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Learning Sparse Interaction Graphs of Partially
Detected Pedestrians for Trajectory Prediction

Zhe Huang1, Ruohua Li2, Kazuki Shin1, and Katherine Driggs-Campbell1

Abstract—Multi-pedestrian trajectory prediction is an indis-
pensable element of autonomous systems that safely interact with
crowds in unstructured environments. Many recent efforts in
trajectory prediction algorithms have focused on understanding
social norms behind pedestrian motions. Yet we observe these
works usually hold two assumptions, which prevent them from
being smoothly applied to robot applications: (1) positions of
all pedestrians are consistently tracked, and (2) the target agent
pays attention to all pedestrians in the scene. The first assumption
leads to biased interaction modeling with incomplete pedestrian
data. The second assumption introduces aggregation of redundant
surrounding information, and the target agent may be affected
by unimportant neighbors or present overly conservative motion.
Thus, we propose Gumbel Social Transformer, in which an Edge
Gumbel Selector samples a sparse interaction graph of partially
detected pedestrians at each time step. A Node Transformer
Encoder and a Masked LSTM encode pedestrian features with
sampled sparse graphs to predict trajectories. We demonstrate
that our model overcomes potential problems caused by the afore-
mentioned assumptions, and our approach outperforms related
works in trajectory prediction benchmarks. Code is available at
https://github.com/tedhuang96/gst.

Index Terms—Human-Centered Robotics, Modeling and Sim-
ulating Humans.

I. INTRODUCTION

AUTONOMOUS mobile robots must comprehensively un-
derstand dynamic human environments to safely and

smoothly enter our daily lives [1], [2]. A human-centered
robot should effectively encode motion patterns of surrounding
pedestrians from observation, accurately predict their future
trajectories, and efficiently plan its own paths for safe and
rapid task execution [3], [4]. Significant progress has been
made in understanding human-human interaction and predict-
ing trajectories of multiple pedestrians [5]–[8], which inspired
new contributions in crowd navigation [9], [10].

Despite the fruitful results in building socially aware ar-
chitectures for multi-pedestrian trajectory prediction, previous
works usually hold two assumptions which may burden their
robotic applications. The first assumption is that positions
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of all pedestrians are successfully tracked at all times. The
second assumption is the target agent (pedestrian or robot)
pays attention to all pedestrians in the public scene [7].

The first assumption defines fully detected pedestrians as
people who are tracked at every time step during the considered
observation and prediction period. This assumption implies
that only the fully detected pedestrians are considered for mod-
eling social interaction and predicting trajectories. In contrast,
partially detected pedestrians comprise both fully detected
pedestrians, and people whose positions are tracked for only a
proportion of the considered period. Thus, pedestrians who
enter the scene later than the beginning of the considered
period and who exit earlier than the end are included in
partially detected pedestrians. Partially detected pedestrians
provide complete pedestrian data, while considering only the
fully detected pedestrians results in 40.7% pedestrians ignored
in benchmark datasets. The incomplete pedestrian data caused
by the first assumption leads to biased modeling in social
interactions. The second assumption requires full connection
among all pedestrians in the scene, and causes pedestrians
that are clearly non-influential to affect motion of the target
agent. A workaround for the second assumption would be
to restrict the target agent to pay attention to pedestrians in
a pre-defined neighborhood and neglect the distant ones [5].
However, the joint influence from too many neighbors in close
proximity would still potentially impair feature encoding of
the target agent. With redundant concerns on the insignificant
surrounding factors, excessively conservative agent behavior
may be much like the notorious freezing robot problem [11].

We propose Gumbel Social Transformer (GST), which is
composed of Edge Gumbel Selector, Node Transformer En-
coder, and Masked LSTM. Each component is designed to be
capable of processing features of partially detected pedestrians.
As for the attention-to-all assumption, we formulate a directed
interaction graph to represent the relationship of partially
detected pedestrians at each time step. In the interaction graph,
a node represents a pedestrian, and a directed edge represents
a connection that the node at its tail pays attention to the
node at its head. The graph is initialized with full connection
which is equivalent as attention to all pedestrians. We apply
the Edge Gumbel Selector to prune the edges by following
an important constraint: The target agent can pay attention to
at most n pedestrians. The hyperparameter n is to control the
graph sparsity. With the most important relationships preserved
between each agent and its n neighbors at each time step, the
sparse interaction graphs inferred by the Edge Gumbel Selector
are stacked in sequence. The sequence is then fed into the Node
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Transformer Encoder and the Masked LSTM to spatially and
temporally encode features of partially detected pedestrians,
and recursively predict their trajectories.

Our contributions are fourfold: (1) We present a novel archi-
tecture to predict trajectories of partially detected pedestrians;
(2) We introduce an Edge Gumbel Selector to sample dynamic
and sparse interaction graphs of partially detected pedestrians;
(3) We demonstrate in multi-agent simulation that our model
mitigates the freezing robot problem and diminishes the dis-
turbance from non-influential neighbors on the target agent;
and (4) Our model outperforms state-of-the-art approaches on
public human trajectory datasets.

II. RELATED WORK

Pedestrian Trajectory Prediction. Early works have ex-
haustively investigated hand-engineered features of pedestrian
motion [12], [13]. These works perform well in certain cases,
but have non-negligible limitations like fixed motion pat-
terns across all pedestrians [14]. Substantial contributions are
made to resolve the problems by the integration of socially-
aware structures and deep learning methods, including So-
cial LSTM [5], Generative Adversarial Networks [7], Self-
Attention Mechanism [6], [8], Graph Neural Networks [15],
[16], and Transformer [17]. However, the assumptions of
fully detected pedestrians and global attention over the scene
are enforced in many previous works [6], [7], [15], [16].
For instance, the binary attention mask in Transformer-based
Graph Convolution represents connection between pedestrians,
and is set as a fully connected all-one square matrix with
the dimension as the amount of fully detected pedestrians in
the whole public scene [17]. Other works constrain the target
agent to pay attention within a small neighborhood region,
or do not clarify how motion prediction on fully detected
pedestrians would be affected by considering partially detected
pedestrians [5], [8]. In contrast to these works, our work
infers a sparse interaction graph among pedestrians in an
unsupervised way, and we explicitly study the influence of
partially detected pedestrians on trajectory prediction.

Graph Structure Learning. Graph generation has a wide
range of applications including causal discovery [18], neural
architecture search [19], molecule design [20], and physical
interaction inference [21]. Traditional approaches are typically
hand-crafted for a specific family of graphs [22], whereas
deep learning has recently been harnessed to learn graphs with
suitable properties from observation data. One direction for
graph generation is to perform sequential prediction on the
next node or edge to be added to the graph [23]. If the number
of graph nodes is fixed, another direction is to generate the
adjacency matrix in one shot [24]. Dropout on the adjacency
matrix (i.e., dropout on edges) is often used to alleviate over-
fitting and over-smoothing [25], [26]. Besides regularization,
graph sparsity is emphasized in many domains where sparse
graph representations are necessary to efficiently learn model
parameters [19], [21]. Probability distribution of edges are
usually assumed independent Bernoulli variables (existence of
a single edge) [27] or independent categorical variables (type
of a single edge) [21], [28]. In our work, we consider the

categorical distribution over edges which connect neighbor
pedestrian nodes to the same target node. The inferred graph
changes dynamically, which is consistent with the dynamic
property of pedestrian interactions.

III. METHOD

A. Problem Formulation

Consider N partially detected pedestrians who appear in a
scene during an observation period t ∈ {1, . . . , Tobs}. Their
2D positions are denoted by xti, i ∈ {1, . . . , N}. The task
is to jointly predict their trajectories xti during a following
prediction period t ∈ {Tobs + 1, . . . , Tobs + Tpred}. These
partially detected pedestrians enter the scene at or later than
t=1. They leave the scene at or earlier than t=Tobs + Tpred.

We introduce interaction graphs to represent motion of
partially detected pedestrians. A directed interaction graph
Gt = (V t, Et,M t, At) describes pedestrian motion at a time
step t. The set of nodes V t = {vti}i=1:N corresponds to
pedestrian displacement (i.e., velocity). The set of edges Et={
etij
}
i,j=1:N

corresponds to the relative position from a target
pedestrian i to a neighbor j. The node masks M t={mt

i}i=1:N

indicate whether the ith pedestrian’s position is recorded at
both t − 1 and t, and the binary-valued adjacency matrix
At =

{
atij
}
i,j=1:N

specifies the validity of edges as in
Equation 1, where the edge etij is nonexistent whenever either
vti or vtj is invalid. This setting guarantees the full connectivity
of an initialized interaction graph Gt by removing the node of
a pedestrian, who has not shown up yet or has left the scene,
along with all relevant edges. The linear embedding layers
and the masks for nodes and edges are applied to respective
attributes to obtain high dimensional features, which are still
denoted by vti and etij as in Equation 1.

mt
i = 1

{
xt−1
i and xti are valid

}
, atij = mt

im
t
j ,

vti = mt
i φv

(
xti − xt−1

i

)
, etij = atij φe

(
xtj − xti

)
.

(1)

B. Gumbel Social Transformer

The architecture of Gumbel Social Transformer is illustrated
in Fig. 1. An Edge Gumbel Selector takes as input a combina-
tion of node and edge representations from interaction graphs,
and samples a sparse interaction graph at each observation
time step. A Node Transformer Encoder spatially aggregates
node representations of the sampled sparse interaction graphs.
The spatially encoded node features are sequentially fed into a
Masked LSTM, from which hidden states are used to predict
pedestrian positions at the next step. The recursion of feature
embedding, edge sampling, node encoding, and node decoding
is repeated until the end of the prediction period.

Edge Gumbel Selector. Though the initialized interaction
graph Gt includes complete details of the pedestrian motion
at time t, full connectivity could be redundant, and could
even adversely affect the modeling of a target pedestrian
i’s behavior. We impose the n-neighbor sparsity constraint
on the interaction graph, which leads to a sparse interaction
graph G̃t=

(
Ṽ t, Ẽt, M̃ t, Ãt

)
. While Ṽ t, Ẽt, M̃ t are identical

to the counterparts in Gt, the weighted adjacency matrix



HUANG et al.: LEARNING SPARSE INTERACTION GRAPHS OF PARTIALLY DETECTED PEDESTRIANS FOR TRAJECTORY PREDICTION 3

tt

t

t

tt-1

t-1

t-1

t-2

t-2

t-3t-3

t-3 t-3

t-2

t-2 t-2

t-2 t-1t-1

t-1 t-1

tt

t t

t-3t-3

t-3 t-3

t-1t-1

t-1 t-1

t-2t-2

t-2 t-2

tt

t t

t-3

t-3

t-3

t-3

t-2

t-2 t-1 t+1

t+1

t+1

t+1t+1

t+1 t+1

t+1t+1

t+1 t+1

t

t-2

t-3

t

t

t-2

t-1

t-1

t

t-1 t-2

t-3

t-1

t+1

t+1

t+1

t+1

…

…

…

…

…

…

…

…

…

Edge 
Gumbel 
Selector

Node 
Transformer 

Encoder

Masked LSTM

Interaction Graph Representation Recursive Prediction

t-3 t-2 t-1 t t+1

t-3
t-2

t-1
t t+1 t-1

t
t+1

t-3
t-2t-1

t

t+1

t+1
tt-1t-2

t

t-2

t-3

t

t

t-2

t-1

t-1

t

t-1 t-2

t-3

t-1

t-3
t-2

t-1
t t-1

t

t-3
t-2t-1

t
tt-1t-2

Edge Gumbel Selector

Node Transformer Encoder.

Fig. 1: Overview of Gumbel Social Transformer (GST). Observed trajectories (blue) are processed into interaction graph representations at
each time step, which are fully connected except for pedestrians not observed at that moment. Under the n-neighbor sparsity constraint, Edge
Gumbel Selector samples sparse interaction graphs, which are then encoded by Node Transformer Encoder and Masked LSTM. The encoded
pedestrian features are used to recursively predict future trajectories (red).

Ãt =
{
ãtij
}
i,j=1:N

∈ [0, 1]N×N becomes a sparse float-valued
matrix to be inferred.

The inference of the adjacency matrix Ãt is formulated
as the problem to find the n neighbors who have the most
influence on a target pedestrian i at time t. We first concatenate
neighbor node features, target node features, and edge features
to obtain augmented edge features êtij , which represents the
pairwise interaction between target i and a neighbor j. A
neighbor may draw the attention from the target that was
originally paid to another neighbor. The relationship of these
pairwise interactions êtij themselves is captured by a multi-
head attention (MHA) at the edge level. The number of heads
is set as n, where each head can be interpreted as one type of
the interaction relationship:

êtij = [vtj‖vti‖etij ],{
êt,kij

}k=1:n

j=1:N
= MHA

({
êtij
}
j=1:N

,mask=
{
atij
}
j=1:N

)
.

A multi-layer perceptron (MLP) maps the aggregated aug-
mented edge features êt,kij to log probabilities αt,k

ij of a N -
dimensional categorical distribution corresponding to the kth
head. A reparameterization trick named Gumbel Softmax [29]
is used to sample the most important neighbor to the ith
target from these categorical distributions at each head while
preserving differentiability. The samples are drawn from the
concrete distribution approximation [30] as presented in Equa-
tion 2, where g ∈ RN is a vector with elements sampled from
independent and identically distributed random variables with
Gumbel(0, 1) distribution.

αt,k
ij = MLP

(
êt,kij

)
,

ãt,kij = softmax
j

((
αt,k
ij + g

)
/τ
)
,

ãtij =
1

n

∑
k

ãt,kij .

(2)

The temperature hyperparameter τ in Equation 2 is annealed
to near zero during training, so the approximate samples

gradually converge to one-hot samples from the categorical
distributions. The entries of the sampled weighted adjacency
matrix ãtij’s are the mean of generated samples across the
heads. Note the sampling process assures that the set of invalid
edges in Ẽt is a subset of the set of the removed edges in Ãt.

Node Transformer Encoder. Given the sparse interaction
graph G̃t, the node features are spatially aggregated using
an encoder inspired by Transformer-based Graph Convolution
(TGConv) [17]. The Node Transformer Encoder in our case
takes the weighted adjacency matrix Ãt as the attention mask
in TGConv, which is a sparse float matrix, and the inputs of
source and target of Transformer are the representations of
partially detected pedestrians Ṽ t.{
v̂ti
}
i=1:N

= TGConv
(

target= Ṽ t, source= Ṽ t,mask=Ãt
)

Masked LSTM. Pedestrian motion during the observation
period is sliced into a stack of interaction graphs {Gt}t=1:Tobs ,
which are processed through the Edge Gumbel Selector and the
Node Transformer Encoder to obtain spatially encoded node
features {v̂ti}

t=1:Tobs

i=1:N . The node features are sequentially fed
into a Masked LSTM to propagate hidden features hti, which
are used to predict pedestrian positions through a linear layer.
The node masks mt

i’s are set as one through the prediction
period for all pedestrians except for who disappear before or
at Tobs, as we assume they will never come back into the scene.
The recurrence is introduced by generating the interaction
graph at the next step with the predicted positions.

ht+1
i =

(
1−mt

i

)
hti +mt

i LSTM
(
v̂ti , h

t
i

)
,

x̂t+1
i = x̂ti + φh

(
ht+1
i

)
.

(3)

IV. EXPERIMENTS

We use two publicly available trajectory datasets for bench-
marking: ETH [31] and UCY [32]. ETH is composed of two
scenes ETH and HOTEL, and UCY is composed of three
scenes UNIV, ZARA1, and ZARA2. The frame rate is 2.5
frames per second across the scenes. The task is to predict
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TABLE I: Quantitative performance of all approaches on benchmark datasets. Three metrics Average Offset Error (AOE, unit: m), Final
Offset Error (FOE, unit: m), and Negative Log Likelihood (NLL, no unit) on fully detected pedestrians are reported. GST (D) is Gumbel
Social Transformer with a deterministic function φh in Equation 3, while GST (P) is with a probabilistic function φh that outputs Gaussian
displacements. GST would be referred to as GST (D) if no additional clarification is given in this work. N/A presented in NLL is due to
completely deterministic outputs, on which kernel density estimation cannot be performed.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

AOE ↓

SLSTM (D) 2.45±0.00 0.81±0.00 1.24±0.00 2.48±0.00 1.07±0.00 1.61±0.00
STGCN (P) 2.93±0.59 1.07±0.21 0.76±0.05 0.95±0.23 0.87±0.14 1.32±0.25
STGCN (D) 2.67±0.00 0.74±0.00 0.64±0.00 0.68±0.00 0.59±0.00 1.06±0.00
SGAN (P) 1.78±0.55 0.32±0.08 0.62±0.03 0.59±0.11 0.43±0.10 0.75±0.17
STGAT (P) 1.51±0.68 0.26±0.09 0.57±0.08 0.52±0.19 0.45±0.16 0.66±0.24

Trajectron++ (P) 1.40±0.56 0.27±0.17 0.50±0.23 0.50±0.23 0.33±0.16 0.60±0.27
GST (P) 1.10±0.14 0.22±0.02 0.64±0.04 0.59±0.03 0.46±0.03 0.60±0.05
GST (D) 0.96±0.20 0.21±0.02 0.50±0.01 0.40±0.00 0.32±0.02 0.48±0.05

FOE ↓

SLSTM (D) 4.20±0.00 1.46±0.00 2.20±0.00 4.49±0.00 1.93±0.00 2.86±0.00
STGCN (P) 4.98±0.89 1.54±0.29 1.39±0.09 1.48±0.30 1.31±0.20 2.14±0.35
STGCN (D) 4.83±0.00 1.23±0.00 1.26±0.00 1.28±0.00 1.06±0.00 1.93±0.00
SGAN (P) 3.60±1.33 0.60±0.19 1.31±0.06 1.28±0.26 0.94±0.21 1.55±0.41
STGAT (P) 3.01±1.41 0.48±0.21 1.23±0.18 1.15±0.46 1.02±0.42 1.38±0.54

Trajectron++ (P) 2.96±1.27 0.53±0.37 1.27±0.61 1.14±0.58 0.80±0.43 1.34±0.65
GST (P) 2.22±0.33 0.37±0.04 1.32±0.09 1.15±0.06 0.95±0.07 1.20±0.12
GST (D) 2.09±0.47 0.38±0.04 1.08±0.02 0.86±0.00 0.70±0.04 1.02±0.11

NLL ↓

SLSTM (D) N/A N/A N/A N/A N/A N/A
STGCN (P) 10.07 3.57 3.06 4.20 2.13 4.61
STGCN (D) N/A N/A N/A N/A N/A N/A
SGAN (P) 8.11 11.99 13.56 9.20 2.61 9.09
STGAT (P) 3.82 1.84 4.68 2.15 -0.16 2.47

Trajectron++ (P) 1.76 -1.29 -0.75 -0.41 -1.83 -0.50
GST (P) -0.44 -1.79 -1.98 -2.08 -3.61 -1.98
GST (D) 8.02 9.29 16.00 N/A 9.10 N/A

the trajectories in the next 4.8 seconds (Tpred=12) given the
positions tracked in the last 3.2 seconds (Tobs=8). There are
in average 40.7% of all detected pedestrians who are partially
but not fully detected among these datasets. The trajectory
samples in each scene are split into the training set (80%) and
the test set (20%), and models are independently trained for
each scene. Additionally, we conduct comparative study on our
models with various configurations. A multi-agent simulation
is performed with models trained in the comparative study,
to evaluate their capabilities to generate trustworthy future
trajectories in nontrivial social interaction scenarios.

A. Implementation Details
The embedding dimension of nodes is 32 and of edges

is 64. The dimension of hidden states in LSTM is 32. The
temperature τ of the Edge Gumbel Selector is annealed linearly
from 0.5 to 0.03 through training. We empirically find a
higher initial temperature is likely to result in numerical
instability during training. The Node Transformer Encoder has
3 Transformer Encoder layers with 8 attention heads, and a
feed-forward dimension of 128. The Adam optimizer [33] is
used to minimize the mean square error loss of prediction
on trajectories of partially detected pedestrians, with an initial
learning rate of 0.001. The model is trained for 200 epochs.
Trajectory samples are randomly rotated during the training
process for data augmentation. A ghost agent with zero-
valued features is added in sparse configurations for promoting
sparsity, which is inspired by the ghost link in [28].

B. Benchmark Evaluation
Baselines. Our model is compared against these existing

methods: (1) Social LSTM (SLSTM) is a LSTM integrated

with a social pooling layer that outputs deterministic trajec-
tories [5]; (2) Social STGCNN (STGCN) is a spatial graph
convolution network concatenated with a temporal convolution
network that generates probabilistic outputs [16]; (3) The
variant of STGCN which generates deterministic prediction;
(4) Social GAN (SGAN) has a LSTM-based encoder-decoder
architecture with a socially aware global pooling layer, and
is trained using Generative Adversarial Networks for multi-
modal trajectory prediction [7]; (5) Spatial-Temporal GAT
(STGAT) applies graph attention networks to model crowd
interaction, and uses different LSTMs for temporal encoding
of single pedestrians and of spatially encoded interaction [15];
(6) Trajectron++ is a conditional variational autoencoder which
encodes agent interaction through attention mechanism and
semantic map through convolutional neural networks [34].

Metrics. Offset Error is defined as the distance between
the target pedestrian’s ground truth position and the position
predicted by the model at one time step [5], [35]. Average
Offset Error (AOE) is the average of Offset Errors throughout
the prediction period, and Final Offset Error (FOE) is the
Offset Error at the last prediction step Tobs + Tpred. For
evaluation of probabilistic methods, 20 trajectories are pre-
dicted, over which the mean and the standard deviation of
AOEs and FOEs are reported. To evaluate trajectory sample
distribution, we calculate Negative Log Likelihood (NLL) of
the ground truth trajectory under the distribution from kernel
density estimation [34].

Results. The quantitative results are presented in Table I.
Note that our model GST is trained with partially detected
pedestrians, while other baselines have to be trained with
only fully detected pedestrians. Nevertheless, all metrics are
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Fig. 2: Top row visualizes trajectory prediction on benchmark datasets. Blue denotes observation, green denotes ground truth, red denotes
prediction on fully detected pedestrians, and orange denotes prediction on the other partially detected pedestrians. Middle row demonstrates
the sparse interaction graph inference at the last observed time step, and at the middle of the prediction period. Colored arrows indicate
pedestrian velocities. Gray arrows represent directed edges of the interaction graph, where the target pedestrian node at the tail pays attention
to the neighbor node at the head. Bottom row shows the adjacency matrices corresponding to the inferred graphs in the middle row. The
black entry at the ith row, the jth column indicates the ith target pays attention to the jth neighbor.

only reported on fully detected pedestrians for fair comparison
across the methods. Our model GST (D),which is GST with a
deterministic output function φh in Equation 3, exceeds mean
AOE/FOE performance of other state-of-the-art approaches
on most datasets. However, large NLL of GST (D) indicates
relative uni-modality of the prediction samples in contrast to
probabilistic baselines, because the stochasticity of GST (D)
is only from sampling of the sparse interaction graphs. A
more diverse trajectory sample distribution can be achieved
by applying a Gaussian displacement output function, which
is presented as GST (P) in Table I.

Visualization. Trajectory prediction and inferred sparse
interaction graphs in different scenes are visualized in Fig. 2.
Our model is able to predict trajectories of all partially detected
pedestrians, and also model their interaction by inferring sparse
interaction graphs. We visualize these graphs at t=3.2 sec and
t=5.6 sec in each scene, where the former is the last observed
time step, and the latter is at the middle of the prediction
period. The graph structure varies at different times, indicating

the evolution of the relationship between pedestrians due to the
change of their positions and velocities. For example, in the
HOTEL scene, the 5th and the 6th pedestrians were considered
not interactive at t = 3.2 sec, while the mutual attention is
added later at t = 5.6 sec during the recursive prediction. In
contrast, there were initially bi-directed edges between the 4th
and the 5th pedestrians in the ZARA1 scene at t = 3.2 sec.
However, they walked away from each other, and both edges
are removed at t=5.6 sec.

C. Comparative Study

The effect that each component of Gumbel Social Trans-
former has on the performance of trajectory prediction is
assessed by extensive comparative experiments. Besides ETH
and UCY, crowd datasets CFF, LCAS, WILDTRACK and
SYNTH are adopted from Trajnet++ to investigate how the
performance of different configurations varies across datasets
with different crowd densities [36]–[39]. Moreover, the trained
models are directly applied in multi-agent simulation for gen-
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(a) Fully (top) and partially (bottom) detected. (b)  = 16 (top) and  = 4 (bottom).  n n (c) TCN (top) and LSTM (bottom).  

R

1

2

3

4

5

6

7

8

G

R

1

2

3

4

5

6

7

8

G

R

1

2

3

4

5

6

7

8

(d) Edge Gumber Selector disabled (left), Edge Gumber Selector enabled with  = 4 (middle), and Edge Gumber Selector enabled with  = 1 (right). n n

Observation Prediction Observation Prediction Observation Prediction

Fig. 3: Comparison of multi-agent simulation results in different human-robot interaction scenarios: (a) Human agents enter the robot agent’s
field of view at different times; (b) Some human agents walk aimlessly in the scene; (c) robot meets humans at intersection; (d) One robot
agent encounters a group of human agents. Black and blue represents the observation on robot and human agents. Red indicates prediction
on the robot and fully detected humans, and orange indicates prediction on the other partially detected humans. In time-series robot attention
plots of (d), R denotes robot, 1-8 denote humans, and G denotes a ghost agent with zero-valued features for encouraging sparsity.

erating future motion of robot and human agents. The quality
of the generated motions is examined in common yet nontrivial
human-robot interaction scenarios. The simulation is similar to
the setup in [9], [10], where holonomic kinematics are used
for both robot and human agents, and the displacements of the
generated trajectories are action inputs to each agent.

Partially or fully detected Pedestrians. Fig. 4 reports
that under most sparsity configurations, trajectory prediction is
improved among all datasets by considering partially detected
pedestrians. We reason that trajectories of partially detected
pedestrians create a complete picture of pedestrian interaction
during the observation period, and thus provides an unbiased
input for encoding socially aware pedestrian features. The
importance of partially detected pedestrians is illustrated in
Fig. 3 (a), where a robot agent and a fully detected human

agent walk against each other. The second human agent
appears 1.6 seconds (4 time steps) later and then starts ap-
proaching other agents. The top of Fig. 3 (a) shows the case
when both the robot and the fully detected human ignore the
partially detected one. In contrast, the bottom of Fig. 3 (a)
illustrates that both agents deviate from the original path to
dodge the partially detected human.

Sparse or Fully Connected Interaction Graph. The
improvement of trajectory prediction by replacing the fully
connected interaction graph with the best sparse configuration
is demonstrated for each dataset in Fig. 5. We observe a trend
that when the average number of partially detected pedestrians
is larger in a scene, the improvement is less significant. This
phenomenon may be attributed to the fact as presented in
Fig. 6, where the best hyperparameter n is likely to be larger
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Fig. 4: Improvement of trajectory prediction performance by changing
from fully detected pedestrians to partially detected pedestrians for
different sparse configurations. F denotes full connection.

!(only full) !(fully connected) synth ETH-UCY

consider partial edge sampler num edge heads ghost aoe aoe_std foe foe_std min aoe min foe MEAN

TRUE FALSE N/A N/A 0.3524 0 0.7542 0 0.3524 0.7542 !(only full) !(fully connected) Average Offset Error Final Offset Error aoe foe

TRUE TRUE 16 TRUE 0.3077 0.006 0.6283 0.0136 0.2964 0.6022 consider partial edge sampler num edge heads eth hotel univ zara1 zara2 eth hotel univ zara1 zara2 mean mean

TRUE TRUE 8 TRUE 0.3065 0.0067 0.6179 0.0147 0.2937 0.5898 TRUE FALSE N/A 1.0914 0.2326 0.5035 0.4562 0.3352 2.3449 0.3992 1.0938 0.9778 0.7116 0.5238 1.1055

TRUE TRUE 4 TRUE 0.3179 0.0074 0.6411 0.0162 0.3038 0.6102 TRUE TRUE 16 1.0417 0.2431 0.5026 0.5029 0.3400 2.3059 0.4479 1.0965 1.1205 0.7380 0.5261 1.1418

TRUE TRUE 2 TRUE 0.3158 0.0065 0.644 0.0149 0.3032 0.6152 TRUE TRUE 8 1.0985 0.2314 0.4972 0.4460 0.3260 2.4193 0.4209 1.0847 0.9961 0.7102 0.5198 1.1262

TRUE TRUE 1 TRUE 0.3371 0.0078 0.6936 0.0179 0.3223 0.6604 TRUE TRUE 4 1.2478 0.2101 0.5048 0.4278 0.3216 2.7549 0.3810 1.0963 0.9279 0.7054 0.5424 1.1731

TRUE TRUE 2 1.2694 0.2112 0.5106 0.4162 0.3218 2.7745 0.3825 1.1072 0.9208 0.7028 0.5459 1.1776

FALSE FALSE N/A N/A 0.366 0 0.7863 0 0.366 0.7863 TRUE TRUE 1 0.9569 0.2261 0.5073 0.3968 0.3228 2.0922 0.4164 1.1100 0.8635 0.7077 0.4820 1.0380

FALSE TRUE 16 TRUE 0.3006 0.005 0.6092 0.0116 0.2911 0.5872

FALSE TRUE 8 TRUE 0.3086 0.0045 0.6193 0.0101 0.3005 0.6002 FALSE FALSE N/A 1.4093 0.2484 0.5277 0.4483 0.3302 2.6449 0.4163 1.1517 0.9880 0.7092 0.5928 1.1820

FALSE TRUE 4 TRUE 0.311 0.0061 0.6266 0.0136 0.2995 0.601 FALSE TRUE 16 1.3194 0.2452 0.5223 0.4397 0.3291 2.7492 0.4386 1.1351 0.9640 0.7278 0.5712 1.2030

FALSE TRUE 2 TRUE 0.3148 0.006 0.6365 0.0139 0.3035 0.6109 FALSE TRUE 8 1.3429 0.2276 0.4324 0.3394 2.8583 0.4116 0.9518 0.7382

FALSE TRUE 1 TRUE 0.3145 0.0066 0.6434 0.0162 0.3024 0.6145 FALSE TRUE 4 1.4331 0.2271 0.5139 0.4255 0.3284 3.0482 0.3983 1.1221 0.9389 0.7232 0.5856 1.2461

FALSE TRUE 2 1.3648 0.2007 0.413 2.6814 0.3472 0.9123

FALSE TRUE 1 1.4667 0.2101 0.5120 0.4033 0.3171 2.9360 0.3766 1.1167 0.8777 0.7014 0.5818 1.2017

!(only full) !(fully connected) cff

consider partial edge sampler num edge heads ghost aoe aoe_std foe foe_std min aoe min foe 22.55% 6.36% 4.57% -1.78% -1.52% 11.34% 4.12% 5.03% 1.03% -0.34%

TRUE FALSE N/A N/A 0.8412 0 1.6677 0 0.8412 1.6677 0.37% 21.05% 0.86% 3.76% -14.37% -3.30% 16.13% -2.14% 3.40% -16.24% -1.40%
TRUE TRUE 16 TRUE 0.826 0.0095 1.6084 0.02 0.8087 1.5719 -0.04% 18.20% -1.68% -15.00% -3.15% 3.93% 15.36% -2.25% #DIV/0! -4.65% 3.80%
TRUE TRUE 8 TRUE 0.8331 0.01 1.6305 0.0219 0.8145 1.5908 -0.98% 12.93% 7.49% 1.77% -0.56% 2.07% 9.62% 4.34% 2.30% 1.17% 2.45%
TRUE TRUE 4 TRUE 0.827 0.0105 1.6164 0.0233 0.8067 1.5724 0.68% 6.99% -5.23% #DIV/0! -0.78% #DIV/0! -3.47% -10.16% #DIV/0! -0.93% #DIV/0! Loaded configuration:  100-gumbel_social_transformer-faster_lstm-lr_0.001-deterministic-init_temp_0.5-edge_head_1-only_full-ebd_64-snl_1-snh_8-ghost-seed_1000
TRUE TRUE 2 TRUE 0.83 0.0085 1.6359 0.0191 0.8137 1.5993 -0.48% 34.76% -7.59% 0.90% 1.61% -1.81% 28.74% -10.58% 0.60% 1.62% -0.90% The best validation losses printed below should be the same.
TRUE TRUE 1 TRUE 0.8249 0.0103 1.6255 0.0229 0.8052 1.5817 1.63% Validation loss in the checkpoint:  1.89163222660621

19.41% 0.04% 12.95% -2.78% valid batch ratio:  0.3870967741935484

FALSE FALSE N/A N/A 0.8443 0 1.6722 0 0.8443 1.6722 Validation loss from loaded model:  1.8785045742988586
FALSE TRUE 16 TRUE 0.8257 0.0103 1.6094 0.0217 0.8061 1.5677 dataset: zara1 | test aoe: 0.4130 | test aoe std: 0.0162 | test foe: 0.9123 | test foe std: 0.0367 valid batch ratio:  0.3870967741935484
FALSE TRUE 8 TRUE 0.825 0.0099 1.6182 0.0215 0.8068 1.5785 Test loss from loaded model:  1.8953953459858894
FALSE TRUE 4 TRUE 0.8327 0.0095 1.6319 0.021 0.8154 1.5943 dataset: cff | test aoe: 0.8580 | test aoe std: 0.0098 | test foe: 1.6866 | test foe std: 0.0223 | min aoe: 0.8395, min foe: 1.6439
FALSE TRUE 2 TRUE 0.826 0.0103 1.6265 0.0228 0.8068 1.5849 dataset: zara1 | test aoe: 0.4324 | test aoe std: 0.0180 | test foe: 0.9518 | test foe std: 0.0428
FALSE TRUE 1 TRUE 0.8386 0.0118 1.6602 0.0262 0.8175 1.6141

consider partial edge sampler num edge headscff_changed

!(only full) !(fully connected) wildtrack TRUE FALSE N/A 0.8662 1.7068

consider partial edge sampler num edge heads ghost aoe aoe_std foe foe_std min aoe min foe TRUE TRUE 16 0.8433 1.6284

TRUE FALSE N/A N/A 0.8063 0 1.6578 0 0.8063 1.6578 -10.06% TRUE TRUE 8 0.8576 1.6698

TRUE TRUE 16 TRUE 0.7189 0.019 1.4381 0.0437 0.6851 1.357 9.90% TRUE TRUE 4 0.852 1.6576

TRUE TRUE 8 TRUE 0.7858 0.0231 1.579 0.0522 0.7441 1.4841 -6.51% #NAME? TRUE TRUE 2 0.8476 1.6611

TRUE TRUE 4 TRUE 0.68 0.0147 1.3524 0.0338 0.6519 1.2878 17.80% TRUE TRUE 1 0.8429 1.6477
TRUE TRUE 2 TRUE 0.7639 0.02 1.5318 0.0412 0.7298 1.4574 3.03%

TRUE TRUE 1 TRUE 0.7687 0.0226 1.5628 0.0513 0.726 1.4703 0.05% 0.2255473861 0.06364825544 0.04574698944 -0.0178078739 -0.01523827802 0.003671680682 0.00890648194 -0.1006006006 0.03715846995 FALSE FALSE N/A 0.8732 1.7163

0.2104515867 0.008607266955 0.03763128274 -0.1437033173 -0.03300994916 -0.0003633280853 0 0.09900990099 -0.02361942781 FALSE TRUE 16 0.8456 1.639

FALSE FALSE N/A N/A 0.7326 0 1.4654 0 0.7326 1.4654 0.1819803924 -0.01675552442 0.04743293 -0.03150154939 0.03934407812 -0.009818181818-0.004111165927-0.06505828138 0.00680492547 FALSE TRUE 8 0.8446 1.6449

FALSE TRUE 16 TRUE 0.7979 0.0274 1.5952 0.0601 0.7525 1.5006 0.1292705702 0.07486264641 0.01773864872 -0.005559268863 0.02068387588 0.006845202354 -0.02310676337 0.1780490753 -0.02218649518 FALSE TRUE 4 0.8574 1.6709

FALSE TRUE 8 TRUE 0.7378 0.0194 1.4855 0.0397 0.7047 1.4165 0.06986846347 -0.0523028042 -0.001767815709-0.007753156765-0.01883201804 -0.004842615012 0.01918426568 0.03033764915 -0.003176620076 FALSE TRUE 2 0.8509 1.6651

FALSE TRUE 4 TRUE 0.8273 0.0343 1.7089 0.0822 0.769 1.5712 0.3475651664 -0.07594340391 0.009030551186 0.01607029539 -0.01806734631 0.01633675173 0.008252658308 0.000520088415 -0.07186009539 FALSE TRUE 1 0.858 1.6866
FALSE TRUE 2 TRUE 0.7878 0.0275 1.5888 0.0604 0.736 1.4754
FALSE TRUE 1 TRUE 0.7691 0.0256 1.5649 0.0563 0.7204 1.4602

!(only full) !(fully connected) lcas-old 1 4 8 1 4 1 16 4 8 1 4 8 1 2 16 16 4 8

consider partial edge sampler num edge heads ghost aoe aoe_std foe foe_std min aoe min foe MEAN

TRUE FALSE N/A N/A 0.6692 0 1.3025 0 0.6692 1.3025 !(only full) !(fully connected) Average Offset Error Final Offset Error

TRUE TRUE 16 TRUE 0.6887 0.0347 1.3435 0.0758 0.6266 1.2018 consider partial edge sampler num edge heads eth hotel univ zara1 zara2 cff lcas wildtrack synth AVG eth hotel univ zara1 zara2 cff lcas wildtrack synth AVG

TRUE TRUE 8 TRUE 0.6376 0.0315 1.2377 0.0638 0.5843 1.1284 TRUE FALSE N/A 1.0914 0.2326 0.5035 0.4562 0.3352 0.8412 0.6009 0.8063 0.3524 0.5800 2.3449 0.3992 1.0938 0.9778 0.7116 1.6677 1.1724 1.6578 0.7542 1.2532

TRUE TRUE 4 TRUE 0.6598 0.0251 1.2984 0.0518 0.6112 1.2009 TRUE TRUE 16 1.0417 0.2431 0.5026 0.5029 0.3400 0.826 0.5896 0.7189 0.3077 0.5636 2.3059 0.4479 1.0965 1.1205 0.7380 1.6084 1.1323 1.4381 0.6283 1.2360

TRUE TRUE 2 TRUE 0.6612 0.0197 1.3110 0.0440 0.6237 1.2296 TRUE TRUE 8 1.0985 0.2314 0.4972 0.4460 0.3260 0.8331 0.6106 0.7858 0.3065 0.5706 2.4193 0.4209 1.0847 0.9961 0.7102 1.6305 1.1939 1.579 0.6179 1.2543

TRUE TRUE 1 TRUE 0.6877 0.024 1.362 0.0549 0.6369 1.2521 TRUE TRUE 4 1.2478 0.2101 0.5048 0.4278 0.3216 0.827 0.6066 0.68 0.3179 0.5715 2.7549 0.3810 1.0963 0.9279 0.7054 1.6164 1.1746 1.3524 0.6411 1.2511

TRUE TRUE 2 1.2694 0.2112 0.5106 0.4162 0.3218 0.83 0.6084 0.7639 0.3158 0.5830 2.7745 0.3825 1.1072 0.9208 0.7028 1.6359 1.1914 1.5318 0.644 1.2809

FALSE FALSE N/A N/A 0.6435 0 1.2421 0 0.6435 1.2421 TRUE TRUE 1 0.9569 0.2261 0.5073 0.3968 0.3228 0.8249 0.6249 0.7687 0.3371 0.5517 2.0922 0.4164 1.1100 0.8635 0.7077 1.6255 1.2201 1.5628 0.6936 1.1998
FALSE TRUE 16 TRUE

FALSE TRUE 8 TRUE FALSE FALSE N/A 1.4093 0.2484 0.5277 0.4483 0.3302 0.8443 0.6063 0.7326 0.366 0.6126 2.6449 0.4163 1.1517 0.9880 0.7092 1.6722 1.1897 1.4654 0.7863 1.2797

FALSE TRUE 4 TRUE FALSE TRUE 16 1.3194 0.2452 0.5223 0.4397 0.3291 0.8257 0.5896 0.7979 0.3006 0.5966 2.7492 0.4386 1.1351 0.9640 0.7278 1.6094 1.1368 1.5952 0.6092 1.2945

FALSE TRUE 2 TRUE FALSE TRUE 8 1.3429 0.2276 0.522 0.4324 0.3394 0.825 0.6081 0.7378 0.3086 0.5937555556 2.8583 0.4116 1.1303 0.9518 0.7382 1.6182 1.1934 1.4855 0.6193 1.2984125

FALSE TRUE 1 TRUE FALSE TRUE 4 1.4331 0.2271 0.5139 0.4255 0.3284 0.8327 0.5929 0.8273 0.311 0.6102 3.0482 0.3983 1.1221 0.9389 0.7232 1.6319 1.1485 1.7089 0.6266 1.3400

FALSE TRUE 2 1.3648 0.2007 0.5097 0.413 0.3159 0.826 0.6203 0.7878 0.3148 0.5947777778 2.6814 0.3472 1.1073 0.9123 0.6914 1.6265 1.2103 1.5888 0.6365 1.27065

FALSE TRUE 1 1.4667 0.2101 0.5120 0.4033 0.3171 0.8386 0.6301 0.7691 0.3145 0.6068 2.9360 0.3766 1.1167 0.8777 0.7014 1.6602 1.2388 1.5649 0.6434 1.3090
best edges 1 2 8 1 2 1 16 4 16 1 2 8 1 2 16 16 4 16

!(only full) !(fully connected) lcas-overfit best only full TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE 5.32% TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE 2.07%

consider partial edge sampler num edge heads ghost aoe aoe_std foe foe_std min aoe min foe compare best edges to vanilla 12.33% 13.72% 1.25% 13.03% 5.76% 1.94% 1.88% 15.66% 14.70% 5.53% 10.78% 13.02% 0.83% 11.69% 2.84% 3.56% 3.42% 18.42% 19.23% 4.52%

TRUE FALSE N/A N/A 0.6009 0 1.1724 0 0.6009 1.1724 0.89% 32.10% 19.21% 5.77% 11.48% 4.33% 2.30% 2.75% 7.18% 17.87% 3.90% 20.90% 16.60% 5.81% 12.60% 2.51% 3.82% 4.82% 7.71% 22.52% 3.40%
TRUE TRUE 16 TRUE 0.5896 0.0129 1.1323 0.0314 0.5671 1.0796 0.00% 32.10% 15.43% 5.77% 11.48% 2.61% 2.30% 2.75% 7.18% 16.26% 6.34% 20.90% 8.47% 5.81% 12.60% 0.90% 3.82% 4.82% 7.71% 21.42% 6.63%
TRUE TRUE 8 TRUE 0.6106 0.0109 1.1939 0.0237 0.5904 1.1492 -0.41% 12.33% 9.68% 1.25% 13.03% 4.07% 1.94% 1.88% 15.66% 13.02% 1.97% 10.78% 4.54% 0.83% 11.69% 1.24% 3.56% 3.42% 18.42% 18.07% -0.80%
TRUE TRUE 4 TRUE 0.6066 0.0137 1.1746 0.0314 0.582 1.1174 -2.31% 6.38% 19.21% 3.41% 10.04% 4.33% 2.29% 2.75% 0.00% 17.87% 9.08% 0.00% 16.60% 3.86% 11.16% 2.51% 3.76% 4.45% 0.00% 22.52% 8.35%
TRUE TRUE 2 TRUE 0.6084 0.0206 1.1914 0.0485 0.5737 1.1081 1.92% 9.35% 14.45% 2.33% 11.53% 4.20% 2.11% 2.32% 7.83% 15.45%

TRUE TRUE 1 TRUE 0.6249 0.0147 1.2201 0.0336 0.5975 1.1592 0.83% ETH HOTEL UNIV ZARA1 ZARA2 cff lcas wildtrack synth

1.4 2.7 25.7 3.3 5.9 105.5 7.1 12.1 4.9

FALSE FALSE N/A N/A 0.6063 0 1.1897 0 0.6063 1.1897 9.9 9.4 45.6 7.3 10.7 120.9 13.2 27.6 5

FALSE TRUE 16 TRUE 0.5896 0.0118 1.1368 0.0296 0.5687 1.0854 16.2 13.4 55.6 9.4 13.2 129.1 17.8 36.8 5

FALSE TRUE 8 TRUE 0.6081 0.01 1.1934 0.0235 0.59 1.1497 52.5% 50.0% 35.8% 42.6% 36.4% 11.9% 34.3% 42.1% 2.0%

FALSE TRUE 4 TRUE 0.5929 0.0107 1.1485 0.0261 0.574 1.0998
FALSE TRUE 2 TRUE 0.6203 0.0203 1.2103 0.0488 0.5856 1.1293
FALSE TRUE 1 TRUE 0.6301 0.0119 1.2388 0.0264 0.6073 1.1882 0.3210162805 0.1543039845 0.0577007898 0.1148266265 0.02605826636 0.02297761459 0.02754412007 0.0717990718 0.162568306

0.524691358 0.5 0.3579136691 0.4255319149 0.3636363636 0.1192873741 0.3426966292 0.4211956522 0.02

0.3210162805 0.1921373081 0.0577007898 0.1148266265 0.04327371709 0.02297761459 0.02754412007 0.0717990718 0.1786885246
partial number of humansmisdetection ratioimprovement with the best partial observation

9.9 16.2 52.47% 32.10% 9.35% 12.33%

9.4 13.4 50.00% 15.43% 14.45% 9.68%

45.6 55.6 35.79% 5.77% 2.33% 1.25%

7.3 9.4 42.55% 11.48% 11.53% 13.03%

10.7 13.2 36.36% 2.61% 4.20% 4.07%
120.9 129.1 11.93% 2.30% 2.11% 1.94%

13.2 17.8 34.27% 2.75% 2.32% 1.88%

27.6 36.8 42.12% 7.18% 7.83% 15.66%
5 5 2.00% 16.26% 15.45% 13.02%

0.09353093297 0.1444776679 0.02330762005 0.1153415912 0.04197520929 0.02111812682 0.02317462286 0.0783207243 0.1544691204
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Fig. 5: Improvement of trajectory prediction performance by changing
from fully connected configuration to the best sparse configuration
across datasets.
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Fig. 6: The sparsity hyperparameter n with the best prediction
performance across datasets.

if the considered dataset has a higher crowd density. A larger
n indicates more connectivity between a target and neighbors,
and thus a narrower gap between the corresponding sparse
configuration and the fully connected counterpart.

Sparsity is critical to address the freezing agent problem
caused by over-smoothing. As shown in Fig. 3 (d), a robot
agent is moving right and encounters a human crowd of eight
moving left. The left of Fig. 3 (d) presents the results when
Edge Gumbel Selector is disabled. The robot agent turned
around in order to dodge the crowd. The prediction on robot
motion is too conservative to match pedestrian social norms.

The prediction of crowd motion which responds to the conser-
vative robot motion would also be erroneous, and can affect
the down-stream motion planning pipeline. The time-series
attention visualization in Fig. 3 (d) left indicates the robot
paid more attention to itself during the observation period, but
then the attention is gradually distributed to human neighbors.
We reason that the features of the crowd overwhelmed the
robot features in the weighted sum step of self-attention. This
smoothing effect is passed with the hidden states and leads
to the U-turn behavior. This unnatural turnaround motion is
effectively alleviated by enabling Edge Gumbel selector to
introduce sparsity, as shown in middle and right of Fig. 3 (d).
Note in Fig. 3 (d) left, the same attention across human agents
and their identical predicted trajectories imply symmetry of
human agents in the fully connected interaction graph.

As shown in Fig. 6, the sparsity constraint needs to be
tradeoff conditioned on the crowd density of different scenes.
It is important to control sparsity level and help target agent
concentrate on interaction with critical neighbors. Fig. 3 (b)
illustrates a scene where six human agents are moving ran-
domly near the boundaries, and an important human agent
is running into the robot. The top of Fig. 3 (b) shows the
results with n = 16, where the robot and the interactive human
exhibit exaggerated motion. However, the robot agent naturally
avoids collision with the close human neighbor at the bottom
of Fig. 3 (b), where n is set as 4. This indicates when the
interaction graph is almost fully connected, the target agent is
easy to be affected by the connected neighbors, even the ones
who are clearly non-influential.

Recursive or Readout Prediction. We analyze the effect of
recursive trajectory prediction by comparison between Masked
LSTM and temporal convolution network (TCN), which has
been applied to encode temporal relationship and make se-
quential prediction [16], [40]. While quantitative performances
are found comparable, we see in Fig. 3 (c) the trajectories
generated from TCN are less smooth than those from Masked
LSTM. The intuition is that TCN implements a multi-layer
perceptron to expand temporally encoded features from the
sequence length of Tobs to Tpred, and generates distinctive
and discontinuous features for prediction of consecutive dis-
placements. In contrast, Masked LSTM encodes the features in
time sequence with shared weights, so the temporally encoded
features which will be mapped to the predicted displacements
keep the continuity, and produce smoother and more natural
future trajectories.

V. CONCLUSIONS AND FUTURE WORK

We identify two common assumptions of existing pedes-
trian trajectory prediction approaches: pedestrian positions
are always successfully tracked, and the target agent pays
attention to all pedestrians in the detected range. These as-
sumptions can cause issues of the deployment of trajectory
prediction algorithms in real world robot applications. We
present Gumbel Social Transformer to overcome these issues.
Our model architecture is designed to encode features of
partially detected pedestrians, and thus provides a complete
input for unbiased modeling on pedestrian interaction. We
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propose Edge Gumbel Selector, which is an unsupervised
method that infers a sequence of sparse interaction graphs
to summarize the evolving relationship among pedestrians.
We demonstrate the the introduction of sparsity to modeling
multi-agent interaction effectively alleviates the freezing robot
problem, and minimizes the influence on generating target
agent’s motion from unimportant neighbors.

However, we also observe that the performance of a sparsity
configuration is dependent on scene properties such as average
number of partially detected pedestrians. A fixed sparse hyper-
parameter would constrain generalization across the scenes.
As future work, we will extend our approach with learnable
sparsity to handle scenes with varying crowd densities. To
finetune our trajectory prediction model for navigation appli-
cations, a trajectory dataset of human-robot interaction will
be collected with a bird’s eye view camera similar to [3]. As
for deployment on a generic camera-on-robot setup [10], we
will explore occlusion inference approaches [41] to attempt
to minimize the influence of long occlusion periods on the
trajectory prediction performance.
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