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An Efficient and Scalable Collection of Fly-Inspired
Voting Units for Visual Place Recognition in
Changing Environments
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Abstract—State-of-the-art visual place recognition performance
is currently being achieved utilizing deep learning based ap-
proaches. Despite the recent efforts in designing lightweight con-
volutional neural network based models, these can still be too
expensive for the most hardware restricted robot applications.
Low-overhead visual place recognition techniques would not only
enable platforms equipped with low-end, cheap hardware but also
reduce computation on more powerful systems, allowing these
resources to be allocated for other navigation tasks. In this work,
our goal is to provide an algorithm of extreme compactness and
efficiency while achieving state-of-the-art robustness to appearance
changes and small point-of-view variations. Our first contribution
is DrosoNet, an exceptionally compact model inspired by the odor
processing abilities of the fruit fly, Drosophila melanogaster. Our
second and main contribution is a voting mechanism that leverages
multiple small and efficient classifiers to achieve more robust and
consistent visual place recognition compared to a single one. We
use DrosoNet as the baseline classifier for the voting mechanism
and evaluate our models on five benchmark datasets, assessing
moderate to extreme appearance changes and small to moderate
viewpoint variations. We then compare the proposed algorithms to
state-of-the-art methods, both in terms ofarea under the precision-
recall curve results and computational efficiency.

Index Terms—Vision-based navigation, localization, bioinspired
robot learning.

1. INTRODUCTION

ISUAL place recognition (VPR) refers to the ability of a
V computer system to determine if it has previously visited
a given place using visual information. Performing highly ro-
bust and reliable VPR is a key feature for autonomous robotic
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navigation as Simultaneous Localization and Mapping (SLAM)
systems are dependent on loop-closures mechanisms for map
correction [1]. While the VPR problem is well-defined, it re-
mains an extremely difficult task to perform reliably as there are
arange of challenges that must be dealt with. Firstly, a revisited
place can look extremely different from when it was first seen
and recorded due to a variety of changing conditions: seasonal
changes [2], different viewpoints [3], illumination levels [4], dy-
namic elements [5] or any combination of these factors. It is also
possible for different places to appear identical, especially within
the same environment, an error known as perceptual aliasing.

Initially used for difference computer vision tasks, Convolu-
tion Neural Network (CNN) based models have been made their
way into the VPR field over recent years, achieving impressive
performance on a variety of datasets [6]. However, real-time
visual place recognition CNN approaches often rely on powerful
graphic processing units (GPUs) and large amounts of memory,
making them unsuitable for extremely hardware restricted appli-
cations [7]. Mobile robotics with resource-constrained hardware
are common and these systems cannot afford to run such compu-
tationally expensive algorithms [7], [8]. VPR techniques which
manage to keep memory usage and computational complexity
to a minimum, without compromising performance, are key to
enable platforms equipped with low-end hardware. Furthermore,
low-overhead VPR algorithms would also benefit systems that
are able to run expensive models, freeing resources that can be
allocated to other essential functionalities of a robot’s naviga-
tion. This is the motivation for the recent development of several
low-overhead alternatives [9]—[11] and in this work we continue
to add on to this literature.

In this paper, we start by presenting a lightweight biological-
inspired algorithm dubbed DrosoNet, designed after the brain of
drosophila melanogaster [12] and its ability to recognize odors
by encoding complex patterns in a small representation tag.
DrosoNet features a low model size of 190KiBs and an inference
time of around 1 ms, making it both extremely compact and com-
putationally efficient. However, performance is compromised
when compared to state-of-the-art models and while robustness
to extreme appearance changes and moderate viewpoint shifts
is promising, most applications require more reliable VPR.

Our solution to DrosoNet’s compromised performance
was to utilize multiple of these small models in conjunction,
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made possible by the low memory size algorithm features.
Furthermore, there is intrinsic randomness to DrosoNet’s
training process, both in the model’s initialization and in it’s
fully connected layer, which results in variation of its predictions
in deployment. The key observation is that one DrosoNet might
perform sub-optimally with one image while other DrosoNets
actually output a correct prediction. Exploiting both of these
features and the image-sequential nature of the SLAM environ-
ment, we propose a voting mechanism that takes the outputs of
multiple trained DrosoNets and combines them to perform more
reliable VPR. While this results in a larger and more complex
algorithm, its inference time of 18 ms and memory size of 6 MBs
is still substantially inferior to many state-of-the-art approaches
such as NetVLAD [13]. Moreover, the developed voting system
is not exclusive to DrosoNet as a baseline and can be utilized
with any classifier-type algorithm that works on sequential
imagery. Ideally, the baseline model should be compact, as
multiple will be used, and present some degree of variation in
its predictions for the voting process to take advantage of.

The remainder of this paper is structured as follows. Section II
gives an overview of related work in the VPR field. DrosoNet
and the proposed voting algorithm are presented in detail in
Section III. The experimental setup and evaluation criteria are
explained in Section I'V. Results are displayed and discussed in
Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Many approaches have been explored as possible solutions to
the visual place recognition problem. Handcrafted techniques
such as Speeded-up Robust Features (SURF) [14] and Scale-
Invariant Feature Transform (SIFT) [15] retrieve local features
forimage matching and have been widely used for VPR [8],[16],
[17]. To complement these feature extractors, image retrieval
algorithms such as Bag-of-Words (BoW) have gotten a lot of
attention as the process of searching the previously built feature
map for a match must be efficient to be performed in real time.
The focus on robotics with constricted hardware led to more
compact BoW implementations employing binary BoW repre-
sentations [ 18]. Nevertheless, the identification and extraction of
descriptive and repeatable features in an image is an incredibly
complicated task. Furthermore, these models usually do not face
off well against large appearance changes that are bound to occur
with long term robotic operations. In contrast to local feature ex-
tractors, whole-image descriptors such as Histogram of Oriented
Gradients (HOG) [19] and GIST [20] describe an entire image at
once and are used for VPR in [21] and [22]. Pre-trained CNNs
can be used out of the box as a whole-image descriptor. Hou
et al. [23] used a pre-trained AlexNet [24] model as a feature
extractor for loop closure detection showing that conv3 features
are more robust to appearance changes while pool5 and fc6
features are more robust to viewpoint changes. These findings
where used to provide SeqSLAM [25] with viewpoint toler-
ance [26]. HybridNet, ASMOSNet [27], Region-VLAD [28] and
NetVLAD [13] were proposed specifically for performing visual
place recognition by utilizing CNN extracted features. Indeed,
convolutional network based models have achieved impressive
VPR performance results in recent years [29].
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However, convolutional neural networks demand high mem-
ory and computational resources. In order to increase predic-
tion accuracy, these networks have become deeper and more
complex [11], resulting in high memory and computational
power needed to run these algorithms online, making them
unsuitable for platforms equipped with low-end hardware, which
is often the case in mobile robotic applications [7]. Recently, the
interest in low-overhead CNN based algorithms has led to the
development of several compact and efficient techniques. Mo-
bileNets [11] uses depth-wise separable convolutions to decrease
model size and achieve inference times of 113 ms on mobile
CPUs. MobileNetsv2 [30] builds on top of the previous version
by introducing a novel inverted residual and linear bottleneck
layer module, decreasing inference time to 75 ms while offering
better accuracy results on ImageNet classification. Developed
specifically for scene recognition, BiMobileNet [31] combines
the MobileNetsv2 architecture with feature fusion in the bilinear
model [32] resulting in impressive accuracy across multiple
datasets with small memory footprints. Another drawback of
CNN models is the need for large volumes of labeled data
which is particularly problematic for the VPR field, as a frame-
to-frame correspondence is required. CALC [33] is proposed
as an efficient unsupervised deep neural network model which
was shown to perform real-time reliable VPR. While not a
convolutional neural network itself, CoHOG [34] is a train-free
and computationally efficient VPR algorithm when compared
to CNNs. CoHOG detects entropy rich regions in an image [35]
that are subsequently assigned with HOG descriptors.

Biological inspired algorithms are yet another approach to
deal with the VPR problem in highly restricted platforms. Small
animals are able to perform complex navigation tasks, such as
localization, with neural activations [36], [37] which are simple
and elegant when compared to artificial deep neural networks.
Motivated by this observation, bio-models have been developed
for general navigation [38] and VPR [39]. Of particular interest
for this work is the research conducted to understand the fruit
fly’s ability to navigate [40] and process odors [39] by encoding
complex patterns into compact representations, which inspired
efficient lightweight algorithms for the VPR problem [9].

In this paper, we present two novel algorithms designed
for hardware constrained platforms. The first model, dubbed
DrosoNet, is a lightweight neural network architecture inspired
by the brain of the fruit fly processing of odors. It employs
8-bit quantization [41] to achieve extremely small memory sizes.
We then build on top of DrosoNet, exploiting its compact and
randomness properties by utilizing multiple DrosoNets in an
ensemble, whose output is combined with an underlying voting
mechanism inspired by Multi-Process Fusion [42]. With our
suggested hyperparameters, the ensemble features a model size
of 6 MBs and inference time of 18 ms, while maintaining good
VPR performance.

III. METHODOLOGY

We present two novel lightweight VPR algorithms as our
contributions in this work: DrosoNet and the voting mechanism
that builds on top of it. DrosoNet works by computing a low-
memory representation of a given image. It is then trained as a
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DrosoNet implementation diagram. This process is repeated for each input image (each image corresponds to a place, n places). A is the input image; B

is the input image reshaped to a row vector; H is a sparse binary matrix where each column has only 10% of its values set to 1, the remaining to 0; F' contains the
192 activation values; O is a binary image representation resulting from the threshold of the values of F'; W' is the weight matrix of the fully connected classifier; S
is the final output of the DrosoNet, where each value corresponds to a place score. After training takes place, DrosoNet is dynamically quantized to 8-bit precision,

further reducing its memory usage.

classifier, where each place is a different class, that recognizes
these small image tags and associates them with their respective
place. The voting method exploits the stochastic nature of the
DrosoNet training process, making use of several DrosoNet
individuals to perform more accurate and consistent VPR while
remaining compact relative to state-of-the-art approaches. The
remaining of this section will explore both DrosoNet and the
voting algorithm in depth.

A. DrosoNet

DrosoNet is a bio-inspired model that draws inspiration from
the fruit fly’s brain circuits. The brain of these small insects
is extremely efficient at recognizing different odors, especially
when considering its size. While the VPR problem deals with
visual information, the algorithm attempts to use a simplified
version of the information processing that the fruit fly’s brain
uses for odor recognition.

A Computer Science focused implementation of the odor
recognising process was proposed in [39], presenting three main
steps. Firstly, a sort of normalization occurs, centering the mean
of the activation rates of the flies” neurons for all odors. Secondly,
around 10% of the neurons that respond to an odor are evaluated
and their activation rate is summed up. Finally, 5% of the
summed up values are used to create a binary representation
of the given odor - this compact representation is then used to
compare and recognize odors.

The proposed DrosoNet algorithm makes use of the fly’s
schema to encode a compactimage representation that is then fed
to a fully connected layer for classification. The process aims at
a low memory footprint by utilizing small image input sizes and
other hyperparameters are chosen according to empirical data.
Fig. 1 shows the operations that occur in the DrosoNet algorithm,
displaying the dimensions of each matrix. The image is stretched
into a row vector of size 1 x 2048. It is then multiplied by the
matrix H, H is binary and sparse, with 10% of the elements of
each column randomly set to 1 and the remaining being 0 on
the DrosoNet instantiating. This results in 10% random pixels
of the input image being taken into account when calculating
the activation values, stored in F. The number of columns in

H corresponds to the number of activations used, we set this
value to 192. The top 50% higher values in F are then set
to 1 while the lower 50% are set to O, resulting in a binary
representation for the input image, matrix O. O is then fed into a
fully connected layer where the learning process takes place. The
fully connected layer works as a classifier to predict the current
place fromthevector O, hence including exactly one neuron per
map’s location. The highest value among the n elements of
the output vector is regarded as the matching location. Finally,
after the model is trained, we reduce the parameters’ precision
down to 8-bit integers in a process named dynamic quantization,
further reducing the memory size of DrosoNet.

B. Voting Mechanism

Our proposed voting mechanism, illustrated in the diagram
of Fig. 2, combines the output of several DrosoNets to perform
more effective and consistent VPR. In practice, the random
initialization of DrosoNet’s H matrix as well as the stochastic
nature of training the fully connected layer means that one
particular DrosoNet might have a poor prediction for a given
place while most other DrosoNets actually output an acceptable
prediction. The voting exploits this observation and does not
rely on any single DrosoNet to cast its prediction. Instead, it
selects the prediction that most models agree on, following some
specified ruling. The remaining of this section expands on our
proposed voting mechanism.

We start by training a number of DrosoNets on the same
training dataset and storing these trained models in a collection.
We then run these models with the test dataset, obtaining the
score vector and hence the predicted place for each DrosoNet.

We now detail how the voting model works with n trained
DrosoNets to perform a prediction. The voting method takes into
account the highest score given by the individual (the predicted
place) as well as all the scores within a range around that
predicted index. The selection of a score for a single DrosoNet,
d, can be represented as

dfd < § <y
vf: sy 1 <i1<u )

0 else
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where s¢ is the complete vector score given by the d*"* DrosoNet
after being normalized by a soft max function pass, s¢ denotes
the i*" score in s¢, vid is the 7" score that is either copied from 59
or set to 0 and stored in vector v?. [ and u® denote for the lower
and upper index bounds of the scores to be selected around the
highest score d, for the d'*" DrosoNet, and are defined as

pd = cwgmax(sd) (2)
19 = mazx (0, p — ) (3)
u? = min(len(s?) — 1,p? +7) “4)

where p? is the index of the highest score (hence the place
predicted by the d**" DrosoNet), r is a hyperparameter for the
chosen range of selection and len(s) is the length of the score
vector s (also corresponding to the number of places and hence
is constant for all n DrosoNets). The max and min functions
are used to avoid negative and out-of-bound indexing.

Using the above definitions, we construct the vector v® for
each of the n DrosoNets in the ensemble, where each score is
set to either 0 or the corresponding score in s%. We obtain a single
vector score f by summing element-wise over all n vectors v?

F=> v (5)
d=1

Finally, the index m of the highest score in f is selected as the
matching place for the input image:

m = argmax(f) (6)

IV. EXPERIMENTS

We ran experiments with our proposed models as well as with-
several other algorithms: CALC [33], HOG [19], CoHOG [34],
FlyNet [9], HybridNet [27], ASMOSNet [27], NetVLAD [13]
and GIST [20]. We use different datasets to assess the models’
capacity to deal with different VPR challenges: moderate to ex-
treme appearance changes and small to moderate point-of-view
(POV) variations. We note the performance of these algorithms
as well as their memory usage and time required to process a

x - Highest Score

-I - Selected Voting Scores

>x< - Highest Score in Final Output

- Non-Voting Scores

Voting mechanism diagram, displaying the combination of several DrosoNets’ outputs using our proposed voting method.

single image. The remaining of this section provides details on
models’ settings, datasets and evaluation metrics.

A. Model Settings

For FlyNet, we use the exact same model settings and ar-
chitecture as described in [9]. We utilize the implementations
provided in [43] for the HOG, CoHOG, CALC, HybridNet,
ASMOSNet and NetVLAD models. For the GIST model, we
utilize the implementation in [44].

For the stand alone DrosoNet and for DrosoNet in conjunction
with the voting mechanism, we conducted a series of ablation
studies to find reasonable choices for the number of activations
for DrosoNet and the number of models to be used in conjunc-
tion with the voting system. Fig. 3 shows the results of these
studies in the Corvin (Fig. 3(a)), Nordland Fall (Fig. 3(b)) and
Oxford (Fig. 3(c)) datasets. Using this information, we select the
hyperparameters that achieve best average performance across
all datasets. By this criteria, we select an ensemble size of
32 DrosoNet models, each with a hidden size of 192, indicated by
the arrows in the figures. The 50% threshold value was selected
after analysing the average performance for several threshold
values across all the datasets. Also by experimentation, we select
a value for the voting range r equal to 50% of the total number
of places in the dataset.

B. Datasets

1) Nordland: The Nordland dataset [45] presents four dis-
tinct traversals of a train journey, one per season: Summer,
Spring, Fall and Winter. This dataset is used to assess how a
model deals with moderate to severe appearance changes. In
our experiments, we utilize 1000 images per traversal, with
models being trained on the Summer dataset and tested on
the Fall and Winter sets, respectively assessing moderate and
extreme appearance changes. A match is considered correct
if the predicted place falls within 3 frame of the ground-truth
image. Thus, for query image q and ground-truth image t, images
t-1 to t+1 would be considered correct matches.

2) Gardens Point: The Gardens Point dataset is recorded
in the Queensland University of Technology. We utilize two
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Fig. 3. Ablation studies to determine best hidden and ensemble size on the Corvin 30 (a), Nordland Fall (b) and Oxford Car (c) datasets.
distinct traversals of 200 images from this dataset to assess TP
. . .. Recall = ————— (8)
model performance on strong point of view variations. Both TP+ FN

traversals were captured during the day, with the second being
laterally shifted to the right. A match is considered correct if the
predicted place falls within 5 frames of the ground-truth image.
Thus, for query image q and ground-truth image t, images t-2 to
t+2 would be considered correct matches.

3) Oxford RobotCar: The Oxford RobotCar [46] traversals
used present challenging illumination changes. We utilize the
CrossSeasons subset [47], consisting of 200 sunny query images
and 200 dusk reference images. We allow for a 10 frame margin
tolerance around the ground truth location [42], [48]. Thus, for
query image q and ground-truth image t, images t-10 to t+10
would be considered correct matches.

4) Lagout 15 Degrees POV Variation: The Lagout 15 syn-
thetic dataset consists of aerial footage captured at a 15° angle. It
assesses model performance on moderate POV variations with
6 Degrees-Of-Freedom (DOF) movement. We train the models
on the Lagout traversal at a 0° angle and test on Lagout 15.
We utilize all the images in both sequences and correct matches
are considered accordingly to the ground-truth provided by the
dataset.

5) Corvin 30 Degrees POV and Scale Variation: The Corvin
30 synthetic dataset was recorded using flight imagery of the
Corvin Castle at a 30 degrees angle. It is intended to assess
model resilience on strong point-of-view and zoom variations
when allowing 6 DOF movements. We train our models using
the Corvin traversal at a O degrees angle and then test on Corvin
30, utilizing 1000 images per traversal and allowing for a 20
frame margin of error around the ground-truth location frame.

C. Evaluation Metrics

Precision-Recall (PR) curves are often utilized to evaluate the
performance of VPR techniques [49]-[51] as they are preferable
when dealing with imbalanced datasets. We utilize PR curves
and the area under these curves (AUC) to assess the performance
of the different models. Precision and recall are given by the
following equations:

TP

Precision = —————
rectsion TP T P

)

where TP stands for true positive, FP stands for false posi-
tive and FN stands for false negative. In practice, we have a
classification problem of two classes: correctly matched and
incorrectly matched. For example, for place 500 in the Nordland
Fall dataset, images 499, 500 and 501 would be considered
correct matches and all the remaining ones as incorrect. For each
image query, the models output a vector of scores corresponding
to each image in the training set. By interpreting these scores
as probabilities, one can vary the certainty threshold at which
the model considers the score as the match. Different threshold
values yield different recall and precision values, allowing us to
plot the recall and precision at each threshold point. The area
under this plot, ranging from 0 (worst) to 1 (best), is used to
evaluate VPR performance.

Furthermore, we are interested in the size and complexity of
each model as we are focusing on developing extremely compact
algorithms. To evaluate compactness, we show the memory
usages and inference times of the proposed models and common
state-of-the-art algorithms.

V. RESULTS AND ANALYSIS

In this section, we discuss the results obtained by experiments
in both fronts: VPR performance and prediction times together
with memory usage of the tested techniques. We also take a look
at these metrics for popular state-of-the-art approaches and high-
light the compromise between performance and compactness.

A. VPR Performance

We organize our results as follows. We provide precision-
recall curves graphs in Fig. 4 for DrosoNet, our voting sys-
tem and a subsection of the tested models which claim to
be lightweight and efficient VPR algorithms: CoHOG, CALC
and FlyNet. For comparing VPR performance across all tested
techniques and datasets, we provide a bar graph with all the
AUC results in Fig. 5 which also includes the performance for
NetVLAD, HybridNet, AMOSNet, GIST and HOG in addition
to the aforementioned models.
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Fig. 5. Precision-recall AUC values for every tested model across all bench-
mark datasets.

1) Corvin 30 Degrees POV and Scale Variation: In Fig. 4(a)
we observe that our voting mechanism is only outperformed
by CoHOG among the lightweight models. The Corvin dataset
presents extreme point-of-view variations with 6-degrees-of-
freedom, making it especially challenging for non-local feaure
techniques as is the case of DrosoNet and consequentially our
voting mechanism. As expected, all the top performers are
region-based techniques: AMOSNet, HybridNet, CoHOG and
NetVLAD. Nevertheless, Fig. 5 shows that our voting mecha-
nism outperforms CALC, FlyNet, GIST and HOG. Furthermore,
when tuned specifically for this dataset, the voting ensemble is
able to achieve better AUC values, as seen in Fig. 3(a).

2) Nordland Fall: From the subset of models shown in
Fig. 4(b), our voting mechanism outperforms every other
method. When considering all methods in Fig. 5, the voting tech-
nique is outperformed only by more computational demanding

Precision recall curves with respective AUCs for DrosoNet, voting mechanism and models which present themselves as lightweight.

algorithms such as HybridNet and AMOSNet and only by a
small difference of 0.02 AUC value.

3) Nordland Winter: For the more challenging Nordland
Winter dataset, our voting mechanism is the top performer out
of the lightweight methods, as seen in Fig. 4(c). Once again, the
only models that outperform the ensemble method are Hybrid-
Net and AMOSNet, albeit with a much larger difference on the
AUC metric.

4) Oxford RobotCar: Again a dataset with mainly appear-
ance changes, our voting ensemble outperforms every efficient
model in Fig. 4(d). The only techniques that outperform our
voting system are HybridNet and AMOSNet but only by a small
AUC margin (Fig. 5).

5) Gardens Point: Fig. 4(e) shows that CoHOG is the best
performer out of the considered lightweight algorithms, with an
AUC value of 0.92. Our voting mechanism comes in second
at 0.72. As this dataset presents a lateral POV shift, we once
again see in Fig. 5 that region-based techniques achieve best
performance.

6) Lagout 15 Degrees POV Variation: We observe in Fig. 4(f)
that Lagout 15 is the only dataset where our voting mechanism is
outperformed by CALC. However, this dataset is challenging for
every technique, including HybridNet and AMOSNet (Fig. 5).

B. Computational Resources

In this section, we focus on two evaluation metrics, inference
times with respective frames-per-second rates and memory size,
showing how the different tested models compare in relation to
their computational efficiency. Table I shows the aforementioned
metrics, obtained while running the different models with the
Corvin 30 dataset in a Ryzen 7 4000 Series processor. Our choice
to utilize a CPU rather than a GPU is motivated by the fact that
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TABLE I
PREDICTION TIMES AND MEMORY USAGE COMPARISON

Prediction

Model time (ms) FPS Size (MBs)
HybridNet 1143.92 0.87 61.44
AMOSNet 1138.97 0.88 61.44

CoHOG 3627.18 0.28 123.01

CALC 73.62 13.58 4.26

GIST 225.04 4.44 4.53

HOG 208.71 4.79 142.88
NetVLAD 1435.11 0.70 16.38

FlyNet 1.00 1000 0.26
DrosoNet 1.00 1000 0.19

Voting 18.43 54.27 6.19

CPUs are available even in the lowest-end of hardware, when
GPUs are usually not present in extremely constrained mobile
robots.

DrosoNet outperforms FlyNet in most datasets because of
to the increased size of its fully connected layer. Despite the
increase in parameters, 8-bit quantization allows DrosoNet to
remain more compact than FlyNet, as seen in Table I. The voting
mechanism on multiple DrosoNets is the fastest model apart
from FlyNet and DrosoNet. It shows a prediction time of 18 ms,
4 times less than the next fastest model CALC, achieving a
54 FPS rate. The models with overall best AUC results were Hy-
bridNet and AMOSNET, both having significantly larger model
sizes, prediction times and consequently smaller FPS rates. For
the Oxford Robot Car and Nordland Fall datasets, our voting
mechanism achieves almost identical VPR performance for a
fraction of the computational cost. Although CoHOG presents
better VPR performance on 6 DOF viewpoint changes than
our voting system, it takes 200 times the processing time. For
appearance change datasets, voting performs better and faster
than CoHOG. NetVLAD is not only slower when compared
to the voting ensemble but also performs worse when dealing
with appearance changes. However, it does achieve better results
with POV variations. For CALC, HOG and GIST, our voting
mechanism is faster and it performs better VPR across all tested
datasets with the exception of Lagout 15.

VI. CONCLUSIONS AND FUTURE WORK

In this work, two techniques are proposed to address the need
for lightweight VPR algorithms for the most hardware restricted
of robotic platforms. We first introduce DrosoNet, an extremely
compact algorithm inspired by the brain of the fruit fly. Rela-
tive to its size, it obtains respectable results in the benchmark
datasets, especially when dealing with moderate appearance
changes. However, most systems require more robust VPR than
what DrosoNet is able to achieve. Our solution is to employ a
voting scheme across multiple DrosoNets, exploiting the low
memory usage and variation of DrosoNet, utilizing multiple of
these small models to achieve competitive VPR performance
while remaining compact relatively to CNN based algorithms.
When comparing the trade-off between size and performance,
the DrosoNet based voting model stands as a compact VPR
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algorithm with competitive performance, suitable for hardware-
restrictive robotic applications.

For further research, one should focus on how to improve
the performance of standalone DrosoNet and DrosoNet coupled
with voting for extreme POV variation challenges, as the models
currently struggle in these settings. Furthermore, investigating
how different DrosoNets, or any other baseline voting classifier,
complement each other can prove beneficial to select only the
most informative subset of models [52].
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