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Learning Free Gait Transition for Quadruped
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Abstract—Gaits and transitions are key components in legged
locomotion. For legged robots, describing and reproducing gaits
as well as transitions remain longstanding challenges. Reinforce-
ment learning has become a powerful tool to formulate con-
trollers for legged robots. Learning multiple gaits and transitions,
nevertheless, is related to the multi-task learning problems. In
this work, we present a novel framework for training a simple
control policy for a quadruped robot to locomote in various gaits.
Four independent phases are used as the interface between the
gait generator and the control policy, which characterizes the
movement of four feet. Guided by the phases, the quadruped
robot is able to locomote according to the generated gaits, such as
walk, trot, pacing and bounding, and to make transitions among
those gaits. More general phases can be used to generate complex
gaits, such as mixed rhythmic dancing. With the control policy,
the Black Panther robot, a medium-dog-sized quadruped robot,
can perform all learned motor skills while following the velocity
commands smoothly and robustly in natural environment.

Index Terms—Reinforcement Learning; Legged Robots; Ma-
chine Learning for Robot Control

I. INTRODUCTION

ANIMALS can select the most suitable gait and make
transitions according to the speed and terrains to traverse

various environments in a robust and agile manner [1], [2]. To
reproduce the agile locomotion, one key step is to reproduce
each gait and all the transitions with a robust controller for
quadruped robots. The state-of-the-art controllers, including
model-based controllers [3]–[6] and reinforcement learning
(RL) controllers [7]–[10], have achieved excellent performance
in outdoor locomotion tests with specific gaits. Both types
of controllers, however, can hardly make free transitions
according to speed or terrains.

Model based methods, such as the model predictive control
(MPC), requires online optimization with simplified dynamic
model. The performance is limited by the trade-off of model
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accuracy and control frequency. To achieve real-time online
optimization, the contact sequence is predefined, which con-
sequently determines the gait and the transition. [3], [4] On
the other hand, RL controllers can learn the most suitable lo-
comotion. Achieving desired gaits and transitions from scratch
requires well-designed reward functions, which is in general
laborious. Motion imitation with RL offers an efficient way
to build controllers to carry out similar behaviors to reference
motions while satisfying constraints and achieving goals. [11]
However, it is impractical to sample all feasible transitions
starting from different states. In addition, due to the task-
specific feature of machine learning, learning multiple gaits
and transitions is a typical problem of multi-task learning,
which remains challenging. It is noted that gait transition is
closely related to foot sequence. The above difficulties can be
overcome by introducing a central pattern generator (CPG).
Smooth evolution between two given states in phase portrait
can be generated, representing the complex behaviors of gait
transitions. [12]–[14] In this way, the multi-task learning
problem is transformed into directly mapping CPG signals to
foot trajectories while remaining dynamic balance.

In this work, we propose a phase-guided reinforcement
learning framework for a quadruped locomotion controller.
A set of four phases are added to the input of the RL
controller. The mapping from the phase sets to the four foot
trajectories can be constructed by imitation reinforcement
learning. By training the RL controller with various phase-gait
pairs, the quadruped robot can reproduce any learnt complex
gaits and transitions. Our first contribution is the phase-guided
reinforcement learning framework that minimizes the efforts
in multitask learning by transforming the task of learning
multiple gaits to learning the relation between phases and
foot movements. We use phases to parameterize various gaits
as the reference motion for the motion imitation tasks. The
framework is flexible and compatible with different gait gen-
erators, including common generators like CPG and manually
designed functions. We show that the policy can learn those
gaits in a parameterized way by the sensitivity analysis of the
neural network. Our second contribution is the demonstration
that, under this framework, the CPG can be effectively used in
guiding various gaits, such as walk, trot, pacing, and bounding,
and free transitions from one to the other. All learned gaits and
transitions in simulation can be reproduced on the hardware
successfully.
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II. RELATED WORKS

A. Central Pattern Generators in Legged Robotics

In biology, central pattern generators are biological neural
networks which can produce rhythmic signals to body without
rhythmic input [12]. It is generally considered as the source of
periodic and structured motions like locomotion. In robotics,
CPG is commonly regarded as a mathematical framework to
formulate periodic patterns. As shown in [15], [16], well-
designed CPGs are promising tools to represent any gaits and
transitions. By analogy, it is natural to relate the CPG outputs
to the joint commands in robot locomotion. The balance can be
achieved with manually crafted feedback. Those works mainly
focus on the structure of CPG network [17], the mathematical
forms [14], [15], [18], the design of feedback control [19],
[20] and the ability to transit among various gaits [13], [21].
Unfortunately, none of the above works have demonstrated
agile and robust locomotion with quadruped robots.

B. Reference-Based RL Controllers for Legged Robotics

Reinforcement learning has been demonstrated to be a
promising tool to build controllers for legged robotics [7]–[10].
With well-designed reward functions, controller for locomo-
tion can be trained from simulation and deployed to hardware
[7]. Designing reward functions often require tedious labor
work. Motion imitation is a promising method to combine
prior knowledge with RL and to reduce the work of reward-
shaping. DeepMimic [11] is an inspiring approach that trains
the policy to imitate the reference motion while satisfying
physical constraints. For legged robotics, references from
motion-capture, human sketch, and model-based controllers
can all serve as good references to train controllers [22]–
[24]. Specially, Li et al. [24] parameterized different reference
motion from a HZD controller and show that the learned
controller can handle more situations than the HZD controller.

C. Multi-task Learning in Legged Locomotion

The above motion imitation tasks only learn one type of
motion. To overcome this issue, methods like multiplicative
compositional policies [25] and latent space models [26] can
be used to learn multiple motions primitives and mix them.
Mix-of-experts (MoE) architecture has also been employed
to handle the complexity of quadruped gaits and even fall-
recovery tasks [27].

Integrating task-specific signals into the observation space
is another solution for learning multiple gaits. A recent work
from Siekmann et al. [28] have shown bipedal controller
for multiple gaits by using a cycle time with offsets and a
vector ratio as gait representation and periodic reward for
training. Compared to naive training approaches, the design
of the contact-related periodic reward can capture the major
characters of gaits. However, it is still not sufficient to avoid
undesired behaviors. The task-specific settings are required in
training. It is also noted that the dimension of the vector ratio
r varies with different gaits, e.g. r ∈ R for 1-beat gaits like
hopping, r ∈ R2 for 2-beats gaits like walking and r ∈ R4

for 4-beats gaits like skipping. This will lead to different NN

Fig. 1. A flow chart of the phase-guided reinforcement learning framework.
A set of four phases, representing four foot sequence, are used to generate
the reference motions, which guides the control policy training. With motion
imitation learning, the controller is able to learn gaits including walk, trot,
pacing, bounding and transitions among those gaits.

structures for different gaits. Reske et al. [29] include the
origin phase in the input and use the MPC-Net [30] strategy
to train the MoE network policy with multiple gaits. As the
training dataset is generated using an MPC controller, the RL
controller mostly reproduces the MPC performance.

III. PHASE-GUIDED CONTROLLER
A. Overview

Fig. 1 shows the phase-guided reinforcement learning
framework. A set of four phases represent four foot sequences.
The corresponding reference motions are generated by com-
bining phases with velocity command and task space trajecto-
ries. The policy is trained to imitate reference motions while
retaining balance and implementing velocity commands. For
the purpose of locomotion control, the policy takes velocity
commands, phases, and the state of robot as inputs and desired
joint positions as outputs.

B. Motion Synthesis
Reference motion is one key part in motion imitation.

To ensure the sample efficiency, manually synthesized mo-
tions, instead of captured motion, are used in this work.
Generally, any quadruped locomotion can be simplified and
decomposed into the periodic motions of four legs. Fig.
2 illustrates the motion generation strategy based on four
periodic leg phases. The four periodic phase variables, denoted
as ϕi ∈ [−π, π), (i = 1, 2, 3, 4), decrease over time, which
is equivalent to the clockwise motion along the unit circle.
The stance state of the i-th leg is represented by ϕi ∈ [0, π)
and the swing state by ϕi ∈ [−π, 0). The foot trajectory, as
determined by both phases and desired velocities, is modelled
by polynomials in (1).

pi =

{
− 2ϕi

π − 1, ϕi ∈ [−π, 0)
2ϕi
π − 1, ϕi ∈ [0, π)

rxi = axi
(
6p5i − 15p4i + 10p3i − 0.5

)
ryi = ayi

(
6p5i − 15p4i + 10p3i − 0.5

)
rzi =

{
0, stance

h(−64p6i + 192p5i − 192p4i + 64p3i ), swing

(1)
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Fig. 2. Illustration for the mapping from phase to leg movements. Point A
is an example of the swing state and point B the stance state.

Fig. 3. Illustration for the foot trajectory. The left figure shows the whole
trajectory relative to the initial position in the horizontal frame, while the right
figure shows the velocity and acceleration.

Here, we introduce pi as an intermediate variable to represent
phases at different states. The foot positions are denoted as
(rxi , r

y
i , r

z
i ) with i = 1, 2, 3, 4. The coordinate framework for

those positions is defined in the horizontal frame relative to
the initial position of each foot. The x and y axes are the
projections of forward and lateral axes of the body frame
on the horizontal plane and the z axis is upward vertical.
Given the desired forward velocity vx, lateral velocity vy
and the yaw velocity ω in the horizontal plane, the step
lengths in forward and lateral direction are calculated as
axi = vxTβ, a

y
i = (vy + kiωlx/2)Tβ, respectively, in which

T is the period, β the duty factor representing the fraction
of stance phase in the whole period, lx the body length and
k1 = k2 = 1, k3 = k4 = −1. The yaw velocity is realized
by the lateral velocity difference between the front and hind
legs. The swing height is fixed at h = 8cm. This polynomial
is designed to ensure the first and second order derivatives at
ϕ = 0 and ϕ = π to be zero, as shown in Fig. 3, corresponding
to zero velocity and acceleration when the foot touches or
leaves the ground. Joint positions and velocities are obtained
through analytic inverse kinematics (IK). The design of using
four independent phases guarantees the freedom in motion
synthesis compared to using clock and offsets. Our unified
representation is capable to generate rhythmic gaits without
any modification.

C. Gaits and Phases

Phase generation is an independent module and can be
implemented in different ways. In this work, we use both
CPGs and manually designed functions for demonstration,
showing the generality of the framework. The CPG works well
for common gaits as well as gait transitions, while manually
designed functions are more flexible and can be used for
complex rhythmic gaits.

We use the Hopf oscillator [21] to construct the CPG. The
modified Hopf oscillator formulates a planar dynamics system

with a limit circle in the following form:
ρ̇0 = α

(
µ2 − ρ2

)
ρ0 + γρ1

ρ̇1 = α
(
µ2 − ρ2

)
ρ1 − γρ0

γ = π

βT(e−bρ1+1)
+ π

(1−β)T(ebρ1+1)

(2)

in which ρ0 = ρ cosϕ and ρ1 = ρ sinϕ, ϕ is the phase of
oscillator, µ the radius of the limit circle and γ the angular
velocity for the oscillator on the limit circle. The parameters
α, β, b and T characterized the behaviors of the oscillator.
The parameter α determines the speed for the oscillator to
converge to the limit circle, which must be positive. The
positive constant b serves to ensure the value µ varies smoothly
across different half planes. The period of limit circle is
denoted as T , corresponding to the period of the motion of the
leg. The duty factor β determines the fraction of stance phase
in a whole period. In practice, the parameter α, and b are fixed
while β, T are used for the gait modulation. Compared to other
methods, the improved Hopf oscillator can realize various gait
patterns and achieve robust and controllable transitions.

For quadruped locomotion, the CPG can be represented by
four coupled Hopf oscillators in the following way [21]

ρ̇i = f (ρi) +
∑
j

Rijρi (3)

where f (ρi) represents the system in (2), and δ represents
the coupling strength and the matrix Rij is the connection
matrix that defines the coupling pattern of four oscillators.
The connection matrix defines the foot sequence, which is the
major gait character. The connection matrix can be formulated
in the following form

Rij =

[
cos θdij − sin θdij
sin θdij cos θdij

]
(4)

where θdij = ϕdi − ϕdj is the desired difference between
oscillator i and oscillator j; ϕdi is the desired relative phase,
in comparison to the actual phase ϕi. The coupling term in (3)
is critical in keeping the phase difference between oscillator i
and j.

The Hopf oscillator CPG is powerful in gait generation.
Table. I lists parameters of the period, duty factor and desired
phase offset, that realize gaits of trot, pacing, bounding and
walk, which are four common gaits in quadruped animals at
different speed [31], [32]. Other parameters are α = 50, µ =
1, b = 50, δ = 1. A three-legged walk can also be generated
by simply placing a fixed attractor, i.e., ϕ = −π2 , r = 1, in
the Hopf oscillator that generates phase of the holding leg.
The oscillator will approach the attractor asymptotically and
remain pinned. Consequently, the leg will stay at the highest
point of the swing phase. By placing the attractor to a different
oscillator, one can change the holding leg during locomotion.

As the foot sequence is defined by the connection matrix,
the gait transition can be realized by simply replacing one ma-
trix with another. Generally, the transition speed is controlled
by the parameter δ in (3). As the coupling becomes stronger,
the transition becomes faster. To achieve stable transition, the
transition phase offset θtransd is the summation of the desired
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TABLE I
CPG PARAMETERS FOR VARIOUS GAITS

Gait T β ϕ̂

Trot 0.5s 0.5 [0, π, π, 0]

Pacing 0.5s 0.5 [0, π, 0, π]

Bounding 0.3s 0.4 [0, 0, π, π]

Four-legged Walk 0.6s 0.75 [0, 0.5π, π, 1.5π]

Three-legged Walk 0.45s 2/3 [0, 2π/3, 4π/3]

Fig. 4. Illustration for phases during the transition from pace to trot. The
transition process starts from 1.0s and converge at 2.48s. The upper figure
illustrates the cosine values of absolute phases while the lower figure illustrates
the relative phases. FR, FL, HR and HL represent the right front, the left front,
the right hind and the left hind legs, respectively.

phase offset θtargetd for the target gait and an overshot term
[21] in (5).

θtransd = θdtargetd + kη
(
θtargetd − θinitd

)
η =

θtargetdmn − θcurrentmn

θtargetdmn − θinitdmn

(5)

In (5), θinitd is the designed phase offset of the initial gait;
θcurrent is the actual phase offset used during the gait
transition; k is a positive constant representing the strength
of the overshoot; η represents the remaining progress in
transition; θmn is the selected phase difference to indicate
the progress. The overshoot let θtransd start from θdtargetd +
k
(
θtargetd − θinitd

)
and decrease to θtargetd .It is designed to

avoid some dead zone during the transition process and ac-
celerate the transition. The differential equation of the system
ensures smooth and robust transition process regardless of the
starting time of transition.

Fig. 4 shows the transition from pacing to trot. We use the
cosine value and relative differences of phases to show the
transition state. The overshoot coefficient k is set to 0.5 in
this work. The transition starts at t = 1.0s, and the overshoot
takes the maximum effect with η = 1.0. The relative phase
offset changes rapidly at the beginning time. The oscillator
for the hind left leg speeds up while the oscillator for the
front left leg slows down. At t = 2.0s, the remaining process
is η = 0.26, and the transition becomes slower and smoothly
converges to the new gait. At t = 2.48s, the remaining process
is η = 0.1, and we regard this point to be the converge point.

The reference motion can also be generated by using manu-
ally designed periodic functions in the form of f : [0,+∞)→
[−π, π), which provides more flexibility. For example, dancing
steps can be created according to the rhythms of the music.

Equation (6) shows an example in which one diagonal pair of
legs moves in a period two-times longer than the other pair.

ϕ1,4 (t) =

{
4πt, t ∈ [0, 0.5),

ϕ1,4 (t− 0.5) , t ∈ [0.5,+∞)

ϕ2,3 (t) =

{
2πt, t ∈ [0, 1),

ϕ2,4 (t− 1.0) , t ∈ [1,+∞)

(6)

D. Control Architecture

The control architecture is schematically shown in Fig. 1.
The controller inputX =

{
vdes, t, qj , q̇j , q̇bR , rg

}
∈ R41 can

be divided into three categories. The first part is the velocity
command from user. vdes ∈ R3 is the desired velocities in
forward, lateral and yaw direction. The second part is the
sine and cosine values of four phases t ∈ R8. Benefit from
our parameterization to the reference motion, we can use
phases as the input when imitating multiple reference motions,
instead of the several steps reference motion itself. The last
part is the state of the robot. qj ∈ R12, q̇j ∈ R12 are the
position and velocity of all 12 joints, respectively; q̇bR ∈ R3

represent the angular velocities obtained directly from the
inertial measurement unit, the unit vector rg indicates the
gravity direction in the base frame, representing the angular
position of the base. No further state estimation is used in this
controller. The output of the controller is the target position
qtargetj ∈ R12 of each joint. The low-level torque command
to each motor is determined by a PD controller. We take the
long short-term memory (LSTM) neural network as the RL
controller, which which can adaptively encode the historical
information and has been demonstrated to have advantage over
naive multilayer perceptron (MLP) when dealing with dynamic
processes [23].

E. Reward Design

The policy is trained to imitate reference motion while
maintaining balance and tracking command velocities. The
reward function is a weighted summation of separate terms
in the following form:

r =wro

ro = [rτ , rv, rj , rb, rh, rc]
T

w = [0.2, 0.15, 0.5, 0.05, 0.05, 0.05]

rj =0.25 exp
(
−2‖∆qj‖2

)
+ 0.75 exp

(
−2‖∆q̇j‖2

)
rτ =0.5 exp

(
−‖0.05τ‖2

)
+ 0.5 exp

(
−‖0.5τ̇‖2

)
rv = exp

(
−8‖∆q̇b‖2

)
rb = exp

(
−80‖rg − z‖2

)
rh = exp

(
−80‖qbz − qdesbz ‖

2
)

rc = exp

(
−
∑
i

Fi sin2 ϕi

)
Fi =ci‖0.08f i‖2 + (1− ci)‖2vi‖2

(7)

in which rτ penalizes the policy for large or rapid joint torque;
rv rewards the policy for following the desired velocity; rb and
rh reward the policy for keeping the base balance; z is the
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TABLE II
RANDOMIZATION DURING TRAINING

Parameter Unit Distribution

External Force N U (0, 10)

External Torque Nm U (0, 2)

Ground Friction - U (0.4, 1.2)

Ground Height mm U (−2.5, 2.5)
Mass kg N (1.0, 0.05)×default values

Body Size m N (1.0, 0.05)×default values

Joint Position Noise rad N (0.0, 0.002)

Joint Velocity Noise rad/s N (0.0, 0.3)

Body Posture Noise rad N (0.0, 0.1)

Angular Velocity Noise rad N (0.0, 0.3)

unit vector along the z-axis in the base frame; rc penalizes the
policy for tracking the foot contact state of reference motion.
ci represents the desired contact state of the i-th foot. ffi is the
contact force on the i-th foot and vfi the velocity. ci = 0 for
the stance state and ci = 1 for swing state. When the i-th foot
is supposed to be in the swing state, ci = 1 and only the force
on the i-th foot will decrease the reward. On the other hand,
when the i-th foot is supposed to be in the stance state, ci = 0
and only the velocity of the i-th foot in the world frame will
decrease the reward. The term sin2 ϕi is designed to reduce
the effect of this penalty at ϕi = 0 and π when the desired
contact state changes. This reward helps to keep the feet in
the correct phases and avoid slipping. The term rj represents
the major part of imitation and rewards the policy for tracking
both joint positions and velocities of the reference motion. The
imitation reward by integrating the reference motion is general
to all gaits and serves as a soft constraint for the exploration
of the agent to avoid learning unnatural behaviors, including
the fusion of multiple gaits. This reward has a large coefficient
of 0.5 to encourage the policy to track the reference motion
while following the target velocities and retaining balance.

F. Training Techniques

Domain randomization can help to overcome the gap be-
tween simulation and real world and to prevent overfitting
[7], [23]. To minimize the sim-to-real gap, we randomize
the dynamics and kinematics parameters of the robot as well
as the ground. Small but random external forces are applied
to the robot. To model the sensory noise, we also apply
randomization to the sensory data in the observation. For
faster convergence, we adopt the reference state initialization
(RSI) technique, proposed by Peng et al. [11] To expedites
ergodicity, the initial state is randomly sampled from the
reference motion. Otherwise, the policy NN may depend more
heavily on a portion of the states if the initial state is fixed in
the training process. Details on the random variables used in
this part can be found in Table II.

IV. RESULTS

To evaluate our learning framework, we deploy the con-
trol policy on the Black Panther robot, a medium-dog-size
quadruped robot with 12 degrees-of-freedom. The control

policy shows similar behaviors in both simulation and hard-
ware. In the following experiments, we first demonstrate the
effectiveness for learning multiple gaits. We then show the
performance of present method in gait transitions and more
complex gaits. Overall, the controller is robust to different
ground conditions and unknown perturbation in the real world
as shown in Supplementary video 1.

A. Experiment Setup

RaiSim [33] is used as the physics engine for simulation.
The control policy is an LSTM neural network with 2 hidden
layers of 128 units in each, trained with PPO algorithm [34]
implemented in the stable-baselines [35] package. To balance
the convergence speed and the exploration field, we adopt
a truncated trainable action noise to for exploration with
standard deviation initialized at 1.0 and ended with 0.1. During
the sampling process, the controller works at a frequency of
100Hz in simulation while the physical engine updates at
400Hz. Each batch contains 200 trajectories up to 5 seconds
in simulation, corresponding to 500 control steps. All the gait
patterns, including walk, trot, pace, bounding, three-legged and
dancing patterns, are trained together within one single policy.
The RL environment is released as an open-source package.1

The policy is trained on a workstation with intel i9-10900X
CPU and RTX 2080Ti GPU and converges in about 3 hours.

The Black Panther robot is designed based on the open-
source project, mini cheetah [36]. The base of the robot is
about 27 cm wide and 42 cm long. The max length of each
leg is about 39 cm, and the total weight is about 9 kg. Each leg
has the abductor, hip, and knee joints. We use the UP Board as
the onboard computer, on which the policy can run at 100Hz
as designed.

B. Multiple Gait Locomotion

We evaluate the control performance for four most common
gaits, namely walk, trot, pacing, and bounding. Parameters for
those four gaits are specified in Table I. Fig. 5 shows the
simulated results, and Table III lists the detailed metrics for
the tracking of velocities and contact sequence measured in 2s.
The corresponding deployment on the hardware is provided in
the supplementary video 2. The horizontal bars represent the
actual foot contact sequence. Dark bars stand for the stance
state, and the white bars the swing state. For all four gaits, the
foot sequence can match the given CPG output and the step
height error is within 2 cm. Since the policy is encouraged to
reduce joint torque, the actual swing height is generally lower
than designed. We further measure the similarity between the
desired and actual contact sequence by s = 1−d/T , in which
d stands for the Hamming distance of two time series and T
stands for the length of the sampled time series. Since the
policy is not trained to control the roll and pitch angle of
the base according to user command, it is trained to keep
the base balance, and thus we use the roll and pitch angles
as a measurement of balance. For the walk gait, each foot
is supposed to step forward in one quarter period. The roll

1https://github.com/ZJU-XMech/PhaseGuidedControl
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Fig. 5. Simulation of four common gaits including (a) walk, (b) trot, (c)
pace and (d) bounding. The actual foot contact sequence is represented in
the horizontal bars. The CPG output is plotted with the cosine value of the
phase, and thus the rising part stands for the stance state and the falling part
the swing phase.

and pitch angles of the robot are within 2.5◦. The robot stays
stable without any trend of losing balance. For the trot gait,
the feet on the diagonal has the same phase value. The roll and
pitch angles of the robot are within 2.0◦. For the pacing gait,
feet on the same side in the lateral direction are supposed to
move in the same phase. The foot sequence is able to match
the CPG output but the duration of the stance state is 50%
longer than the expectation, because maintaining balance is
hard when both two legs on the same side are in the swing
state. The agent learns to increase the duration of the stance
state. The roll and pitch angles of the robot are within 4.0◦.
For the bounding gait, feet on the same side in the front and
back direction are supposed to move in the same phase. The
robot can maintain balance. However, the pitch angle is larger
than other three gaits, because the frequency of bounding is
higher and lifting both two legs on the same side in the front
and back direction would naturally lead to larger pitch angle.

C. Gait Transitions

We test the ability for gait transition in this section. Pa-
rameters used in this section are specified in Section III-C.
Supplementary video 2 shows the hardware test of all the
transitions among four gaits tested above. Fig. 6 shows the
transition from trot to bounding at a forward velocity of 0.5
m/s. The CPG signals show that the transition starts at about

TABLE III
PERFORMANCE METRICS

Gait Similarity Velocity Error (m/s)

Walk 0.94 0.04

Trot 0.95 0.12

Pacing 0.78 0.15

Bounding 0.87 0.16

t = 1.2s and finishes at about t = 2.5s. The actual foot
sequence can match the CPG output during the transition
process, with a similarity of 0.83. The velocity tracking
error during transition is 0.21m/s. The body postures before
and after the transition are similar to the results in Section
IV-B. During the transition process, the robot maintains its
balance, and the amplitudes of the roll and pitch angles change
smoothly. Since the guiding signal from CPG is smooth during
transition, the reference motion learned by the controller is
smooth. Eventually the smooth working condition of motors
is achieved, and no peak or sudden change occurs during the
transition process.

D. Three-legged Gaits

The three-legged locomotion and transition are also tested
and deployed on the hardware, as shown in Fig. 7 (a). The
parameters are specified in Table II. The deployment details
are provided in the Supplementary video 3. The robot can walk
with three legs following velocity command, and switch the
holding leg during walking. The foot sequence can match the
CPG signals even during the switch process. After the switch,
the robot can reach steady state in less than 1 second.

E. Complex Gaits

Dancing gaits can be generated by manually designing
periodic functions according to the rhythms of the music.
As a demonstration, we use the music from Dances of the
Swans, the fourth composition of the second act in the ballet
Swan Lake, created by Tchaikovsky. The tempo used in this
experiment is 100 bpm. We define the unit time for a swing or
stance duration as t0 = 0.15s, equal to a quarter of one beat
in the music, the same speed as the ballet. Various kinds of
rhythmic gaits can be designed in this way. To avoid tediously
listing a large number of similar equations, we show the foot
sequence of those gaits in horizontal bars in Fig. 8 (a). Fig. 8
(b) shows an example of the mapping from the rhythm to the
foot sequence. Fig. 8 (c) shows the relationship between the
foot sequence and the phase. The corresponding function for
Fig. 8 (c) is shown in (8).

ϕ (t) =


− π

0.15 t+ π, t ∈ [0, 0.3),

− π
0.15 (t− 0.3) + π, t ∈ [0.3, 0.45),

− π
0.45 (t− 0.45), t ∈ [0.45, 0.9),

ϕ (t− 0.9) , t ∈ [0.9,+∞)

(8)

Those 9 gaits contain various dynamic situations, like jump-
ing and landing with different feet, moving different legs at
different and changing frequency, etc. The controller is able to
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Fig. 6. A typical gait transition from trot to pacing. (a) The actual foot fall, CPG signals and the roll and pitch angles during the transition process. (b) The
maximum speed and torque for three types of joint indicates that the transition process is smooth at joint level.

Fig. 7. Examples for complex gait deployed on the hardware. (a) An example of three-legged locomotion. (b) An example of a manually designed gait in
which four legs hold various periods. Each foot is found to be in the proper swing or stance phase as expected.

Fig. 8. (a) Illustration for dancing steps. The foot sequence for each gait in
one period is shown as horizontal bars. The length of the bars represents the
length of duration. (b) Mapping from the notation of the rhythm to the foot
sequence. (c) Relationship between the foot sequence and the phase.

distinguish all those gaits according to the phases and adapt
to all the working conditions. To transit from CPG-based gaits
to manually designed gaits, we first adjust the phase offset of
the CPG and then replace it with manually designed functions
when the exact phases evolve to the state that exist both in two
generators, and vice versa. Eventually the robot can walk in

all those 9 gaits and transit freely from one to another while
following the velocity commands and phases. Outdoor tests
for all 9 gaits are shown in the supplementary video 4. The
one-minute dancing is provided in the supplementary video
5. Simulation results for transition between CPG-based gaits
and manually designed gaits is provided in the supplementary
video 6.

V. CONCLUSION

In this work, we present a reinforcement learning framework
to train a phase-guided controller for multiple gaits and free
transitions. We use phases as the interface between gait
generator and the RL system. For the control policy, the
learning task is simplified, and the agent only needs to learn
the relationship between phases and foot movements while
retaining balance. Eventually, the policy trained in simulation
can be transferred to hardware and reproduce all the learned
gaits and free transitions robustly.

This framework transforms multiple gait learning to learn-
ing the relationship between phases and foot movements,
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which avoids the challenge of multi-task learning problem.
In this way, the LSTM neural network is sufficient to learn
those locomotion skills. The deployment on the hardware has
demonstrated that the robot can locomote in various gaits and
make free transitions according to the guided phases. Under
this framework, the robot locomotion is closely related to
the gait generation, which is a much simpler problem. By
designing more advanced gait generators, the gap between
legged robots and animals can be narrowed and eventually
overcome.
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