is the explanatory space, i.e., the space of
all possible explanations.

An agent who has more diverse experiences with regards
to the reasons (explanations) associated with rewards will
have a better chance at converging towards a policy that
better represents the underlying ruleset. Therefore, we posit
that the more complex the environment is in terms of rules,
the more useful Explanation-Awareness (XA) should be, as it
would ensure a more even distribution of experiences with
regards to different reasons justifying rewards. This diversity
of explanations culminates on a clustering that is semantic
by nature, and transitions are partitioned according to the
explanation that represented its reward.

Definition 2 (XA Clusters): Let τe = (st, at, rt, ert , st+1) be
a XA state-transition represented by the explanation e, where
τe : τ × er, τ ∈ Ω and e ∈ ES. Let Ω be the set of all
state-transitions. We say C = {Ce1 , . . . , Cek} is the set of
XA clusters seen in Ω, where k is the number of different
explanations seen.

We introduce our adaptation of ARS, below.

A. Abstraction: Clustering Strategies

The purpose of the abstraction heuristic is to regulate the
level of granularity of the explanations, hence of the experi-
ence clusters. Our abstractions are based on the understanding
that explanations are indeed answers to questions. Hence,
explanations may have different granularity defined by the
level-of-detail of the question they answer.

More in detail, the HOW explanations we consider answer the
question ‘How well is the agent performing with this reward?’.
This type of explanations can be produced by studying the
average behaviour of an agent. For example, if an episode has
a cumulative reward that is greater than the running mean,
then the explanation indicates that the agent is behaving better
than average. Hence, these HOW explanations do not need to
be designed with any specific domain knowledge, as they are
governed exclusively by the performance of the agent. On
the other hand, the WHY explanations we consider answer
the question ‘Why did the agent achieve this reward?’. These
WHY explanations could depend on an explainer function with
task/domain knowledge that can distinguish and cluster types
of transitions (see Example 1, below). Furthermore, WHY and
HOW explanations (or any other type) can be combined so that
the explanation would answer both the associated questions.

In order to compose the experience buffer, represented
by the set of experience clusters C = {Ce1 , . . . , Cek}, we
consequently devise the following clustering strategies, for
each explanation type:

1) HOW: The experience buffer is divided into 2 clusters
Cbetter and Cworse, where Cbetter contains batches with
rewards greater than the running mean of rewards, and
vice-versa (given a sliding window of a defined size).

2) WHY: The number of clusters is equivalent to the number
of distinct explanations available. If a batch can be
explained by multiple explanations simultaneously, we

select the explanation associated with the smallest cluster
(most under-represented) and the batch is associated to
the corresponding cluster.1

3) HOW+WHY: a combination of HOW and WHY strategies.
There are two custom Cbetter and Cworse clusters for every
WHY explanation, formed after their concatenation.

Example 1: Suppose a hypothetical football environment
with a WHY explainer function. This function could ei-
ther be part of the environment (a logical mechanism that
recognises when certain states are reached and produces a
state label), or an external mechanism that receives state-
transitions as input and produces explanations. The expla-
nations could be generated by the rules of the game, such
as ‘goal’, ‘offside’, or ‘foul’. The corresponding WHY clus-
ters would be C = {Cgoal, Coffside, Cfoul, . . .}, where each
cluster would contain a set of state-transitions associated
with each label. If HOW+WHY were used, clusters would be
C = {Cgoal_better, Cgoal_worse, Coffside_better, . . .}.

After clustering state-transitions using the prior clustering
strategies, we propose mechanisms for assessing the relevance
of specific state-transitions during learning.

B. Relevance: Intra-Cluster Prioritisation

Prioritisation mechanisms are used for organising informa-
tion given their relevance to the agent’s objectives.

The priority of a batch is usually estimated by computing its
loss with respect to the agent’s objective [29]. In DQN, TD3,
and SAC, relevance is estimated by the absolute TD-error of
the agent. The closer to 0, the lower the loss and the relevance.
The intuition is that batches with TD-error equal to zero are
of no use since they represent an already solved challenge. In
our method, this relevance heuristic can be combined with the
aforementioned clustering strategy by sampling clusters in a
prioritised way (by summing the priorities of all its batches)
and then performing prioritised sampling of batches from the
sampled cluster.

C. Simplicity: (Curricular) Inter-Cluster Prioritisation

Occam’s Razor [5] states that when presented with two ex-
planations for the same phenomenon, the simplest explanation
should be preferred. In human explanations, simplicity is a
common heuristic [16], [24]. We will adhere to those princi-
ples and select minimal and simple explanations, following a
curricular approach.

Clustered prioritised experience replay changes the real
distribution of tasks by means of over-sampling. Assuming that
the whole experience buffer has a fixed and constant size N ,
and that the experience buffer contains |C| different clusters, let
Smin and Smax be the minimum and maximum size of a cluster.
Any new experience is added to a full buffer by removing the
oldest one within buffers having more elements than Smin.

If all the clusters have the same size (therefore Smin = Smax),
replaying the task’s cluster with the highest (TD-error) priority
might push the agent to tackle the exceptions before the most
common tasks, preventing the agent from learning an optimal

1Since buffers will be prioritised and clusters will be fairly represented,
there is no need for duplicating the batch across multiple clusters.

5

policy faster. The assumption here is that exceptional tasks
(exceptions) are less frequent.

On the other hand, if Smin = 0 and Smax = ∞, the size of
a cluster would depend only on the real distribution of tasks
within a small sliding window, as in traditional PER, thus
preventing over-sampling. The presence of clusters helps over-
sampling batches likely related to under-represented tasks, and
learning to tackle potentially hard cases more efficiently.

Consequently, we posit that Smin shall be large enough
for effective over-sampling, while having Smax > Smin being
dependent on the real distribution of tasks. This will push
the agent towards tackling the most frequent and relevant
tasks first, analogously to curricular learning. We define a
hyperparameter to control the cluster size proportion.

Definition 3 (Cluster Size Proportion): In order for all
clusters to have a size Smin ≤ S ≤ Smax, we set Smax =
Smin + (ξ − 1) · |C| · Smin, where ξ ≥ 1 represents the cluster
size proportion.
Therefore, Smin = N

|C|·ξ can be easily controlled by modifying
ξ. We enforce Smin < Smax when ξ > 1. Consequently, for cur-
ricular prioritisation, if the cluster’s priority is (for example)
computed as the sum of the priorities of its batch, and ξ > 1
is not too large (e.g. ξ = 5), the resulting cluster’s priorities
will reflect the real distribution of tasks while smoothly over-
sampling the most relevant tasks. This avoids over-estimation
of the priority of a task. As ξ gives us control of the degree
of on-policyness, different values of ξ might perform better
with on an algorithm and environment basis2. Higher values
of ξ mean that the distribution of state-transitions reflects
more transitions seen within the current policy, thus being
advantageous for entropy-maximisation algorithms such as
SAC [19]. Likewise, fully off-policy algorithms such as DQN
may exhibit superior results with low values of ξ (e.g. ξ = 1).

With those mechanisms in place, we propose new environ-
ments to evaluate the performance of agents when subjected
to complex rulesets.

D. Annealing the Bias

Similarly to PER [29], sampling state-transitions from pri-
oritised clusters might produce unwanted bias. The standard
debiasing function of PER weighs expected values using the
normalised weight P (τ̄)

P (τ) ∈ [0, 1], where P (τ) is the probability
of sampling a state transition τ from the whole buffer and τ̄
is the state-transition with the lowest probability for the whole
buffer. We adapted the debiasing function of PER by changing
the formula to consider the fact that state-transitions are
sampled from clusters (which are in turn sampled). Therefore,
the debiasing function of XAER computes the joint probability
of sampling both a cluster c and a state-transition τ . More
precisely, considering that the two events are not independent,
we compute this joint probability as P (c) · P (τ |c). Hence,
the normalised weights produced by the debiasing function of
XAER are given by P (c̄∩τ̄)

P (c∩τ) , where P (c̄ ∩ τ̄) is the lowest
possible probability, considering any couple of clusters and
state-transitions.

2However, tuning for ξ seems relatively simple, and a grid search on ξ ∈
{1, 2, 3, 4, 5, inf} might suffice for most cases.

IV. ENVIRONMENTS

Real-life air/sea/road traffic regulations are often complex,
and their mastery is a crucial aspect of orderly navigation.
Many realistic settings have a number of exceptions that must
be taken into consideration (e.g. ambulances are not subjected
to some rules when in emergencies, sailing boats have different
priorities if on wind power, etc). To evaluate the effect of
XAER in a diverse configuration space of environments, we
developed modular environments that allow us to systemat-
ically change its properties in evaluation. Our environments
allow for agents to experience the same rules (our Easy,
Medium, and Hard rulesets) in both discrete and continuous
state-action spaces, and with frequent and sparse rewards.
In these, the agent must understand the complex regulation
governing the penalty system. To implement our rulesets, we
use cultures [25] [26]: a mechanism to encode human rulesets
as machine-compatible argumentation frameworks, imbued
with fact-checking mechanisms. These can serve as explainer
functions to produce rule-based explanations from an agent’s
behaviour.

OUT OF BOUNDS AREA

GridDrive GraphDrive

Fig. 2. Diagrams representing our proposed GridDrive and GraphDrive
environments. In GridDrive, the agent has a discrete action space and must
observe the properties of neighbouring cells to make a decision that is
compatible with the ruleset, choosing one direction and a fixed speed.
GraphDrive is a harder environment, where the agent’s action and observation
spaces are continuous. In it, kinematics are taken into consideration and the
agent must not only learn the rules governing penalties, but also to accelerate
and steer without going off-road. The goal in both environments is to visit as
many new roads as possible without infringing rules.

The environments are:

A. GridDrive - Discrete

A 15×15 grid of cells, where every cell represents a
different type of road (see Figure 2, left), with base types (e.g.
motorway, school road, city) combined with other modifiers
(roadworks, accidents, weather). Each vehicle will have a
set of properties that define which type of vehicle they are
(emergency, civilian, worker, etc). Complex combinations of
these properties will define a strict speed limit for each cell,
according to the culture.

Actions. A sample (d, s) in the action space consists of a
direction d ∈ {N,S,E,W} and a speed s where 0 < s ≤ 12.

Observations. A sample in the observation space is a tuple
(ov, or,M, x, y) where ov denotes the concatenation of the
vehicle’s properties (including speed), or is the concatenation

6

of all neighbouring roads’ properties, M is a 15 × 15 × 2
boolean matrix keeping track of visited cells, and (x, y)
represent the vehicle’s current global coordinates.

Rewards. Let 0 < s′ ≤ 1 denote the normalised speed of
the agent in that step. Rewards are given at every step, given
the following criteria:
−1 (terminal), if breaking the speed regulation
0, if on previously-visited cell
s′, otherwise (new cell, within speed limit)

B. GraphDrive - Continuous
An Euclidean representation of a planar graph with n

vertices and m edges (see Figure 2, right). The agent starts
at the coordinates of one of those vertices and has to drive
between vertices (called ‘junctions’) in continuous space with
Ackermann-based non-holonomic motion. Edges represent
roads and are subjected to the same rules with properties to
those seen in GridDrive plus a few extra rules to encourage
the agent to stay close to the edges. The incentive is to drive
as long as possible without committing speed infractions. In
this setting, the agent must learn a control input that not only
keeps the vehicle on the road, but also respects speed limits
and restrictions that may vary on a case-by-case basis. We
test two variations of this environment: one with dense and
another with sparse rewards.

Actions. A sample (θ, a) in the action space consists of a
steering angle θ where −π4 ≤ θ ≤ π

4 , and an acceleration a
where −7 ≤ a ≤ 1. Acceleration and deceleration ranges are
chosen given road car standards (in m/s2) [6] [10].

Observations. A sample in the observation space for Graph-
Drive is a tuple (ov, or, oj), where ov denotes a concatenation
of the vehicle’s properties (car features, position, speed/angle,
distance to path, junction status, number of visited junctions),
or is the concatenation of the properties of the closest road to
the agent (likely to be the one the agent is driving on), and
oj is the concatenation of the properties of roads connected
to the next junction.

Rewards (dense version). Let 0 < s ≤ 1 denote the
normalised speed of the agent in that frame, and let n be the
number of unique junctions visited in the episode. Rewards
are given at every frame, given the following criteria:
−1 (terminal), if breaking the speed regulation
−1 (terminal), if off-road or U-turning outside junction
0, if on junction or previously-visited road
s, otherwise (on road, within speed limit)

Rewards (sparse version). In this version, the agent will get
null (zero) reward when moving correctly. Positive rewards
only appear when the agent manages to acquire a new junction.
Therefore, the agent will have to drive entire roads correctly
to get any positive reward. Rewards are given according to the
following criteria:
−1 (terminal), if breaking the speed regulation
−1 (terminal), if off-road or U-turning outside junction
0, driving normally or on acquired junction
1, the instant a new junction is acquired

Every episode incurs in an initialisation of the grid or graph
(for GridDrive or GraphDrive, respectively) with random
roads, along with randomly-sampled agent properties. The
agent is encouraged to drive for as long as possible until
it either achieves a maximum number of steps or breaks a
rule (terminal state). All environments will be instantiated in
versions with 3 different cultures (rulesets), according to their
levels of complexity: Easy, Medium, and Hard.
• Easy: 3 properties (2 for roads, 1 for agents), 5 distinct

explanations.
• Medium: 7 properties (5 for roads, 2 for agents), 12

distinct explanations.
• Hard: 15 properties (9 for roads, 6 for agents), 20 distinct

explanations.

V. EXPERIMENTS

In this section we describe our experimental setup and
present results obtained in our proposed environments with
XAER versus traditional PER. We trained 3 baseline agents
with traditional PER (DQN/Rainbow, SAC, and TD3). For
each of the 3 baseline algorithms, we train 3 XAER versions
with different clustering strategies, using HOW, WHY, and
HOW+WHY explanations (see Section III). Additionally, we
show results for HOW+WHY explanations without the simplicity
heuristic (prioritised clustering) — i.e. clusters are sampled
uniformly. For a total of 12 XA agents, we call the XAER-
equipped versions of DQN, SAC, and TD3 XADQN, XASAC,
and XATD3, respectively. DQN and XADQN agents are ap-
plied to GridDrive (discrete), whilst SAC, TD3, XASAC, and
XATD33 were trained separately on GraphDrive with dense
and sparse rewards (continuous).

The neural network adopted for all the experiments is the
default one implemented in the respective baselines (although
better ones can be certainly devised), and it is characterised
by fully connected layers of few units (e.g. 256) followed by
the output layers for actors and/or critics, depending on the
algorithm’s architecture. XAER methods introduce the clus-
ter size proportion (ξ) hyperparameter. We perform ablation
experiments to choose values of ξ, and arrive at ξ = 1 for
XADQN and XATD3, and ξ = 3 for XASAC. We omit the
detailed ablation study for brevity, but full plots and auxiliary
results can be found in our GitHub page4.

As the environments presented in Section IV have differ-
ent levels of rule density/complexity, we are interested in
observing if XAER exhibits superior performance compared
to traditional PER in tasks that involve learning sophisticated
and exception-heavy regulations. We trained all agents up to
4.0 × 107 steps sampled on all environments for a total of
approximately 1.6 × 108 training steps. Our reported scores
are obtained by segmenting the curve of mean episode rewards
into 20 regions containing 5% of steps each. We select the best
region (highest median) for each agent to compare agents at
their respective best performances. We report those medians

3Their implementations come from RLlib [21], an open-source library for
RL agents. We developed the XARL Python library, which can be easily
integrated in RLlib and provides XA facilities for obtaining XADQN, XATD3
and XASAC.

4https://github.com/proroklab/xaer

https://github.com/proroklab/xaer

7

in Table I, as well as the 25-75% inter-quartile range for the
selected region.

Results in Table I show that across all tasks and meth-
ods, XAER versions only lose to the PER baseline against
DQN/Rainbow in GridDrive Easy, by 0.4%. For GridDrive
Medium and Hard, XADQN with HOW+WHY explanations
exhibit significantly higher performance (57% and 81%, re-
spectively). WHY and HOW+WHY exhibit similar performance
in GraphDrive, being bested by HOW in Medium and Hard
Sparse cases only. Although HOW+WHY explanations have
consistently good results across environments, the version
without the simplicity heuristic exhibited consistently inferior
results. Neither baseline SAC or TD3 managed to learn a
policy in GraphDrive Hard Sparse (our hardest environment).
XATD3 also failed to learn a policy in this environment, but
XASAC was able to achieve positive results.

VI. DISCUSSION AND CONCLUSION
Our results indicate a significant benefit achieved via

explanation-aware experience replay. In one case (TD3 Hard),
endowing an agent with XAER enabled an agent to learn
altogether where it would otherwise fail entirely. XAER al-
lowed agents to learn in Medium and Hard difficulty settings,
obtaining significantly higher rewards whilst having the same
hyper-parameters and number of learning steps.

The choice of explanation type also affected results: when
superior, HOW+WHY explanations exhibited larger margins of
improvement over other XAER methods. In other cases, when
bested by WHY explanations, the former maintained very close
results, thus achieving consistently satisfactory results in most
cases. Also importantly, although HOW explanations exhibited
lower performance than other XAER counterparts in most
environments, it is worth noting that HOW explanations do not
require an explainer and could in theory be used in any envi-
ronment. The consistency of HOW+WHY results suggests that
the act of explaining may involve answering more archetypal
questions, not just causal ones, as hypothesised also in [31].

The frequency and magnitude of rewards is an important
factor to be considered in XAER clustering. When negative
rewards are more frequent (with similar magnitude to positive
rewards), and there are more negative than positive clusters,
oversampling may cause the agent to tackle situations with
negative rewards more frequently, preventing it to maximise
cumulative rewards. This effect can be particularly pronounced
with very sparse rewards, such as the ones seen in the sparse
version of GraphDrive.

Intuitively, this is akin to the notion that if there are
few opportunities to explain, one must choose their expla-
nations well. The notion of explanation engineering surfaces
as a mechanism to orient the learning agent through means
of selecting which experiences (and explanations) are more
important to the task at hand, by means of abstractions.
Being explainable by design, explanation engineering can be
an intuitive and semantically-grounded alternative to reward
engineering, as the meaning of the rewards matter just as their
magnitude. A few examples include increasing the number of
positive clusters, or organise clusters hierarchically.

With regards to relevance, if the cumulative priority of the
state-transitions of a whole cluster is low, it may indicate that

the agent has already learned to handle the task represented by
the cluster, so it may not need it as an explanation (thus being
less relevant). Oppositely, if the cumulative priority is high, it
could indicate a further need for additional explanations. The
cluster might be representing either non-generic or generic
tasks. If the agent needs explanations for a generic task,
it should also need them for a non-generic task. In that
case, the generic task is prioritised over the non-generic. The
benefits of inter-cluster prioritisation (simplicity) are higher
in environments with harder rulesets, and proportional to the
complexity of the culture [25]. This suggests that uniformly
selecting an explanation type to replay is less beneficial than
selecting the simplest and most relevant explanation.

This work foments diverse avenues for further investigation.
For one, further experiments could include the development of
explainer functions to evaluate the performance of WHY expla-
nations in popular benchmarks. Additionally, future work may
observe the effect of XAER with on-policy algorithms, such
as PPO. And lastly, the illocutionary effect of explanations
deriving from further archetypal questions [31] (i.e. WHAT,
WHERE, WHEN) could be explored in advanced explanation
engineering for experience clustering.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
constructive remarks and suggestions. We thank our colleagues
Nikhil Churamani, Guillaume Sartoretti and Yuhong Cao for
providing commentary in early design discussions, as well as
reviewing our pre-submission manuscript.

REFERENCES

[1] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches. AI Commu-
nications, 7:39–59, 1994.

[2] Peter Achinstein. The nature of explanation. Oxford University Press
on Demand, 1983.

[3] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia,
Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and
Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Infor-
mation Fusion, 58:82–115, 2020.

[4] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas
Krause. Safe Model-based Reinforcement Learning with Stability
Guarantees. In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus,
S Vishwanathan, and R Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K
Warmuth. Occam’s razor. Information processing letters, 24(6):377–
380, 1987.

[6] P S Bokare and A K Maurya. Acceleration-Deceleration Behaviour of
Various Vehicle Types. Transportation Research Procedia, 25:4733–
4749, 2017.

[7] L.Karl Branting. Building explanations from rules and structured cases.
International Journal of Man-Machine Studies, 34(6):797–837, 1991.

[8] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. A lyapunov-based approach to safe reinforcement
learning. arXiv preprint arXiv:1805.07708, 2018.

[9] Thomas G Dietterich and Nicholas S Flann. Explanation-based learn-
ing and reinforcement learning: A unified view. Machine Learning,
28(2):169–210, 1997.

[10] Daniel B Fambro, Rodger J Koppa, Dale L Picha, and Kay Fitzpatrick.
Driver Braking Performance in Stopping Sight Distance Situations.
Transportation Research Record, 1701(1):9–16, 1 2000.

http://arxiv.org/abs/1805.07708

8

TABLE I
MEDIAN CUMULATIVE REWARDS AFTER 4.0× 107 STEPS FOR EXPERIMENTS ON GRIDDRIVE, GRAPHDRIVE, AND GRAPHDRIVE WITH SPARSE

REWARDS (SR). DARKER CELLS INDICATE BETTER RESULTS IN ENVIRONMENT. BOLD ARE BEST IN ROW. IQR (25%-75%) IN BRACKETS.

DQN/Rainbow Baseline XADQN-HOW XADQN-WHY XADQN-HOW+WHY XADQN-HOW+WHY
sans simplicity

Grid Easy 17.13 (16.02-18.03) 14.84 (12.88-15.88) 13.68 (11.73-15.29) 14.7 (13.08-15.91) 14.88 (13.33-16.04)
Grid Medium 7.99 (7.05-8.9) 7.59 (6.7-8.59) 8.06 (7.17-9.09) 11.62 (10.48-12.66) 9.21 (7.79-10.46)

Grid Hard 1.99 (1.74-2.24) 1.97 (1.72-2.24) 1.75 (1.51-2.03) 3.14 (2.73-3.62) 0.95 (0.8 - 1.14)

TD3 Baseline XATD3-HOW XATD3-WHY XATD3-HOW+WHY XATD3-HOW+WHY
sans simplicity

Graph Easy 75.48 (68.09-80.85) 0.0 (-0.02-0.02) 88.75 (83.29-94.44) 103.72 (98.64-107.03) 84.23 (79.28-89.2)
Graph Medium 75.48 (68.09-80.85) 41.31 (33.24-47.49) 64.8 (59.44-69.47) 78.34 (73.21-83.07) 69.36 (61.01-77.58)

Graph Hard -0.01 (-0.03-0.0) -0.01 (-0.03-0.0) 20.65 (18.9-22.4) 14.54 (13.17-16.12) 10.31 (8.84-11.68)
Graph Easy (SR) 2.65 (2.28-2.93) -0.04 (-0.06-(-0.02)) 2.61 (2.43-2.75) 2.55 (2.42-2.66) 2.47 (2.34-2.62)

Graph Medium (SR) 0.34 (-1.0-0.97) -0.04 (-0.05-(-0.03)) 2.54 (2.3-2.79) 2.75 (2.58-2.96) 1.84 (1.47-2.0)
Graph Hard (SR) -0.03 (-0.05-(-0.02)) -0.04 (-0.05-(-0.03)) -0.04 (-0.06-(-0.03)) -0.05 (-0.06-(-0.03)) -0.05 (-0.6-(-0.04))

SAC Baseline XASAC-HOW XASAC-WHY XASAC-HOW+WHY XASAC-HOW+WHY
sans simplicity

Graph Easy 65.9 (59.04-72.94) 79.46 (71.72-88.46) 138.81 (133.0-144.05) 141.11 (136.45-145.87) 116.39 (110.36-120.9)
Graph Medium 65.78 (58.43-71.92) 76.61 (69.64-83.69) 112.16 (105.87-119.1) 111.4 (106.72-116.11) 97.81 (92.91-103.1)

Graph Hard 26.85 (24.43-28.66) 22.92 (20.61-25.03) 32.14 (29.93-34.49) 32.58 (30.41-34.69) 17.85 (13.82-20.56)
Graph Easy (SR) 3.57 (3.19-4.01) 3.07 (2.82-3.21) 4.82 (4.64-4.98) 4.83 (4.58-5.09) 2.01 (1.8-2.19)

Graph Medium (SR) 2.61 (2.26-2.85) 2.66 (2.26-2.98) 2.64 (2.53-2.75) 2.47 (2.33-2.55) 2.31 (2.17-2.45)
Graph Hard (SR)5 1.15 (1.03-1.27) 1.53 (1.37-1.63) 1.11 (1.01-1.23) -0.09 (-0.12-(-0.07)) 0.81 (0.65-0.94)

[11] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function
Approximation Error in Actor-Critic Methods. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR, 4 2018.

[12] Javier Garcıa and Fernando Fernández. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1861–1870, Stockholmsmässan, Stockholm Sweden, 3 2018.
PMLR.

[14] John H Holland, Keith J Holyoak, Richard E Nisbett, and Paul R
Thagard. Induction: Processes of inference, learning, and discovery.
MIT press, 1989.

[15] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina
Jayne. Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1–35, 2017.

[16] Samuel GB Johnson, JJ Valenti, and Frank C Keil. Simplicity and
complexity preferences in causal explanation: An opponent heuristic
account. Cognitive psychology, 113:101222, 2019.

[17] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,
Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn,
Piotr Kozakowski, Sergey Levine, and others. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[18] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad
A Al Sallab, Senthil Yogamani, and Patrick Pérez. Deep Reinforcement
Learning for Autonomous Driving: A Survey. IEEE Transactions on
Intelligent Transportation Systems, pages 1–18, 2021.

[19] Ang A Li, Zongqing Lu, and Chenglin Miao. Revisiting Prioritized Ex-
perience Replay: A Value Perspective. arXiv preprint arXiv:2102.03261,
2021.

[20] Changjian Li and Krzysztof Czarnecki. Urban Driving with Multi-
Objective Deep Reinforcement Learning. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’19, pages 359–367, Richland, SC, 2019. International
Foundation for Autonomous Agents and Multiagent Systems.

[21] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Joseph Gonzalez, Ken Goldberg, and Ion Stoica. Ray rllib: A com-
posable and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381, page 85, 2017.

[22] GR Mayes. Theories of explanation. the internet encyclopedia of
philosophy, 2005.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,

Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[24] Jakob Nielsen. Enhancing the explanatory power of usability heuris-
tics. In Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, pages 152–158, 1994.

[25] Alex Raymond, Hatice Gunes, and Amanda Prorok. Culture-Based
Explainable Human-Agent Deconfliction. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’20, pages 1107–1115, Richland, SC, 2020. International
Foundation for Autonomous Agents and Multiagent Systems.

[26] Alex Raymond, Matthew Malencia, Guilherme Paulino-Passos, and
Amanda Prorok. Agree to Disagree: Subjective Fairness in
Privacy-Restricted Decentralised Conflict Resolution. arXiv preprint
arXiv:2107.00032, 2021.

[27] Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. Self-
paced prioritized curriculum learning with coverage penalty in deep
reinforcement learning. IEEE transactions on neural networks and
learning systems, 29(6):2216–2226, 2018.

[28] Jikun Rong and Nan Luan. Safe Reinforcement Learning with Policy-
Guided Planning for Autonomous Driving. In 2020 IEEE International
Conference on Mechatronics and Automation (ICMA), pages 320–326,
2020.

[29] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[30] Francesco Sovrano. Combining experience replay with exploration by
random network distillation. In 2019 IEEE Conference on Games (CoG),
pages 1–8. IEEE, 2019.

[31] Francesco Sovrano and Fabio Vitali. From philosophy to interfaces:
an explanatory method and a tool based on achinstein’s theory of
explanation. In Proceedings of the 26th International Conference on
Intelligent User Interfaces, 2021.

[32] Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experience
replay. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5900–5907, 2020.

[33] Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement
learning with hierarchical experience replay. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

[34] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Experience
replay optimization. arXiv preprint arXiv:1906.08387, 2019.

5All agents failed to learn a policy and thus we do not highlight results.

http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/2102.03261
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/2107.00032
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1906.08387

	I INTRODUCTION
	II RELATED WORK
	II-A Model-Free Reinforcement Learning
	II-B Explanations in RL
	II-C Prioritised Experience Replay

	III EXPLANATION-AWARENESS
	III-A Abstraction: Clustering Strategies
	III-B Relevance: Intra-Cluster Prioritisation
	III-C Simplicity: (Curricular) Inter-Cluster Prioritisation
	III-D Annealing the Bias

	IV ENVIRONMENTS
	IV-A GridDrive - Discrete
	IV-B GraphDrive - Continuous

	V EXPERIMENTS
	VI DISCUSSION AND CONCLUSION
	References

