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Learning Submodular Objectives for Team
Environmental Monitoring

Nils Wilde, Armin Sadeghi, and Stephen L. Smith

Abstract—In this paper, we study the well-known team ori-
enteering problem where a fleet of robots collects rewards by
visiting locations. Usually, the rewards are assumed to be known
to the robots; however, in applications such as environmen-
tal monitoring or scene reconstruction, the rewards are often
subjective and specifying them is challenging. We propose a
framework to learn the unknown preferences of the user by
presenting alternative solutions to them, and the user provides a
ranking on the proposed alternative solutions. We consider the
two cases for the user: 1) a deterministic user which provides the
optimal ranking for the alternative solutions, and 2) a noisy user
which provides the optimal ranking according to an unknown
probability distribution. For the deterministic user we propose a
framework to minimize a bound on the maximum deviation from
the optimal solution, namely regret. We adapt the approach to
capture the noisy user and minimize the expected regret. Finally,
we demonstrate the importance of learning user preferences and
the performance of the proposed methods in an extensive set of
experimental results using real world datasets for environmental
monitoring problems.

Index Terms—Incremental Learning, Multi-Robot Systems,
Environment Monitoring and Management

I. INTRODUCTION

Autonomous multi-robots systems find wide-spread ac-
ceptance in an increasing number of applications such as
persistent monitoring, environmental data collection, shared
autonomy and scene reconstruction. A key challenge remains
the design of frameworks that allow users who are not robotic
experts to deploy them effectively and efficiently.

We study a generalized version of the well known Team-
Orienteering Problem (TOP) [1] where a fleet of robot has
to visit multiple locations in the environment. Upon visit,
the respective robot collects a reward and the objective is to
maximize the total reward collected by the fleet, subject to
constraints on the robots’ maximum travel distance. Multiple
variants have been studied, including uncertainty [2], [3],
and complex reward functions modelling correlations [4] and
diminishing returns [5].

In some applications, such as servicing tasks or delivery, the
reward is directly given, e.g., as a monetary value. However,
in other applications the reward can be difficult to quantify
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(a) (b)

Fig. 1: Tours for a fleet of two robots for different reward functions
with high (green) and low (red) rewards assigned to regions. (a)
shows a scenario the robots are not aware of the user preferences
over the regions and prioritize the regions equally. In (b) the robots
have learned an estimate of the user preference over the regions and
identified that re-visiting the green region is more valuable.

and might be user dependent. For example, in environmental
monitoring, scientists may have differing opinions on the
importance of gaining information in a certain region. Often
the user can indicate regions of interest that the robots should
visit. Yet, defining numerical values for a reward function
to prioritize between regions is challenging. This is further
enhanced when the reward exhibits a diminishing return prop-
erty: Additional visits of the same region have decreasing
additional value. Thus, defining reward functions becomes
impractical, especially when the user is not a robotics expert.

In human-robot interaction (HRI) the problem of defining
reward functions is known as reward design. To reduce the
complexity and thus enable a broader range of users to deploy
autonomous robots, researchers have studied different frame-
works for reward learning [6]–[17]. In contrast to designing
parameters of a reward function, users interact with the robot
via modalities such as demonstrations, corrections, critique, or
choice feedback.

We apply learning from choice to enable users to specify
complex submodular reward functions for GTOP and present
new solution techniques that are able to handle the high
number of dimensions often encountered in these problems. In
our framework the robot fleet is given a set of areas of interest.
Over multiple iterations, the user is (virtually) presented with
two different sets of tours for the robot fleet; they then choose
the preferred option. Using a finite set of submodular basis
functions, the user’s choice allows the robot fleet to estimate
the user reward function. Figure 1 illustrates an example
for environmental data collection. The regions of interest
are protected areas along a coastline. Without designing or
learning a reward function, the robots prioritize them equally
(a). Learning from choice feedback allows the robot fleet to
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identify which regions are most relevant to the user and finds
better tours (b).

Contributions: In this paper we make the following contri-
butions: (1) We design submodular basis functions to describe
rewards for the generalized team orienteering problem. (2) We
propose a novel heuristic policy for active preference learning
that can handle a high number of basis functions. (3) To handle
uncertainty in the user feedback, we present a novel framework
that casts this probabilistic problem to a distribution over in-
stances with noiseless feedback, allowing for efficient learning
under uncertainty. (4) Finally, we demonstrate the practicality
of the approach in simulation using real-world locations for
environmental data collection.

Related Work: We address the challenge of defining reward
functions for generalized team-orienteering problems and pro-
pose an interactive learning framework. Similarly, researchers
in HRI study the design of interactive frameworks that allow
inexperienced users to define reward functions for autonomous
robots in a wide range of applications. Since classical ap-
proaches such as learning from demonstrations are not always
suitable, alternative modes of interaction including corrections,
proxy rewards, critique, and choice have been developed
[6]. This work is based on learning from choice (sometimes
also referred to as active preference learning), where a user
iteratively chooses between two presented options [7], [9]–
[11], [16], [18]. Similar to existing work, we pose the problem
as learning weights in a linear reward function. We make
novel contributions to address challenges arising from the high
dimensionality often found in multi-robot problems. Existing
approaches usually rely on sampling potential solutions as well
as weights for the reward function [7], [9]. We study how the
min-max regret technique from [11] can be extended so it can
be used without any samples in a noiseless setting. Further,
to handle noisy user feedback we propose a method to cast
such feedback to multiple noiseless instances and solve the
problem on them.

We focus on a generalized version of the team orienteering
problem (TOP) [1], which is NP-hard. Using basis functions
we consider variances of TOP where reward functions can
be correlated between vertices, as well as have a diminishing
return, i.e., are submodular [19]. The authors of [4] study OPs
with correlated rewards and give a Mixed-Integer-Quadratic-
Program solution, which can also be applied to the multi-
robot case. For single-robot OP with submodular rewards,
the authors of [5] provide a constant factor approximation
algorithm. The authors of [20] propose an approximation
algorithm for TOP by sequentially solving single OPs for
each robot. We combine the latter two techniques to obtain
a constant factor approximation for submodular TOP.

Stochastic variants of orienteering problems include uncer-
tainty on edge weights [3], [21], time to service a location
[22], and rewards [2]. Similar to the latter case, we study the
problem where the robot fleet does not know the rewards. In
[23] the rewards of an orienteering problem are dynamic and
depend on measurements taken at previous locations. In [2]
robots learn the reward function by iteratively executing tours
and use these observations to improve future tours. In contrast,
our framework allows robots to learn the reward function by

querying a user; the user then does not assign a reward to
a single set of tours but instead chooses the preferred set of
tours among two presented options. Another difference to [2]
is that our framework can be used as an offline method, where
the user is shown tours virtually allowing robots to learn the
reward function prior to execution.

Potential applications of the proposed framework include
persistent monitoring [24], [25], environmental data collection
[23], and scene reconstruction [26]. The authors of [27], [28]
propose an interactive framework for marine data collection:
Users define desired targets for observation, the robot then
proposes alternatives based on additional information about
risks in the environment. Similar to our work, users then
choose between different options. This allows the robot to
learn the user’s utility function trading off reward and risk.

II. PROBLEM FORMULATION

Consider a set of m robots collecting information in an
environment represented by a graph G = (V,E, l). The set
V is the set of vertices, E is the set of edges between the
vertices, and l : E → R≥0 assigns costs to the edges of the
graph. A tour T is a sequence of vertices 〈v0, v1, . . . , vn, v0〉.
Given a depot location s ∈ V , a tour starts at s, i.e., v0 = s.
The reward function R : 2V → R+ assigns a reward to each
set of vertices, i.e., the reward of visiting the vertices in a tour
T denoted by V (T ). With a slight abuse of notation we write
the reward R(V (T )) simply as R(T ).

Problem 1 (Orienteering Problem). Given a graph G =
(V,E, l), a reward function R : 2V → R≥0 and a positive
number B, find a tour T of length at most B that maximizes
the reward collected R(T ).

We are interested in monotone, normalized submodular
reward functions [19]. Such a function has the following prop-
erties: i) R(∅) = 0, ii) R(A) ≤ R(B) for every A ⊆ B ⊆ V ,
and iii) R(A∪{v})−R(A) ≥ R(B ∪{v})−R(B) for every
A ⊆ B ⊆ V and for every v ∈ V . Now we introduce a
generalization of Problem 1 where there are m heterogeneous
robots maximizing a submodular reward function.

Problem 2 (Generalized Team Orienteering Problem (GTOP)).
Consider a graph G = (V,E, l), a fleet of m robots with travel
budgets B1, . . . , Bm, a partition of the vertices into m subsets
V1, . . . , Vm, and a submodular reward function R : 2V →
R≥0. Find a set of m tours T = {T1, . . . , Tm} maximizing
the total reward collected subject to the constraints that Ti for
all i ∈ {1, . . . ,m} only visits vertices in Vi and has length at
most Bi, i.e.,

max
T

R(∪mi=1V (Ti))

subject to: `(Ti) ≤ Bi, V (Ti) ⊆ Vi ∀i ∈ {1, . . . ,m}
(1)

Remark 1 (Comments on Problem Formulation). The set Vi
contains a vertex for each location that robot i can visit. Each
vertex is contained in just one set. Thus, if multiple robots can
visit the same location, then each has a corresponding vertex
in their set Vi. The advantage of this representation is that each
vertex encodes both the location and the robot performing a
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visit, and thus a submodular function can be defined directly
over sets of vertices. This is in contrast to other formulations of
the submodular team orienteering problem [3], [29] where the
submodular function is defined over the set of all tours/paths,
which is exponential in the number of vertices. •

GTOP with Unknown Reward Function: In this work we
consider the case where the reward function R is unknown
to the robot. We denote the hidden optimal reward function
as R∗ and the corresponding GTOP solution T ∗. Further, let
R̂ be a robot’s estimate of the reward function and T̂ the
corresponding optimal tour; we are interested in finding an
estimate R̂ of the reward function with corresponding optimal
tours T̂ = {T̂1, . . . , T̂m} that solves

max
T̂

R∗(T̂ ) subject to: `(T̂i) ≤ Bi for all T̂i ∈ T̂ . (2)

We notice that this is an ill-posed problem as the reward
function R∗ is not available to the robot. However, we consider
a framework where the robot iteratively interacts with the
user, allowing it to make observations about the user’s hidden
reward function. This is known as reward learning, where
the robot presents the user with one or multiple possible
solutions to it’s task and then obtains feedback in the form of
corrections, choice, labels, or others [6]. We define a query as a
set of possible solutions for the GTOP Q = {T1, T2, . . . , Tl}.
Let f(R) be some prior belief over the set of all possible
reward functions R. Given feedback U , the robot can compute
a posterior f(R|(Q,U)). We can express the expected outcome
with respect to the prior EU∼f(R)[R|(Q,U)]. This framework
allows us to state our problem as an adaptive stochastic
optimization problem:

Problem 3 (Learning GTOP Rewards). Given G = (V,E, l),
a hidden reward function R∗, a fleet of m robots with
travel budgets B1, . . . , Bm; find a sequence of K queries
(Q1, Q2, . . . , QK) such that the expected estimated reward
function R̂ = EUk∼f(R)[R|(Q1, U1), . . . , (QK , UK)] and the
corresponding sets of m tours T̂ solves (2).

III. TEAM ORIENTEERING PROBLEM WITH SUBMODULAR
BASIS FUNCTIONS

In this section, we present a linear approximation of a sub-
modular reward function, then we propose an approximation
algorithm for the GTOP for the linearized reward function.

A. Basis functions

We consider the reward function R(T ) to be be composed
of a set of basis functions r1, . . . , rn : 2V → R≥0. Given tours
T , the reward function is then a weighted sum of the basis
functions R(T ,w) =

∑n
i=1 wiri(T ).

Similar approaches are commonly used in reward learning
problems [6], [7], [9]–[11], where basis functions are usually
referred to as features. Given that ri depend only on the
vertices, we can assume without loss of generality that each
basis function is characterized by a subset Wi ⊆ V . That is,
for any Wi, let ψi(T ) be a count of how many vertices of the
tours T lie in Wi, then ri(T ) is a functional of ψi(T ).

The subsets W1, . . . ,Wn can reflect a spatial relation be-
tween vertices, i.e., describe neighborhoods, but can also
express other features, such as grouping all vertices where
the robots can make certain observations. The basic case
ri(T ) = ψi(T ) is a modular function describing the number
of times subset Wi is visited. However, many real-world
problems exhibit a diminishing return property [30], [31]. In
order for ri to be growing submodularly with ψi, we choose

ri(T ) =

ψi(T )∑
α=1

γ(α−1), (3)

where γ ∈ (0, 1]. If γ = 1 we recover the modular case; in
the other extreme that γ → 0, visiting Wi more than once
effectively does not yield a larger reward than the first visit.

Using these basis functions, the problem of learning the
user reward function R∗ becomes one of learning the weights
w∗ = (w∗1 , . . . , w

∗
n), i.e., the importance of each basis func-

tion, as well as the decay parameters γ∗1 , . . . , γ
∗
n describing

the diminishing return. Unfortunately, the proposed reward
function is only linear in the weights w, but not in the
decays. Therefore, we assume that γ comes from a discrete
set Γ. For each subset Wi we define |Γ| basis functions ri,j
for j = 1, . . . , |Γ|, using the different values γj . Using this
discretization the overall reward function becomes

R(T ,w) =

n∑
i=1

|Γ|∑
j=1

wi,jri,j(T ). (4)

For a sparse notation let φ =
[
r1, r2, . . .

]
, allowing us to

write R(T ,w) = φ(T ) ·w. Further, for any given weight w,
let T (w) denote the set of tours maximizing the reward, i.e.,
T (w) = arg maxT R(T ,w). Consequently, φ(T ) denotes the
features of the tour T .

Observation 1 (Submodularity). The reward function
R(T ,w) proposed in Equation (4) is a normalized, monotone
and submodular set function.

Proof. Since ψi(∅) = 0 for all i, we have R(∅,w) =
0; hence, the function is normalized. Further V (T ′) ⊇
V (T ) implies ψi(T ′) ≥ ψi(T ); adding an additional vertex
can only increase the vertex count of any set Wi. Hence,∑ψi(T ′)
α=1 γ

(α−1)
j ≥

∑ψi(T )
α=1 γ

(α−1)
j for any V (T ′) ⊇ V (T )

and any γj ∈ (0, 1], making R monotonically increasing.
Finally, consider any vertex v and two sets of tours T and
T ′ where V (T ′) ⊇ V (T ). Then ψi(T ′) ≥ ψi(T ) for all i.
If v ∈ Wi, the marginal gain is ∆(T , v) = ri,j(T ∪ v) −
ri,j(T ) = γ

ψi(T )+1
j and ∆(T ′, v) = ri,j(T ′∪ v)− ri,j(T ′) =

γ
ψi(T ′)+1
j . Since γj ∈ (0, 1] and ψi(T ′) ≥ ψi(T ), we have

γ
ψi(T ′)+1
j ≤ γ

ψi(T )+1
j , and thus, ∆(T , v) ≥ ∆(T ′, v). On

the other hand if v /∈ Wi then ψi(T ′ ∪ v) − ψi(T ′) =
ψi(T ∪ v) − ψi(T ) = 0 and ∆(T , v) = ∆(T ′, v) = 0, i.e.,
adding v does not change the vertex count ψi and thus the
value of the basis function ri,j . Since this holds for all Wi,
we obtain R(T ′ ∪ v)−R(T ′) ≤ R(T ∪ v)−R(T ) and R is
submodular.
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Algorithm 1: Bi-criterion approximation for GTOP
Input: G = (V,E, l), start s ∈ V , #robots m, budget

B, weights w
Output: Tours T

1 Initialize ψ = 0, T ← ∅
2 for k = 1 to m do
3 Tk ← SINGLEOP(G, s,w,ψ)
4 for i = 1 to n do
5 ψi ← ψi + |Wi ∩ V (Tk)|
6 T ← T ∪ {Tk}
7 return T

B. Solving the GTOP for a Given Set of Weights

In [5], authors provide a bi-criterion approximation algo-
rithm for the orienteering problem with submodular rewards,
and in [20] propose an approximation algorithm to extend the
results of the orienteering problem to the team orienteering
problem. In the rest of the paper, for a given w, we combine
these two approaches to achieve a bi-criterion approximation
algorithm for the team orienteering problem with submodular
reward functions. Algorithm 1 shows the proposed approach
for the GTOP problem. The algorithm sequentially solves the
submodular orienteering problem with the algorithm proposed
in [5] (line 3). Then after iteration k, ψi is incremented by
the number of vertices Tk visits in Wi (line 5). At each
iteration, the SINGLEOP implements the proposed bi-criterion
approximation algorithm in [5] with approximation factor
η = 2(1− 1

e )−1 on the collected rewards. Hence, by Theorem
1 in [20], Algorithm 1 is a 1 + η approximation algorithm for
the GTOP problem.

IV. LEARNING REWARDS FROM CHOICE FEEDBACK

One framework for learning reward functions via user
interaction that found widespread attention in HRI in recent
years is learning from choice. Iteratively, the robots present
the user with two alternative solutions to some robot planning
problems. The user then chooses the preferred option. The user
is assumed to make that choice based on some hidden reward
function which allows the robot to infer the parameters of that
reward function.

A. Deterministic user feedback

We begin by posing our problem for a deterministic user,
whose feedback always follows the assumed cost function.
Consider that two sets of tours T 1 and T 2 are proposed to
the user, and the user indicates their preference.

Definition 1 (Deterministic user model). Given two sets of
tours T 1 and T 2, a deterministic user always prefers the tours
with larger reward with respect to the hidden user weights w∗.
Let I ∈ {1, 2} denote the user feedback.Then

R(T 1,w∗) ≥ R(T 2,w∗) ⇐⇒ I = 1. (5)

Learning Cuts: Without loss of generality, assume that the
user prefers T 1 (we can simply reassign the labels after

observing the choice), therefore we have, φ(T 1) ·w−φ(T 2) ·
w ≥ 0. We refer to this inequality as a cut. Let P (c1:k) denote
the polyhedron constructed by the cuts {c1, . . . , ck}. Now we
define a valid cut as follows:

Definition 2 (Valid Cut). Given a polyhedron P (c1:k), a cut
ck+1 is valid if the intersection of the cut and P (c1:k) has
dimension greater than zero.

Note that each valid cut partitions the space of valid
rewards w, therefore by adding a valid cut at each step we
monotonically decrease the set of valid rewards. Now assume
that we have a tours T 1 in hand, we want to construct the
set T 2 such that the tours in T 2 satisfy the budget constraints
and the cut constructed by comparing T 1 and T 2 is valid.

Lemma 1. Given two set of tours T 1 and T 2 and a set of
prior cuts {c1, . . . , ck}, the cut constructed by comparing T 1

and T 2 is valid if and only if the solutions to the following
problems are greater than zero:

max
w

φ(T 1)w − φ(T 2)w subject to: w ∈ P (c1:k),

max
w

φ(T 2)w − φ(T 1)w subject to: w ∈ P (c1:k).

Proof. The first part is trivial. Now assume that the cut is
valid, then the cut intersects the interior of P (c1:k). Let d
be the vector normal to the line defined by the cut, then there
exists a w0, δ1 and δ2 such that w0+δ1d ∈ P (c1:k) and w0−
δ2d ∈ P (c1:k). Therefore, the solution to the two problems are
greater than zero.

In essence, Lemma 1 states that for a valid cut (T 1, T 2)
there must exist some w in the current polyhedron P (c1:k)
for which T 1 has a higher reward than T 2, and vice versa. In
other words, the hyperplane defining a valid cut passes through
the interior of the current polyhedron P (c1:k).

Query generation: The main challenge in active preference
learning is to iteratively generate valid cuts that allow for
efficient learning.

Related work in HRI is usually based on heuristic solutions
that greedily optimize some auxiliary function h to maximize
the expected learning benefit of presenting two solutions
(T 1, T 2). Recent approaches include h capturing the volume
of the probability space over weights [7], the information
entropy [9] or the maximum regret [11].

These optimizations are usually difficult on two differ-
ent levels: Computing h often poses a hard problem and
the potential solutions require solving some robot planning
problem, making this a nested optimization. Most solution
techniques rely on sampling candidates solutions, as well as
approximating h using sampled weights. While this might be
suitable for low-dimensional applications, the number of basis
functions for team orienteering problems of our problem is
O(n|Γ|). Thus, accurately approximating information entropy
requires a prohibitively large number of samples.

We design a novel query generation method that does not
require any form of sampling. Similar to [10] we choose
a variation of learning from choice in which one of the
two presented options comes from the previous iteration: At
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iteration k, let T curr be the tours the user preferred in the
previous iteration. We now need to find only one new set
of tours T new such that observing feedback to (T curr, T new)
yields a valid cut with respect to {c1, . . . , ck}.

To find T new given the previous cuts {c1, . . . , ck} and T curr,
we adapt the maximum regret approach proposed in [11].
Regret measures how suboptimal the solution of estimated
parameters w′ is. In the GTOP, this is captured by the reward
of some tours T ′, evaluated by the users true reward function
w∗ compared against the user-optimal solution T ∗, evaluated
by w∗, i.e., R(T ∗,w∗)−R(T ′,w∗) = φ∗w∗−φ′w∗. Using
regret we can find T new by solving

max
wnew

φ(T (wnew))wnew − φ(T curr)wnew

subject to: wnew ∈ P (c1:k−1).
(6)

That is, given the current solution, we seek to find T new such
that if T new was optimal, the current solution would be most
suboptimal, i.e., have maximum regret. If the user chooses
T curr, the weight wnew becomes infeasible thus (wcurr,wnew)
will no longer be the maximizer for the updated polyhedron
P (c1:k) – we greedily reduce the upper bound on the error.
On the other hand, if the user chooses T new, we improve the
current solution. This formulation makes two major changes
to the max regret approach in [11]: 1) we fix one set of
tours to be shown to be T curr, and 2) we use the difference
instead of a ratio in the definition of regret. The following
proposition ensures that an algorithm that iteratively solves
(6) and then updates the polyhedron given the user feedback
will eventually find an optimal solution, i.e., a weight wcurr

where R(T (wcurr)) = R(T (w∗)).

Proposition 1. If the optimal solution to Problem (6) is not
a valid cut, then the reward collected by T curr is optimal.

Proof. Let wnew be the optimal solution to Problem (6). Since
the cut defined by T curr and T (wnew) is not a valid cut, then
we have φ(T (w∗))w∗ −φ(T curr)w∗ ≤ φ(T (wnew))wnew −
φ(T curr)wnew = 0, where the first inequality comes from
w∗ ∈ P (c1:k−1) and the second equality comes from
Lemma 1. Therefore, T curr collects the optimal reward.

Now we establish the following result on the complexity of
Problem (6).

Lemma 2. The problem of finding the tour with maximum
regret is NP-hard.

Proof. We show the result by a reduction from the traveling
salesman problem (TSP). Given a TSP instance G = (V,E, c)
and a budget B, we construct an instance of problem (6).
We set the polyhedron P to be unit cube and T curr to
be the set of empty tours. Then problem (6) becomes
maxwnew φ(T (wnew))wnew and budget B on the tours. Let w∗

be the optimal solution to this problem, then T (w∗) where
φ(T (w∗))w∗ = |V | is a valid solution to the TSP. Now note
that if there is no solution to the max regret problem collecting
|V | reward, then there is no solution to the TSP problem,
therefore, the result follows immediately.

We observe the following property of the objective function
in (6) which will help us provide a bound on it.

Lemma 3. The objective function φ(T (w))w − φ(T ′)w is
a convex function in w for any set of tours T ′.

Proof. Consider w = λw1 + (1− λ)w2 for some λ ∈ [0, 1].
Then,

φ(T )w = φ(T (w))[λw1 + (1− λ)w2]

= λφ(T (w))w1 + (1− λ)φ(T (w))w2

≤ λφ(T (w1))w1 + (1− λ)φ(T (w2))w2.

Note that the second term in the objective function is linear
in w. Therefore, the result follows immediately.

While Lemma 2 shows that finding the set of tours maximiz-
ing the regret is NP-hard, Lemma 3 implies that the optimal
solution of (6) is on a vertex of the polyhedron P (c1:k). We
can upper bound that solution with

min
wnew

φ(T curr) ·wnew subject to: wnew ∈ P (c1:k). (7)

In conclusion, at iteration k our min-max regret heuristic
proposes two new sets of tours (T curr, T new) where T curr is
the solution the user preferred in the previous iteration, and
T new is the approximate GTOP solution for wnew solving (7).

B. Extension to noisy user feedback

In the previous section, we considered the problem with a
deterministic user who always chooses the set of tours with
higher reward with respect to w∗. In practice, this assumption
can lead to suboptimal outcomes when the user decision is not
accurately captured in the assumed reward function. Thus, we
consider the problem with a noisy user where the set of tours
chosen by the user is not the set of tours collecting higher
rewards. We model the noisy user with the Boltzmann model
as follows:

Definition 3 (Noisy user model). Given two sets of tours T 1

and T 2, and a user with hidden rewardsw, then the probability
that the user chooses T 1 is

P(T 1,w) =
1

1 + exp(β(φ(T 2)− φ(T 1)) ·w)
,

where β> 0 represents the level of expertise of the user.

The Boltzmann model is widely used in reward learning [7],
[9], [13], [32] and describes a user whose choice becomes
more uncertain when the presented options have a similar
reward with respect to w∗.

Now consider a set of cuts {c1, . . . , ck} which are results
of the preference questions, then the probability that the
hidden reward function lies in P (c1:k) is P(w∗ ∈ P (c1:k)) =
Πk
i=1P(ci), where P(ci) is the probability that the user has

responded to the ith query correctly. We denote the negation
of a cut ci by c̄i and the probability of it as P(c̄i) = 1−P(ci).

Algorithm 2 shows the proposed algorithm for learning the
reward function of the user. In Line 1 of the algorithm, we
initialize the set of observed cuts to Q = ∅.

In Line 4, function PROBABLEREGIONS(Q,N) takes the
current set of cuts Q = {c1, . . . , ci} and an integer N as input
and returns a set of N polyhedrons. Each such polyhedron
is constructed as follows: We initialize a set of cuts Q′ =
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Algorithm 2: Learning GTOP Rewards
Input: graph G = (V,E, l), start s ∈ V , fleet size m,

budget B, sample budget N
Output: Tours T

1 Initialize w = 1, Q← ∅
2 T = GTOP(G,w)
3 for i = k to K do
4 {P1, . . . , PN} ← PROBABLEREGIONS(Q,N)
5 for Pj ∈ {P1, . . . , PN} do
6 wj ← MAXIMUMREGRET(G, T , P j)
7 T j ← GTOP(G,wj)

8 Tnew ← arg max
T j

P(w∗ ∈ Pj)(φ(T j)−φ(T )) ·wj

9 T , ck ← USERRESPONSE(T , T new)
10 Q← Q ∪ {ck}
11 return T

Q. Then for each cut ci ∈ Q′, we replace ci with c̄i with
probability 1 − P(ci). This then defines a new polyhedron
P (Q′). That is, we sample from the set of all 2K possible
combinations of cuts or their negations. Thus, the probability
of sampling a set of cuts Q′ and thus a polyhedron P (Q′) is
P(w∗ ∈ P (Q′)). Considering multiple polyhedrons allows us
to take into account inconsistency in the answers by the user.

For each of the constructed polyhedrons, function
MAXIMUMREGRET solves Problem (7). We generate a set of
tours for each of the rewards as a candidate sets of tours for
the next preference questions. Finally, in Line 8 we evaluate
the maximum regret for each polyhedron and discount it by
their probabilities. The level of expertise for the user and
the reward function are not known, however observe that by
Definition 3 we have P(ci) > 1/2. Therefore, we approximate
the probabilities of regions as a monotonically decreasing
function of the number of negated cuts in the construction
of the polyhedron. Finally, the sets of tours with the highest
discounted regret is presented to the user as a new query.

V. EVALUATION

We evaluate the performance in environmental monitoring
missions using real-world and randomly generated scenarios.

A. Experiment Setup

In the experiments, the robot fleet is given a set of regions
of interest, but no information on how valuable it is to collect
environmental data in each region. The objective is to learn a
reward function describing which regions are to be prioritized
when battery life does not allow to visit all of them.

Basis functions: We define basis functions that capture
the visits to each of the regions of interest. In each region, we
randomly place 1 to 5 vertices. For each set Wi of vertices in
a single region we define three different basis functions as in
(3) for decay parameters γ ∈ {.001, .5, 1}. That is, the user
reward for each region can follow a step function, a curved
submodular function, or a linear function.

User design: Drawing user weights for the basis func-
tions uniformly random does not yield relevant problem in-
stances: the initial solution T = GTOP(G,w = 1) is often
already close to the optimal solution.

Thus, we design a probability function for how a user places
weights on these basis functions. First, we model the user
weight wi as a function of the distance of the region Vi from
the depot. In detail, the weight is a Gaussian random variable
wi = N (d(s, Vi)

2, σ) where d(s, Vi) is the distance from the
start vertex to the mean location of Vi, and the variance σ is a
design parameter A second parameter p describes a probability
over the different values of γ—for each region the user “picks”
only one of the three decay parameters. Thus, the vector p =[
p1, p2, p3

]
where p1 +p2 +p3 = 1 describes the probabilities

for γ taking values {.001, .5, 1}, respectively.
We simulate users with values σ ∈ {.5, 10} represent-

ing scenarios with moderate and almost no correlation of
reward and distance, and distributions over decay functions
p ∈ {[1/3, 1/3, 1/3], [.7, .2, .1], [.1, .2, .7], [.2, .7, .1]} where the
weights represent a bias towards step, linear and submodular
functions, respectively. Thus, our simulated users vary in the
structure of what regions are important to them, as well as in
the type of observations they are interested in, i.e., repeated
observations of the same region, or rather covering more
regions with fewer or even just one observation. For all 8
different parameter settings, we choose β = 20. This results
in users choosing the set of tours with higher rewards in 84%
of uniformly random queries.

We consider all robots start at the same depot and have
a budget equal to twice the distance from the depot to the
furthest region. In the implementation of Algorithm 2, we
use a simple static probability P(ci) = 0.8 and N = 10
PROBABLEREGIONS. We measure how well Algorithm 2
learns the weights w∗ of the user reward function, i.e., solves
Problem 3. Let T be the set of tours returned by Algorithm 2,
the reward ratio is R(T ,w∗)/R(T ∗,w∗), where w∗ are the
hidden user weights, and T ∗ is the corresponding approximate
GTOP solution using Algorithm 1. We notice that T ∗ is only
an approximation to the optimum; thus, the ratio can be larger
than 1.

B. Baselines

We compare the proposed maximum regret heuristic against
two classes of baselines.

Richer user input: The first class of baselines consists
of non-learning approaches. Instead, we consider that the user
provides more information about their reward function to the
robot. In the proposed framework, the user only identifies
regions of interest such as the protected areas in Figure 1.
Without any learning, the robot fleet assumes equal reward for
all regions, and that the decay can be either linear, submodular,
or a step function. This constitutes the initial solution of
our algorithm. With increasing complexity of user input we
consider: Decay – users do not provide numerical reward
values for the regions, but indicate what decay function each
region has, Ranking + Decay – the user gives a ranking of the
importance of each region, and the decay function, Reward –
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Fig. 2: Example tours from a common depot (blue dot) for the environmental monitoring task. The left figure shows the initial solution before
learning with w = 1. The middle figure shows the tours that were learned after 20 iterations, while the right figure shows the approximately
optimal tours T ∗.

the user provides the exact rewards for the region, but not the
decay, and finally Reward + Decay where the user provides
the rewards and the decay, which is equivalent to providing
w∗. The latter two methods are effectively reward designs,
which require a very high level of expertise from the user and
thus are often impractical.

Competing active learning methods: The second class of
baselines consists of competing approaches for the active
query generation. The first is Random Uniform where we
replace line 9 of Algorithm 2 with computing T new for some
uniformly randomly sampled weight wnew. A second method
Random Posterior samples based on previously observed
user feedback. We replace the direction φ(T curr) of the ob-
jective function in (7) with some uniformly randomly sampled
direction d ∈ [−1, 1]n, and set N = 1 in line 5 of Algorithm
2, i.e., generate only one probable region P .

The third query generation method Information Gain

adapts the information entropy approach proposed in [9]. How-
ever, the original algorithm is unsuccessful in our problem: It
returns the expected weight, which is often rendered 0 as the
weight samples do insufficiently cover the high dimensional
space. Thus, we adapted the entropy approach to also follow
our framework where we show the previously preferred option
T curr again. To find the second set of tours, we compute a
set of candidates T1, . . . , Tk: We execute lines 5 to 8 of our
Algorithm 2, but replace line 7 with a linear program opti-
mizing in a random direction, similar to Random Posterior.
We then select the best candidate by solving Equation (4)
from [9], using M = 300 weight samples. Each sample is
drawn uniformly random from a sampled polyhedron returned
by PROBABLEREGIONS(Q, 1).

C. Results

Real world environment with two robots: In the first
experiment, we use part of the World Database on Protected
Areas (WDPA)1, illustrated in Figure 2. The problem contains
17 regions, and for each of the 8 user types we simulated 25
trials.

1Dataset from https://data.unep-wcmc.org/datasets/12
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Fig. 3: Summarized results for the real world experiment comparing
the proposed approach against levels of a-priori user input (a), and
against other active preference learning methods (b).

Figure 3 shows the comparison of our proposed method
against the two baseline classes. In Figure 3a we observe
that Maximum Regret drastically improves the reward ratio
within the first few iterations, finding tours as good as
Ranking + Decay, where the user would provide a noiseless
ranking of all regions and identify the decay function. After
12 iterations the learning collects as much reward as Reward

and approaches Reward + Decay (i.e., the ground truth) after
20 iterations. This showcases that the learning approach is
able to find tours equally good to those that require much
more complex user input when not using preference learning.
Furthermore, after 20 iterations the learned set of tours collects
95% of the reward of the approximately optimal tours. Figure
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3b shows that Maximum Regret collects the most reward after
20 iterations (95% compared to 82% for Information Gain,
75% for Random Posterior and 68% for Random Uniform).
Moreover, there is a strong difference in the learning speed:
After only 2 iterations Maximum Regret already achieves 82%,
matching the result for Information Gain after 18 iterations.

Synthetic environment with 4 robots: To assert that the
real-world experiment is representative of a wider range
of problem instances, we consider a synthetic experiment
where the regions of interest are randomly generated. We
construct additional problem instances by sampling 20 regions
of interest, each offering 1 to 5 observations points. We
observed similar performance on the synthetic instances: After
10 iterations the proposed method collects as much reward as
Ranking + Decay and Reward (81%). After 20 iterations our
method achieves a reward ratio of 89% compared to 72% for
Random Posterior, 70% for Information Gain, and 68%
for Random Uniform.

In summary, the proposed method finds high-quality tours
for the data collection task that, when no learning was used,
would require much richer user input; and our method outper-
forms other learning approaches in terms of collected reward
and learning speed.

VI. DISCUSSION

This paper considers the problem of reward collection by
a team of robots with a hidden submodular reward function.
First, we presented a linear approximation of the submodular
reward function. Second, we proposed an approximation algo-
rithm when the weights on the linear approximation is known.
Finally, we proposed a framework to learn the underlying
hidden user reward function for deterministic and noisy users
from choice feedback. The experimental results on real-world
data show that the proposed framework provides near-optimal
tours after a few iterations of user feedback. For future work,
we consider investigating the effectiveness of the proposed
method in data collection missions in the field.
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