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Abstract—As robots operate in increasingly complex and dy-
namic environments, fast motion re-planning has become a widely
explored area of research. In a real-world deployment, we often lack
the ability to fully observe the environment at all times, giving rise to
the challenge of determining how to best perceive the environment
given a continuously updated motion plan. We provide the first
investigation into a ‘smart’ controller for gaze control with the
objective of providing effective perception of the environment for
obstacle avoidance and motion planning in dynamic and unknown
environments. We detail the novel problem of determining the best
head camera behaviour for mobile robots when constrained by a
trajectory. Furthermore, we propose a greedy optimization-based
solution that uses a combination of voxelised rewards and mo-
tion primitives. We demonstrate that our method outperforms the
benchmark methods in 2D and 3D environments, in respect of both
the ability to explore the local surroundings, as well as in a superior
success rate of finding collision-free trajectories – our method is
shown to provide 7.4x better map exploration while consistently
achieving a higher success rate for generating collision-free trajec-
tories. We verify our findings on a physical Toyota Human Support
Robot (HSR) using a GPU-accelerated perception framework.

Index Terms—Mobile manipulation, RGB-D perception,
collision avoidance.

I. INTRODUCTION

FAST re-planning, especially for robots operating in dy-
namic environments, is a challenging and active research

area [1]–[5]. The vast majority of this prior work focuses on in-
stances with a fixed camera, whether external or robot-mounted.
While limited in the ‘field-of-view,’ or number of sensors, many
mobile robots such as the Toyota Human Support Robot (HSR),
or humanoid robots, have movable cameras or sensor heads;
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Fig. 1. Using our method of active gaze control, a Toyota Human Support
Robot successfully avoided dynamic obstacles to achieve a goal state (green)
from which to pick up a bottle. During execution, a human moved the leftmost
large black case into the path of the planned robot trajectory – the direction
of motion is shown with an arrow (cyan). Our optimized gaze control enabled
the head-mounted camera to perceive the changes in the environment; the re-
planning framework safely and continuously re-planned and executed the task.

this presents the unique challenge of determining where the
camera should be looking as the robot moves in real-world
environments.

In our previous research [6], we proposed and demonstrated
an integrated perception and motion planning pipeline. We found
that collisions and failure cases of the framework primarily
occurred due to poor positioning of the head camera during
trajectory execution and re-planning — in other words, the
ability of any motion planner to provide collision-free trajec-
tories is limited by the effectiveness of the perception system
in continuously updating the environment representation and
identifying obstacles. Robots such as the HSR have additional
degrees of freedom, such as pan and tilt, to control the position
of the head-mounted camera. We found that simple behavioural
heuristics for the camera, such as a fixed camera pose or continu-
ous panning, provided unsatisfactory results and merited further
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Fig. 2. At any snapshot in time during a motion planning task, the robot
will have partially observed the environment and planned a trajectory accord-
ingly. The problem that we address is in determining where a movable/re-
positionable, e.g. head-mounted, camera should be directed in order to provide
the most relevant observations for effective collision avoidance and optimized
map exploration.

investigation. To our knowledge, this work provides the first
investigation into active gaze control for motion planning when
constrained by a trajectory. We propose a greedy, voxelised cost-
based optimization as an effective solution and show that our
method outperforms heuristic approaches. Further verification
of our approach is conducted on a physical HSR.

A. Problem Statement

We address the problem of “given a planned robot trajectory,
where should the camera be directed in order to provide both suc-
cessful collision avoidance and map exploration in potentially
dynamic scenes?” Fig. 2 illustrates the problem. The challenge
largely arises because once we start working within the paradigm
of dynamic and unknown environments, we must take a more
cautious view of our surroundings – there is no guarantee that an
area that was observed in the past will remain static. In particular,
for robots operating in environments where humans co-occupy
the workspace, there may be the possibility of a human crossing
the planned path of the robot; the robot should thus perceive
areas of space that it plans to occupy in plenty of time to react
to dynamic obstacles.

II. RELATED WORK

Literature on robot camera positioning typically aims to
address the ‘Next Best View’ (NBV) problem whereby the
aim is to determine where the camera should be positioned to
obtain maximum information gain for the reconstruction of an
environment or object model [7]–[11].

Our problem is subtly different for two reasons. Firstly, in
our problem the camera trajectory is constrained by the planned
trajectory of the mobile manipulator on which it is mounted. Sec-
ondly, we do not wish to maximise the observance or information
gain of an object, or the environment, as in the NBV problem;
this in itself does not necessarily assist collision avoidance.
Instead, our goal is to optimise our perception of the environment
such that we achieve resultant trajectories that are collision-free
for a given task. In other words, we want our observations of

the environment to be relevant to the task and planned robot
trajectory.

We believe that the concept of ‘trajectory-constrained active
gaze control’ is a novel problem that has not previously been
addressed. A simple approach is to use a fixed head position
without any active gaze control. Maier et al. present and demon-
strate an integrated approach for localisation, mapping, and plan-
ning in 3D environments using RGB-D cameras [12]. Using a
NAO humanoid robot, they fix the position of the head-mounted
depth camera so that the optical axis intersects the floor at a
30◦ angle. The authors found this to be “the best compromise
between observing the near range for obstacle detection and
looking ahead for localization and path planning”. While the
authors found this to be sufficient, the approach does not fully
utilise the ability of the head camera to perceive its surroundings,
particularly in a dynamic environment, and is likely to result in
collision for holonomic locomotion.

Works that have considered active gaze control have applied it
to different problems than what we are concerned with. Lidoris
et al. [13] present an algorithm to combine trajectory planning
and gaze direction control for usage in SLAM. Their objective
for gaze control is to minimise estimation errors while exploring
an unknown environment.

The work of Seara et al. is most similar to our problem in
determining where to look for obstacle avoidance [14]. They
consider active gaze control for a vision-guided humanoid and
determine the pan and tilt of a mounted head camera, however,
their objective is to maximise the predicted information gain
for the position of known objects in the scene. By contrast, our
approach focuses on being applicable in unknown environments
with 3D collision avoidance.

III. GREEDY VOXELISED COST OPTIMIZATION

Our approach is divided into two parts; the first dealing with
reward assignment and the second with the optimization.

A. Reward Assignment

Our primary concern at all times is that of safety and achieving
a collision-free trajectory. Many sampling and search-based
motion planners use swept trajectory occupancy to determine
valid states for the robot. This assumes that we already know
the occupancy of voxels within the swept trajectory. In an
unknown, or dynamic environment, this swept trajectory needs
to be recently observed by the perception system, e.g. a camera
sensor, in order to ensure that it consists solely of free space.
If obstacles occupy this space, the motion planner requires this
information in order to re-plan for a collision-free trajectory.
We propose using a reward for head camera poses that observe
swept trajectory regions of the workspace. By observing these
regions, the motion planning framework can react and re-plan to
avoid collisions with obstacles that are found to be in the way.

Since trajectories can have large time horizons, we propose
a tiered reward that depends on how soon the swept trajectory
steps occur in time, thus prioritising the observance of states that
occur sooner. This is illustrated in Fig. 3.



FINEAN et al.: WHERE SHOULD I LOOK? OPTIMIZED GAZE CONTROL FOR WHOLE-BODY COLLISION AVOIDANCE IN DYNAMIC ENVIRONMENTS 1097

Fig. 3. A visualisation of the swept trajectory rewards as described in our approach to active gaze control. Left: A full swept trajectory of rewards that will
contribute to the total reward of field-of-view cones that contain intersecting voxels. The earlier part of the trajectory (pink) is a higher priority region, with higher
reward due to temporal proximity. Right: As voxels are observed, their ‘time last observed’ is reset to zero and thus below the threshold for allocating a reward.

Beyond safety, we wish to explore the environment and
maintain a broad perception of the workspace. Being aware of
peripheral surroundings is important for enabling the robot to
find alternative paths but also for identifying dynamic obstacles
early on and incorporating their trajectories into the motion
planning. We therefore wish to encourage the robot to have an
objective that rewards exploration in its perception strategy. We
achieve this by penalising regions of space based on the time
that they were last observed. We thus attribute the ‘time last
observed,’ ti, to each voxel in a maintained voxelmap of the
environment. Each time a sensor measurement is received from
the camera, the last observed time for all voxels is incremented
by one. Voxels within the camera’s current field-of-view cone
are reset to zero since they have been observed. We thus maintain
a voxelmap of observation times.

Formally, we consider a robot trajectory, X(t, T ), that starts
execution at time t and has a planned duration of T . For such a
trajectory, we construct a voxelised map of the swept occupancy,
such that the occupancy of a voxel, vi is:

vi =

{
0 Not occupied

τ Occupied,
(1)

where τ = [0, T ] is the earliest time index of the trajectory which
results in occupancy.

Using the intuition previously described, we wish to assign
reward to regions of space that have not been recently observed.
Among these, we want to firstly prioritise observation of the
swept robot trajectory, with greater reward assigned to the earlier
part of the trajectory and less reward assigned to the later section.
Secondly, we wish to provide a reward for broader exploration
of the environment. We reflect these three types of reward by
assigning each voxel with a reward, ri, determined by:

ri =

⎧⎪⎨
⎪⎩
c1 vi > 0 and vi <= τs and ti >= τc

c2 vi > 0 and vi > τs and ti >= τc

max(c3ti, 1) otherwise
(2)

where c1, c2, and c3 are positive constants to be tuned – these
parameters determine the balance between observing the near
and far sections of the swept trajectory and exploring the envi-
ronment. τs represents the farthest step in the currently planned
trajectory that is deemed to be a high priority for observation.

An example reward allocation for the swept trajectory volume
is shown in Fig. 3. τc represents the user-defined threshold for
a safe ‘time last observed’ – a smaller value will result in a
more conservative behaviour that is more suited for dynamic
environments with fast moving objects. In contrast, a large value
is suitable for static environments. We emphasise that in (2), c1
and c2 rewards are only allocated if the voxel has not recently
been observed, i.e. ti >= τc.

We use the camera’s projected cone of vision (field-of-view
cone) to reset voxel observation times, rather than raycasting,
so as to avoid reward allocation for regions of space that we
know cannot currently be observed. Raycasting in the perception
pipeline is performed between the camera and an observed point-
cloud against which the rays will terminate in collision. How-
ever, in the gaze control problem, we do not consider whether
regions of space are denoted as free, occupied, or unknown—
only whether they have been observed recently enough. For
example, some camera positions may result in facing a wall; in
these cases, a raycasting approach would terminate at the wall
(leaving the space behind the surface as ‘unknown’), and not
reset ‘time last observed’ counters on the other side of the wall.
The lack of resetting these counters may wrongly encourage
the optimization to face the wall again so as to observe these
unobservable voxels. Hence, we instead opt for a field-of-view
cone which instead can result in voxels on the other side of
surface boundaries being labelled as observed for the purposes
of gaze control optimization. On first inspection, the reader may
be inclined to think that in these instances, the method will now
discourage the robot from observing the other side of the wall for
future times. However, this is not a problem due to our method
of incrementing the ‘time last observed,’ independent of their
occupancy, and applying a threshold, τc. In our wall analogy,
over time, the robot will try to allocate reward to the previously
unobservable areas of space and if the robot has moved to a
location in which the robot’s vision is no longer obstructed by a
wall, then the voxels may be observed in the optimization.

B. Optimization

With the reward of each voxel updated at every timestep,
we consider a set of motion primitives local to the camera’s
current position. For each motion primitive, we consider the
‘field-of-view’ cone and calculate the weighted sum of rewards.
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We implement a greedy optimization approach and select the
motion primitive with the greatest reward for execution.

When considering a two-dimensional workspace, we found
that spatially discretised costs are easily performed using a
CPU. However, in three-dimensional workspaces, we leveraged
our previous work [6] by using a GPU-accelerated perception
framework based on GPU-Voxels [15], [16], enabling us to
maintain a reactive update frequency for the gaze control. By
integrating gaze control with our previous framework, we are
able to re-use the same voxelmap information for both whole-
body motion planning and gaze control optimization. In a large
256× 256× 64 voxelised workspace, at a resolution of 5 cm,
we found that our gaze controller operates at 4.9 Hz while
optimising over 144 motion primitives – we note that within
each iteration to determine the best camera position, not all 144
motion primitives will necessarily undergo full evaluation as
those which violate joint constraints will be terminated early
and allocated a maximally negative reward. Higher rates could be
achieved by reducing the voxelmap size, reducing the maximum
distance of the camera’s field-of-view cone, or by considering
fewer motion primitives. Hardware specifications are: NVIDIA
RTX 2060 GPU, 8-core Intel Core i7-9700 CPU @ 4.50 GHz
and 2133 MHz DDR4 RAM.

IV. HEURISTIC BASELINE METHODS

Since, to the best of our knowledge, there does not appear
to be a comparable ‘smart’ approach in the literature, we con-
sider three baseline heuristic methods to compare against our
proposed optimization method:

1) Constant: The camera remains in a fixed position with
respect to the base of the robot.

2) Panning: The camera continuously pans at a constant rate
throughout the task. The tilt of the camera is fixed such
that the optical axis intersects the ground at 30 degrees.

3) Look Ahead: The camera is directed towards the future
base position of the robot at a fixed number of time steps
ahead in the planned trajectory.

To evaluate the methods, we perform benchmarking on a
variety of tasks in both 2D and 3D. In all experiments, the
robot is not provided with any knowledge of the environment
prior to receiving a goal command, after which all mapping and
perception is obtained via live sensor measurements.

V. EVALUATION

We evaluate our method in static 2D and 3D environments
(Sections V-A and V-B respectively), followed by evaluation of
the methods in a dynamic 3D simulation. Finally, we perform
hardware experiments in dynamic scenes (Section V-C).

A. 2D Benchmarking

In 2D, we consider a 1000× 1000 workspace in which the
outer perimeter is occupied by walls. Static obstacles are gener-
ated randomly within the workspace in which a robot performs
motion planning tasks between start and goal state pairs (x, y, θ).

Fig. 4. A sample of 2D motion planning tasks comprising of a perimeter wall,
obstacles (blue), and a start/goal state pair (yellow triangles).

We generate 150 different environments, comprising of five
static rectangular obstacles of random size between 10 and
30 units (cells) in each dimension. We generate 20 different
start/goal pairs for evaluation on these environments. A task
comprises of an environment selection and a start/goal pair. For
each task, we implemented each of the four head behaviours
in tandem with a GPMP2 motion planner [4] executed in a
receding-horizon manner as detailed in our previous work [6].
We consider a mounted camera with pan joint values in the
range of [−π

2 ,
π
2 ], relative to the front of the robot. For the

motion primitives in our optimization, we consider values at π
16

intervals within this range, resulting in 17 possible head camera
positions to greedily optimise. To evaluate the success of each
method, we consider both whether the resultant trajectory was
collision-free, and the percentage of the environment explored
during execution. A selection of 2D task environments are shown
in Fig. 4.

By conducting a parameter sweep for a series of similar tasks,
we found the optimum values of c1, c2, and c3, in our setup to
be 106, 103, and 1 respectively. We found that values of τs = 3
and τc = 3 performed well. For the field-of-view cones, we use
an opening angle of π

2 and a distance cutoff of 200 pixels.
Of the 3000 tasks in total, we retained a randomly sampled

subset of 2000 tasks in which at least one method succeeded in
generating a collision-free trajectory – this provides us with a
fair comparison across the methods and provides assurance that
the motion planning problem was solvable.

Results from the 2D benchmarking experiments indicate that
our Optimized method, along with the Look Ahead method,
achieve the greatest success rates for producing collision-free
trajectories (95%). This is likely due to maintaining a much
better perception of the region of space directly in front of
the robot. As shown in Fig. 7, these two methods result in the
robot traversing cells which have typically been more recently
observed. We note again that this feature is of particular interest
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Fig. 5. Top: A comparison of the mean map exploration, as a percentage of
the total workspace, achieved by each of the gaze behaviours on our 2D dataset.
Bottom: A similar comparison of the success rate for each gaze behaviour
in achieving collision-free resultant trajectories. We see that our Optimized
method provides significantly greater map exploration while maintaining the
joint highest success rate for achieving collision-free trajectories.

Fig. 6. For each task, we rank the gaze control behaviours in a tiered approach,
firstly prioritising successful collision avoidance, followed by the map coverage
achieved during execution. Across our 2D dataset of tasks, we find that our
Optimized method outperforms all other methods in 94% of tasks.

when considering dynamic environments, since an old observa-
tion of a cell may no longer be valid. The additional benefit of our
method is a significantly enhanced perception of the surrounding
environment due to the exploration reward in the objective
function. Fig. 5 shows the mean map coverage achieved by each
of the four methods over the subset of tasks in which all methods
succeeded in finding collision-free trajectories — our method
provides a 52 % to 102% improvement over the benchmark
approaches in exploring the environment during execution.

As previously discussed, the primary consideration of an
effective gaze controller is in providing successful collision
avoidance, followed by any additional ability to observe the sur-
roundings. We therefore ranked the four methods hierarchically

Fig. 7. Distribution of the last time that cells were observed at the time
of robot occupancy. Last observed times were initialised and clipped at 100
time steps. Times for voxels that are observed by the camera are reset to zero
and incremented for each subsequent time-step that they are not observed. To
ensure safe locomotion, cells should be recently observed prior to the robot
moving to occupy them. Our Optimized method allows us to parameterise our
‘cautiousness’ of the environment and trade-off the conservative behaviour of
the Look Ahead method, with greater map exploration.

– firstly by whether trajectories were collision-free and secondly
by the total map coverage. Results of this ranking are shown in
Fig. 6 whereby our method ranks first 94% of the time.

B. 3D Benchmarking

We conducted a series of 3D simulation experiments using a
Toyota HSR robot in a variety of static Gazebo environments
as shown in Fig. 8, as well as a dynamic environment shown
in Fig. 9. For each environment, a base goal (x, y, θ) was
provided and our entire pipeline (integrated motion planning,
perception, and head controller) was executed so that the HSR
would autonomously navigate towards the goal. In each task,
after receiving the goal location, the head camera was instructed
to first look towards the goal destination and calculate the initial
trajectory plan; after which all head movements were controlled
by the head controller under investigation.

In our optimization, we consider 16 joint values for the
panning angle and nine values for the tilt, resulting in 144
possible head configurations to optimise over. We recorded
whether trajectories were collision-free and the total portion of
the map observed during execution. Each task was repeated 10
times for each head behaviour.

In our simulated 3D and hardware experiments, we use a 0.5
s interval between motion planning time-steps and found that a
threshold value of τs = 15 performed well, corresponding to a
time threshold of 7.5 s. We similarly found τc = 150 voxelmap
updates to perform well. For reference, although we continu-
ously re-estimate the trajectory time-horizon during execution,
a typical starting horizon for tasks such as in the hardware
experiment is ∼ 35 s. We use a pyramidal field-of-view cone
for an ASUS Xtion Pro Live camera, matching the parameters
for the sensor characteristics [17], with horizontal and vertical
angles of 58◦ and 45◦ respectively. In line with the sensor’s
recommended ‘distance of use,’ we apply a distance cutoff of
3.5 m .

Our findings are further validated in the 3D case with results
shown in Fig. 10. In particular, we find that our method is
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Fig. 8. Aerial view of the four static 3D simulation environments: ‘Free,’ ‘One Obstacle,’ ‘Occluded’ (a second smaller obstacle is hidden behind the first), and
‘Clutter’. Start and goal robot states are shown as blue and green respectively.

Fig. 9. Our simulated 3D dynamic experiment highlights the benefit of using an active gaze control approach that aims to maintain a broader perception of the
environment. In the examples shown, all three benchmark methods demonstrated collisions with the dynamic obstacle. In contrast, our Optimized method, which
balances the objectives of map exploration and observing the swept volume of the robot’s currently planned trajectory, is able to successfully perceive and avoid
the dynamic obstacle.

Fig. 10. Resulting success rate and mean map coverage achieved by each gaze control method across our 3D simulation tasks. Our Optimized method provides
consistently high success rates in generating collision-free trajectories, while providing up to 7.4× improved map exploration in the static environments. Crucially,
in the dynamic environment, the Optimized approach was the only method to reliably achieve collision-free trajectories.

more robust at providing collision-free trajectories and typically
provides 2-3x greater map exploration during execution on the
static environments, despite taking a similar amount of time.
In particular, we note that our proposed optimization method
provides a much higher success rate than the benchmarks on
the ‘Occluded’ environment. In this environment, vision of a
second smaller obstacle is occluded by the first. The benchmark
methods would typically fail to observe the back of the first
obstacle as a trajectory around it was executed, thus resulting in
collision.

In the 3D dynamic task, the Constant and Panning methods
failed to generate a collision-free trajectory in any of the 10
repeated trials. The Look Ahead behaviour found a collision-free

trajectory in two of the trials, narrowly passing in front of the
obstacle. In contrast, using the Optimized approach resulted
in a 100% success rate and achieved significantly greater map
coverage, as shown in Fig. 10.

For the dimensions given previously, the generation of the
costmap takes approximately 0.5 ms. Cost evaluations for each
of the primitives are then performed using this costmap. We
found the cost evaluation for a single camera primitive to be
2.4± 0.4 ms . In the optimization, camera primitives that result
in a position outside the allowed joint ranges bypass the opti-
mization and return an infinite (negative) cost. Over an entire
trajectory, in which the camera position was determined 160
times, our optimization approach achieved a mean computation
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Fig. 11. We validate our proposed method for optimized gaze control on a 8-DoF Toyota Human Support Robot in a live dynamic environment. With time
increasing in the images, from left to right, we overlay the calculated ground distance field generated in real-time by the perception system. Between Fig. 11(a) and
Fig. 11(b), the camera perceives the large obstacle prior to moving. As the dynamic obstacle is moved, the gaze controller continues to balance map exploration
with maintaining recent observations of the swept whole-body robot trajectory. In Fig. 11(c), we see that the robot observes the dynamic changes in the environment
and is able to quickly re-plan accordingly to avoid collision. Fig. 11(d) shows the robot taking a collision-free path around the newly observed obstacle. Note that
while we visualise the projected ground distance fields, our method operates using the full 3D voxelmap as shown in the row of images below.

time of 205± 32 ms to determine the best camera pose for the
next step.

C. Hardware Experiments in Dynamic Environments

To demonstrate our approach on hardware, we use a physical
Toyota HSR – an 8-DoF mobile manipulator with a holonomic
base and a head-mounted Asus Xtion Live RGB-D camera. The
head motion is controlled by a further two degrees of freedom
(pan/tilt). The robot is provided with a whole-body goal state to
pick up a bottle on the other side of a room. During execution,
a human walks into the scene and places a large obstacle in the
planned path of the robot. The task is shown in Fig. I-A, while
a series of snapshots from this experiment are shown in Fig. 11.

We found that by using our method, the robot successfully re-
observed the space in front of it, perceiving the dynamic change
in the environment and successfully re-planning its trajectory
to avoid obstacles and pick up the bottle. Due to the height of
the head (and the torso translation joint), this was particularly
apparent when the obstacle crossed the path close to the robot;
the heuristic methods would typically look over the obstacle and
fail to re-observe the space immediately in front of the robot’s
base while the optimized method would alternately observe the
space in front of the robot and the last planned robot trajectory.
As a result, the observed behaviour of waiting until the path was
clear appeared natural.

VI. DISCUSSION

Our greedy optimization approach proves to be a simple
solution to the trajectory-constrained gaze control problem that
we have described. By only considering the next camera pose,

although not meeting real-time requirements of ∼ 30 Hz, we
are able to achieve a sufficiently high update rate of ∼ 5 Hz.
Over longer time-horizons, our method will likely provide
sub-optimal solutions that are less smooth than gaze trajectory
optimization performed over a time horizon. Optimising over
longer horizons is an interesting topic for further work, however
the main concern is potentially large compute times arising from
generating and evaluating rewards for subsequent time-steps.
This limitation is also shared by the state-of-the-art solutions
for the typical next best view problem.

The benefits of our approach will inevitably vary depending
on the specifications of the robot on which it is implemented.
For example, robots with a slower, more restricted head motion
are likely to see smaller gains in map coverage. Conversely, as
hardware improves and systems become more agile, we expect
that our approach will lead to further performance gains across
a range of platforms.

In examining the trajectory-constrained gaze control chal-
lenge and developing our optimization-based approach, we have
primarily focused our testing on static environments. Whilst we
demonstrate our approach in dynamic environments, to ensure
that our approach provides a robust solution, further work is
required in exploring the link between the tuneable parameters
and the dynamic obstacles that we expect to encounter. While
it would be interesting to conduct further experiments in com-
plex scenarios, and stress-test the approach in the presence of
non-convex obstacles, these tests are more relevant for testing
the motion planning method since the gaze control optimiza-
tion, as presented here, is agnostic to obstacles; we will thus
explore this in future work. Additionally, we will explore the
incorporation of additional priors that may be available, such
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as semantic information, into the optimization to better observe
dynamic obstacles. Humans in particular are likely to move in
smooth, structured motions with a goal in mind — a probability
distribution over a known workspace could thus be used to
represent the places that a human is likely to occupy – these
regions can be prioritised in the optimization. Within the cur-
rent framework, this could be achieved by assigning additional
attributes to voxels for incorporation into the reward function.
Further work in this area will extend our previous work [18] of
using predicted composite signed distance fields to account for
predicted dynamic obstacle trajectories; this framework requires
the perception system to observe and track dynamic obstacles
local to the robot. Accounting for the predicted movement of
moving obstacles will help us avoid scenarios in which the
motion planner repeatedly plans for the robot to go into the
path of the moving obstacles.

In this work, our primary focus has been to make observa-
tions that are relevant for collision avoidance, with additional
exploratory reward being aimed at observing regions of space
that have not been recently observed. An interesting avenue to
explore in future work would be to combine this with the typical
NBV problem and consider information gain in the reward func-
tion to promote efficient reconstruction of the environment. The
difficulty in this approach will likely be determining the trade-off
between the rewards for reconstructing the environment and for
collision avoidance, i.e. the swept trajectory term.

A limitation that we observed when using active head be-
haviours is an increased error in pointcloud synchronisation and
the effects of a rolling vs global shutter. Fast camera movements
can result in ‘phantom’ observations as well as inaccuracies in
the position of observed objects. These errors can be mitigated by
both maintaining a tight constraint on the time-synchronisation
of robot joint states and received sensor measurements, as well
as limiting the speed of head camera movements.

On a similar point, our method uses a weighted reward which
determines the trade-off between exploring the environment
and monitoring the planned trajectory ahead. These weights are
likely to be determined by the environment in which the robot is
operating and may evolve over time. In static environments, or
scenes in which dynamic obstacles move more slowly, the time
threshold can be increased.

The problem that we have addressed in this work could also
merit further investigation with reinforcement learning methods,
particularly for known environments where data can be accu-
mulated over time. We believe that this may be applicable since
the reward function is intuitive yet difficult to parameterise, i.e.
we wish to reward better observance of the environment and
behaviours that result in collision-free trajectories.

VII. CONCLUSION

We provided the first description of active gaze control for
trajectory-constrained mobile robots and proposed a novel solu-
tion that uses a greedy optimization of voxelised rewards across

motion primitives. We compared our method to several bench-
mark approaches, in 2D and 3D, and show that it outperforms in
both collision avoidance and general perception of the environ-
ment. In a 3D dynamic environment, we demonstrate our method
to be the only approach that can reliably achieve a collision-free
trajectory and avoid the moving obstacle. We further verified
our findings on a physical Toyota Human Support Robot
(HSR), using a GPU-accelerated perception framework, and
demonstrated that our system can robustly operate in unknown
and dynamic environments using live sensor measurements.
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