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Differential Dynamic Programming With Nonlinear
Safety Constraints Under System Uncertainties

Gokhan Alcan and Ville Kyrki

Abstract—Safe operation of systems such as robots requires them
to plan and execute trajectories subject to safety constraints. When
those systems are subject to uncertainties in their dynamics, it
is challenging to ensure that the constraints are not violated. In
this letter, we propose Safe-CDDP, a safe trajectory optimization
and control approach for systems under additive uncertainties
and nonlinear safety constraints based on constrained differential
dynamic programming (DDP). The safety of the robot during
its motion is formulated as chance constraints with user-chosen
probabilities of constraint satisfaction. The chance constraints are
transformed into deterministic ones in DDP formulation by con-
straint tightening. To avoid over-conservatism during constraint
tightening, linear control gains of the feedback policy derived from
the constrained DDP are used in the approximation of closed-loop
uncertainty propagation in prediction. The proposed algorithm is
empirically evaluated on three different robot dynamics with up to
12 degrees of freedom in simulation. The computational feasibility
and applicability of the approach are demonstrated with a physical
hardware implementation.

Index Terms—Optimization and optimal control, constrained
motion planning, planning under uncertainty, robot safety, motion
and path planning.

I. INTRODUCTION

IN MANY real-world applications, robots are situated in un-
certain environments with stochastic dynamics, where they

are required to satisfy particular safety constraints such as colli-
sion avoidance or physical limits of their actuators. Within this
context, safety can be defined as the feasibility and stability of a
control policy that achieves the requirements of the desired task
while satisfying the safety constraints considering uncertainties
affecting the system.

Safety in robotics is an active research area and can be studied
as trajectory optimization and control under constraints in a
stochastic environment. In this context, model predictive control
(MPC) is a useful framework, as it allows the optimization
of state and input trajectories based on an objective function
under chance constraints [1]. In direct optimization of such a
problem, chance constraints are typically transformed to deter-
ministic ones by constraint tightening with precomputed fixed
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Fig. 1. Safe-CDDP successfully generates optimal trajectories under system
uncertainties for complex and underactuated robots. Iteratively generated safe
trajectories (orange) and the real trajectories (green) traveled by 2D car-like
robot (Left) and 3D quadrotor robot (Right) in constrained environments.

controller gains [2] or robust constraints are defined using large
confidence bounds of uncertainties [3]. In both cases, the true
effect of feedback on uncertainty propagation is generally omit-
ted, which leads to excessive conservatism and related loss of
performance.

To address the question of how to avoid the loss of perfor-
mance related to conservative constraint tightening, we propose
a novel safe trajectory optimization and control approach, which
we call Safe Constrained Differential Dynamic Programming
(Safe-CDDP). The proposed method extends standard differen-
tial dynamic programming (DDP) to handling nonlinear state
and input constraints in the presence of additive system uncer-
tainties. The constraints are handled by modeling the problem as
a chance-constrained optimal control problem under uncertainty
and using constraint tightening [4] to turn it into a deterministic
constrained problem, thus generating an appropriate safety mar-
gin for the constraints. To reduce the uncertainty in the prediction
horizon, we incorporate the control gains of a locally optimal
affine feedback policy derived in the backward pass of DDP,
which yields a good approximation for optimized trajectories at
convergence and avoids excessive conservatism.

To apply the method in real-time feedback control, we also
need to address the issue that the tightened constraints are only
virtual in the sense that the system noise may cause them to
be violated within the safety margin even when they are tight-
ened appropriately. Thus, the utilization of such a constrained
formulation in an optimizer creates the risk of a constraint
violation, which the optimization process needs to handle
appropriately.

The main contributions of our work are:
1) A principled way of reflecting the effect of feedback on

uncertainty propagation in prediction using dynamic gains
from the locally optimal control derived in constrained
DDP formulation to avoid excessive conservatism.
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2) A safe model predictive control approach (Safe-CDDP)
with general nonlinear constraints in the presence of ad-
ditive system uncertainties.

3) Simulation studies for three types of robot platform dy-
namics demonstrating that Safe-CDDP ensures stochastic
constraint satisfaction for complex and under-actuated
robots in safety-required tasks (Fig. 1).

4) Validation via hardware implementation for a differential
drive robot that the proposed method is computationally
feasible using a low-power CPU.

Compared to existing formulations to similar problems, the
proposed approach simultaneously modes the closed-loop ef-
fects of additive uncertainties using dynamic gains instead of
pre-computed fix gains, and it is not limited to box constraints
but includes general nonlinear state and input constraints.

II. RELATED WORK

There exist different notions of safety in robotics control
literature. In safety-critical control, safety has been investigated
through the terms of set-invariance and reachability analysis.
A safety set is defined as a set of allowed states for a system
and the task of controlling the system becomes ensuring the
invariance of this safety set [5]. Reachability of such target sets
is formulated as an optimal control problem for safety analysis
and synthesis of safe controllers [6]. Even though dynamic
programming principles similar to the scope of this paper can
be utilized to solve reachability-based value functions, those
methods suffer from the usual curse of dimensionality, solving
them online on embedded hardware is mostly infeasible and they
are generally overly conservative.

Robust model predictive control approaches involve direct
optimization that enables to employ of nonlinear state and input
constraints by considering the uncertainty with a worst-case
safety bound. Since robust MPC is computationally complex,
tube MPCs [7] are designed as an approximation for robust
MPCs but they require to define tube geometry dynamics and in
some cases time-consuming offline computation [8]. Moreover,
most of the approaches with fixed tube sizes produce overly
conservative tubes due to the lack of knowledge regarding state-
dependent uncertainty. Lopez et al. [7] proposed to optimize both
the tube geometry and open-loop trajectory simultaneously to
reduce conservativeness. However, they assume that the system
has the same number of outputs to be controlled as inputs, which
makes the method only feasible for relatively low-dimensional
and particular kinds of nonlinear systems [7]. On the other hand,
Differential Dynamic Programming (DDP) formulation allows
the decomposition of a trajectory optimization problem into
smaller ones by limiting the state space to a quadratic trust-
region around a current reference solution [9], which results in
only local optimality but reduces the processing cost dramati-
cally. Although there is no straightforward way to incorporate
nonlinear state and input constraints in the DDP formulation,
recent attempts are promising. Next, we provide an overview of
previous work related to constrained deterministic and stochastic
variants of DDPs.

A. Constrained Deterministic DDPs

Some recent studies target the design of DDP with input
constraints [10], [11], [12]. However, for this work methods
that incorporate also state constraints are more relevant. Xie

et al. [13] utilized Karush-Kuhn-Tucker (KKT) conditions and
modified the DDP formulation in the presence of nonlinear state
and input constraints according to the active set of constraints
at each time step to keep the trajectories feasible. Aoyama
et al. [14] utilized the work developed in [13] and extended
it through an Augmented Lagrangian method by considering a
set of penalty functions. Pavlov et al. [15] introduced primal-
dual interior-point DDP to handle nonlinear state and input
constraints. The method is quite promising since it does not
require to identify the active set of constraints, but it needs
second-order derivatives of the state constraint. Augmented La-
grangian TRajectory Optimizer (ALTRO) [16] was also recently
developed to fuse the advantageous sides of direct methods and
DDPs. It handles general deterministic nonlinear state and input
constraints with fast convergence and also enables to start with
infeasible initial trajectories.

The aforementioned methods achieve promising perfor-
mances in handling nonlinear constraints and increase the us-
ability of DDPs in robotics tasks. However, in the presence of
system uncertainty, they lack safety provisions, which are the
primary issue studied in this work.

B. Stochastic DDPs

Todorov and Li [17] developed input constrained iterative Lin-
ear Quadratic Gaussian control for nonlinear stochastic systems
involving multiplicative noise with standard deviation propor-
tional to the control signals. Theodorou et al. [18] then extended
it to stochastic DDPs for state and control multiplicative process
noise. In their work, the derived control policy does not depend
on the statistical characteristics of the noise when the stochastic
dynamics have only additive noise. Pan and Theodorou [19]
introduced a data-driven probabilistic unconstrained DDP using
Gaussian processes to address the uncertainty for dynamics
models. Celik et al. [20] proposed to model state and action phys-
ical limits as probabilistic chance constraints in a DDP structure
to avoid catastrophic greedy updates. The method does not apply
to tasks that need to employ an arbitrary nonlinear constraints
on states such as obstacle avoidance, since it involves only
linear box-constraints on states and actions as their limits. Ozaki
et al. [21] proposed a modification for stochastic DDP developed
in [18] considering the disturbances and the uncertainties as
random state perturbations for an unconstrained deterministic
dynamical system and employing unscented transform. They
then further improved the method by tube stochastic DDP [22]
to handle the control constraints but nonlinear constraints on
states were not included.

Our approach widens the extent of stochastic DDPs by consid-
ering general nonlinear state and input constraints in the presence
of additive uncertainties.

III. PROPOSED METHOD

We consider a nonlinear discrete-time dynamical system of
the form

xk+1 = f(xk,uk) + ωk, (1)

where xk ∈ Rn and uk ∈ Rm are the system state and the
control input at time step k, respectively. f : Rn × Rm→Rn

is a nonlinear state transition function which is assumed to be
twice differentiable. ωk is assumed to be spatially uncorrelated
independent and identically distributed noise, drawn from a zero
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mean Gaussian distribution with a known covariance matrix,
ωk ∼ N (0, Σω).

For a given initial state x0, a goal state xgoal, and a time
horizon N , the aim is to find an input trajectory {u0, . . .,uN−1}
that minimizes the expectation of an objective function

J(u0, . . .,uN−1) = �f (xN ) +

N−1∑
k=0

�(xk,uk), (2)

where �f : Rn → R and � : Rn × Rm → R are the final cost
and the running cost, respectively. By considering the input limi-
tations and external constraints on the states, chance-constrained
MPC for this problem can be formulated as

min
u0,...,uN−1

E

(
J(u0, . . .,uN−1)

)

subject to xk+1 = f(xk,uk) + ωk,

umin ≤ uk ≤ umax,

Pr[g(xk,uk) ≤ 0] > βk,

x0 = x̄, (3)

for all k = 0, . . ., N − 1. Here we simply add box-constraint
on control inputs defined by the boundaries umin and umax.
g is a vector of c constraints in the form of differentiable
functions representing the deterministic state constraints and
βk = [β1,k, . . ., βc,k] is a vector of minimum satisfaction prob-
abilities for these constraints for time step k.

Future predicted states in MPC formulation will result in
stochastic distribution due to the noise ωk in state transition.
This leads to chance constraints on states, therefore the safety of
the predicted trajectory is determined by the probability of con-
straint satisfaction. Typically, sufficiently safe control actions are
desired to cope with the effect of the uncertainties. To achieve
this, chance constraints can be converted into deterministic ones
by tightening the constraints [23], such that for each original
constraint function gi(·) the tightened constraint is denoted by
g̃i(·). Overly conservative tightening based on the propagated
uncertainty such as employing open-loop uncertainty propaga-
tion narrows dramatically the admissible ranges of the states and
can make the optimization intractable or even unsolvable [24].

In order to reflect the effect of feedback on uncertainty prop-
agation in prediction and avoid over-conservatism, we propose
the following constrained differential dynamic programming-
based model predictive control structure. An initial trajectory
is optimized in successive backward and forward passes, while
the deterministic constraints are updated periodically in con-
straint tightening. In each backward pass (described in detail
in Section III-A), the derivatives of the action-value function
(Qk(xk, uk)) and optimum value function (Vk(xk)) are calcu-
lated backward starting from the final step in the horizon (N )
using the current estimated (or initialized) trajectories and pre-
defined objective function as in (2). In forward passes (Section
III-B), the nominal state-control trajectory is updated in forward
starting from the initial state by using the derivatives obtained
in the backward pass and performing local optimizations con-
sidering the constraints. In constraint tightening (Section III-C),
chance constraints in (3) are converted into deterministic ones
by tightening the constraints using the derived locally optimal
control from the backward pass in the uncertainty propagation

through prediction. These steps will be detailed in the next
sections together with the entire algorithm.

A. Backward Pass

The backward pass that follows the formulation in [13] with
the assumption of deterministic constraints briefly explained
here for completeness. Using standard DDP formulation, action-
value function Qk(xk,uk) can be approximated as a quadratic
function as

Q(x+ δx,u+ δu) ≈ Q+Q�
xδx+Q�

uδu

+
1

2
(δx�Qxxδx+ δu�Quuδu)

+ δx�Qxuδu (4)

where δx and δu are the deviations about the nominal action-
state pair (x,u). The derivatives of Q function are then

Qx = �x + f�
x V

′
x,

Qu = �u + f�
u V

′
x,

Qxx = �xx + f�
x V

′
xxfx + (V ′

xfxx),

Quu = �uu + f�
u V

′
xxfu + (V ′

xfuu),

Qxu = �xu + f�
x V

′
xxfu + (V ′

xfxu). (5)

whereV is the value function (see [13], [14] for details). In order
to simplify the notations, we dropped the time step indices, used
prime to indicate the next time step and used subscripts for the
derivatives. The terms in parentheses in (5) (second derivatives
of the dynamics) provide better local fidelity by capturing the
nonlinear effects of the system. Calculation of those tensors can
be costly especially for systems with complex dynamics and
high-dimensional states such as humanoids, and therefore they
can be discarded to obtain faster convergence by sacrificing
fidelity, where in that case DDP refers to iterative LQR. The
method developed in this study is applicable to both cases.

In unconstrained situations, locally optimal control deviations
can be computed by minimizing (4) with respect to δu resulting
in

δu∗ = −Q−1
uu(Quxδx+Qu) � K̄δx+ d̄ (6)

where K̄ is the linear feedback gain and d̄ is the affine term.
Under state and/or input constraints, the optimal control prob-

lem turns into

min
δu

Q(x+ δx,u+ δu),

subject to g̃(x+ δx,u+ δu) ≤ 0. (7)

where the constraint vector g̃ includes the deterministic state
constraints obtained in the constraint tightening step including
input limitations. In order to incorporate the constraints in the
estimation of action-value function (4), constraints’ first order
approximations are obtained as

g̃(x+ δx,u+ δu) ≈ g̃(x,u)

+ g̃u(x,u)︸ ︷︷ ︸
�C

δu+ g̃x(x,u)︸ ︷︷ ︸
�−D

δx (8)
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Xie et al. [13] proposed to check the set of active constraints
during the iterations to make sure that the analytical approx-
imation of the value function around the nominal trajectories
still yields a good approximation. To achieve this, all active
constraints are included in a set which contains all equality
constraints that are always active and inequality constraints for
which the value is greater than -ε (g̃i > −ε) where ε is a small
constant for numerical stability.

The optimization problem in (7) is then converted to

min
δu

Q�
uδu+

1

2
(δu�Quuδu) + δx�Qxuδu,

subject to Cδu = Dδx. (9)

An analytical solution to this problem through KKT condi-
tions [25] can be found by solving the pair of equations

Quuδu+Quxδx+Qu +C�λ = 0

Cδu−Dδx = 0 (10)

where λ is a vector of Lagrangian multipliers. By solving (10)
with pruned matrices C̃ and D̃ that ensures nonexistence of
negative λ values (check [13] for details), locally optimal input
deviations can be again expressed as a function of state devia-
tions as follows:

δu∗ = Kδx+ d (11)

where the control parameters K and d are now calculated as

K = −Q−1
uuQux

−Q−1
uuC̃

�(C̃Q−1
uuC̃

�)−1D̃

+Q−1
uuC̃

�(C̃Q−1
uuC̃

�)−1C̃Q−1
uuQux ,

d = −Q−1
uu

(
Qu − C̃�(C̃Q−1

uuC̃
�)−1C̃Q−1

uuQu

)
. (12)

It is observed that δu∗ at time step k requires the knowledge
of first and second derivatives of the value function for next time
step (k + 1) as shown in (5). By plugging the optimal control
found in (11) into the approximated action-value function (4),
the value function can be approximated as

V ≈ 1

2
δx�Vxxδx+ V �

x δx+ c (13)

where c is a constant term and the derivative terms can be
calculated as

Vx = Qx +KQu +K�Quud+Q�
uxd,

Vxx = Qxx +K�QuuK+K�Qux +Q�
uxK. (14)

Vx and Vxx at final step in the horizon (N ) can be calculated
as the first and second derivatives of the final cost function
(�f ), respectively. In this way, derivatives of the Q function (5)
for each step in the predicted trajectory can be consecutively
calculated backward starting from the final step.

B. Forward Pass

As the successive step of a backward pass to update the tra-
jectories, forward pass implemented in [13] is briefly explained
here for the sake of completeness.

To enforce that the constraints are also satisfied in the forward
pass, we formulate the forward pass as the solution of a QP

problem

min
δu

Q�
uδu+

1

2
(δu�Quuδu) + δx�Qxuδu,

subject to g̃(x+ δx,u+ δu) ≤ 0,

umin ≤ u+ δu ≤ umax. (15)

The solution of the problem will then represent the optimal
deviation in control input δu while respecting the constraints.

The state is then updated by forward integration using the
optimal input deviation δu∗ as

xk+1 = f(xk,uk + δu∗) (16)

C. Constraint Tightening

This section explains how the chance constraints formulated
in (3) are transformed into the deterministic ones which are
required for backward and forward passes. In order to obtain the
constraints in a deterministic form, we tighten the constraints
using the propagated uncertainty through prediction, which can
be decreased efficiently once a feedback policy is employed in
the optimization.

Nonlinear transition dynamics f(·) can be approximated to
first order by

xk+1 ≈ xk + fxδx+ fuδu (17)

Employing the locally optimal control from (11) results in

xk+1 ≈ xk + fxδx+ fuKδx+ d = xk + (fx + fuK)δx+ d
(18)

Closed-loop uncertainty propagation through prediction for the
system in (1) then can be approximated as:

Σx
k+1 = (fx + fuKk)

�Σx
k(fx + fuKk) +Σω

k+1 (19)

Since constrained DDP performs a local optimization at each
step through prediction, general nonlinear constraint can be
locally interpreted as a half-space constraint for that particular
step. By utilizing the relationship between probabilistic and
robust invariant sets presented in [4] for linear time-invariant
systems, the effect of the propagated uncertainty could be ap-
proximately taken into account in constraint definitions for each
step as follows:

g̃(x,u,Σx) � g(x,u) + φ−1(β)

√
g̃�
xΣ

xg̃x (20)

where φ−1 is the quantile function of the standard normal distri-
bution. Fig. 2 shows that the additional part of the right-hand side
in (20) serves for altering the boundaries of the obstacles and
generates safety margins based on the propagated uncertainty
and the dynamics of the robot. Moreover, the β value adjusts the
amount of uncertainty to be considered, which proportionally
increases the safety limits.

Although different β values can be assigned for different
constraints at different time steps, we did not find it beneficial
for safety-required tasks and selected all the β values the same
for simplicity. Once all the chance-constraints are reformulated,
the MPC formulation of (3) can be written in a deterministic
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Fig. 2. Changes in the boundaries of the obstacles after tightening the con-
straints with different β values.

form as:

min
u0,...,uN−1

�f (xN ) +

N−1∑
k=0

�(xk,uk)

subject to xk+1 = f(xk,uk),

umin ≤ uk ≤ umax,

Σx
k+1 = h(xk,uk,Kk,Σ

x
k) Eq.(19)

g̃(xk,uk,Σ
x
k) ≤ 0,

x0 = x̄, (21)

for all k = 0, . . ., N − 1.
In order to employ a feedback policy in the optimization,

Hewing et al. [2] restricted the policy to be a linear state
feedback using pre-computed or fixed linear gains. Here, we
inherently have a locally optimal affine feedback policy (11)
thanks to the structure of DDP. Moreover, that policy with the
controller gains derived in the backward pass (12) indeed yields
a good approximation for overall nonlinear constrained DDP
optimization at convergence. Consequently, the method neither
needs to employ some precomputed fixed gains nor needs to
solve again a finite LQR problem around the current nominal
trajectory.

D. Algorithm in a Nutshell

Here we describe the Safe-CDDP algorithm as a whole with
some practicalities to employ it in an MPC framework. Even
though the initialization of such trajectory optimization algo-
rithms is still an open problem, applying an unconstrained DDP
for a relatively straightforward temporary goal state is indeed
a convenient practice to initialize our method with suboptimal
state-input trajectories. After initialization, our method assumes
that there exists a sufficiently large safe region around the real
goal state (xgoal) and implements a model predictive control
procedure with decreasing horizon until the robot gets close to
the goal state (Algorithm 1). Depending on the state dimensions,

horizon length (N ) and the number of constraints, iteration
number (n1) required to optimize the trajectory should be chosen
beforehand. Instead of a fixed iteration number for trajectory
optimization, one can iterate forward and backward passes until
a predetermined convergence is achieved. However, similar to
the selection of horizon length for most of the trajectory planning
algorithms, the sufficient number of iterations (n1) that saves
computational resources is also a hyper-parameter that can be
tuned by trial and error. In this study, we choose n1 = 10 and
keep it fixed for simplicity.

Solving (21) in a DDP framework revealed a chicken-egg
problem, where the closed-loop uncertainty propagation re-
quires the control gains, and the control gains are calculated
in the backward pass of DDP constrained by reformulated
chance-constraints using uncertainty propagation. To overcome
this dilemma, we initially neglect the noise in transition dy-
namics at the beginning of backward and forward passes and
treat the constraints as deterministic by removing the constraint
satisfaction probability. Afterward, the deterministic constraints
are updated via constraint tightening.

Note that in this framework, the action-value function is
approximated up to second order for trajectory optimization,
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and the first-order approximation of nonlinear transition dy-
namics is employed in constraint tightening through uncertainty
propagation. Frequent updates in closed-loop uncertainty prop-
agation lead to employing control gains that do not yield a
good approximation for action-value function, and therefore it
causes oscillations in predicted trajectories and prevents the
optimizer from converging. Therefore, we suggest a slower
update schedule (n2 = n1/2 = 5 as a rule of thumb) where
iterations get settled for better control gains, then the constraints
are updated and the estimated trajectory is optimized for updated
constraints again before applying the first input to the robot as
depicted in Algorithm 1. The hyper-parameters n1 and n2 can
be tuned by trial and error depending on the nonlinearity of both
system dynamics and constraints. The less complexity allows
less iteration and frequent constraint updates.

Finally, it should be noted that the regularization scheme (line
19 in Algorithm 1) and the choice of optimization parameters
such as step size and trust region in search space affect the
convergence of the algorithm. In our implementation, we used
a diminishing trust-region for infeasible solutions and ensured
the numerical stability of matrix inversions by adding a regular-
ization term (Please refer to [13], [14], [26] for regularization
details).

Due to the stochastic setting, the constraints are satisfied with
the desired probabilityβ as shown in (3). The quadratic program-
ming solver is able to detect that the solution is infeasible such
that all constraints cannot be satisfied, thus, the approach is able
to detect infeasibility. However, it is possible that the tightened
constraints are not satisfied even when the original constraints
are, due to noise in the system. If the aforementioned regular-
ization scheme is not enough to retain feasibility, the tightened
constraints can be relaxed as long as the safety requirement of
the robotic application allows.

IV. EXPERIMENTS

In this section, we present repetitive simulation results for
statistical evaluation and demonstrate hardware implementation
to assess the proposed method in the scope of computational
feasibility and applicability to real robots.

A. Dynamical Systems in Simulation

In this section, we statistically evaluate our Safe-CDDP al-
gorithm on three different robot dynamics in simulation: (i) 2D
point robot (4 states, 2 inputs) [13], (ii) 2D car-like robot (4
states, 2 inputs) [13], and (iii) 3D quadrotor robot (12 states,
4 inputs) [29], [30]. Prediction horizons (N ) for the robots are
selected as 100, 120 and 50, respectively. The defined task for
each robot dynamics is reaching a goal position while avoiding
stationary obstacles. The characteristics of process noise (Σx

k ) is
assumed to be known and the positions of the obstacles and the
robot itself are assumed to be externally provided without noise.
We also assume that there exist safe regions around the initial and
goal positions. Once the robot arrived in the safe region around
the goal, the task is considered successfully achieved. Another
control algorithm could be subsequently triggered to maintain
the robot in that region with accurate positioning, which is not
a part of this study.

Stationary obstacles in the environment are formulated as cir-
cular constraints as defined in [13] and [14]. For the 3D quadro-
tor, it is also possible to use spherical constraints but we preferred

TABLE I
CONSTRAINT VIOLATION RESULTS

to choose cylindrical constraints to test the performance in a
more challenging scenario. In addition to obstacle avoidance,
i.e., nonlinear state constraints, the limits on control inputs are
also employed. Only for the quadrotor robot, Safe-CDDP is
implemented in iLQR form for simplicity.

Once the task configuration is fixed for a robot, it was per-
formed repeatedly 100 times for each of 4 differentβ values {0.5,
0.90, 0.95, 0.99}. Note that the case with β = 0.5 corresponds to
classical CDDP without safety precautions, sinceφ−1(0.5) = 0.

B. Simulation Results

In order to assess the safety of the obtained trajectories,
we utilized 3 metrics regarding constraint violations (Table I).
Once the robot finishes the task with either success or failure,
we call it one episode and repeat the same task with a fixed
configuration for 100 episodes. “Violated episode” refers to an
episode in which the robot violates a constraint, i.e., collides
with an obstacle, at least once. Average in violated episodes is
the ratio of the total number of collisions and the number of
violated episodes. Similarly, the total average of violations is
the ratio of the total number of collisions and the total number
of episodes, i.e., 100 in our case.

Table I depicts that Safe-CDDP algorithm provides safety in
terms of obstacle collision due to uncertainties. By selecting
β=0.99, Safe-CDDP performed well for point robot and car-
like robot without any constraint violation, where at least one
constraint violation occurred in 64 and 38 percent of the tasks for
these robots when the safety precaution was removed (β=0.5).
Selecting β=0.95 was even sufficient for the car-like robot to
obtain safe trajectories with zero collision. This implies that
increasing β values, i.e., increasing the confidence bound on
the approximated uncertainty propagation leads optimizer to be
more conservative and force it to find trajectories away from the
obstacles if admissible.

It should be noted that the performance of Safe-CDDP highly
depends on the admissible region of states possible for the task
definition. For the 3D quadrotor robot, we deliberately select a
goal position above the cylinder to assess the capabilities of the
method. Fig. 3 presents all the traveled trajectories by quadrotor
using Safe-CDDP with different β values. Once β is set to 0.5,
i.e., in the case of classical CDDP, the majority (%66) of the tasks
were finished with violations. In Safe-CDDP case with β=0.99,
collision avoidance was not satisfied completely as in the cases of
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Fig. 3. Comparison of traveled trajectories of a 3D quadrotor in constrainted environment. (a): Classical CDDP without safety precaution. Safe-CDDP with β
values of (b): 0.90, (c): 0.95 and (d): 0.99. Trajectories in blue represent constraint respected ones and the ones in red for constraint violations.

Fig. 4. Comparison of CDDP, constraint tightening with fixed gains, and Safe-
CDDP for trajectory optimization of a car-like robot in terms of (a) traveled
trajectories (b) uncertainty propagation in position, and (c) Frobenius norm of
gains.

point robot and car-like robot, but it is dramatically improved by
diminishing from %66 to %15. This indicates that Safe-CDDP
can achieve remarkable performances in decreasing the number
of constraint violations for complex and under actuated systems
in the presence of system uncertainties.

We further compared our method with the one that uses fixed
gains in constraint tightening, similar to the closest collocation
method, called Cautious MPC [2]. An ancillary linear controller
was employed in constraint tightening with β = 0.99 for all
prediction steps. Even though the fixed controller gains reduced
the uncertainty propagation in position up to 40 prediction
steps, it started to increase exponentially afterward (Fig. 4(b)).
Constraint tightening based on this propagated uncertainty re-
sulted in a more conservative trajectory (Fig. 4(a)). On the other
hand, Safe-CDDP avoids excessive conservatism with the same
confidence bounds (β = 0.99) by increasing the norm of gains
through the prediction horizon appropriately (Fig. 4(c)).

C. Hardware Implementation

As an experimental setup, we employed Turtlebot3 Waffle Pi
that is a differential drive type mobile robot. In order to test
Safe-CDDP on Turtlebot, we placed two circular objects with
different sizes in the robot’s environment as stationary obstacles.
Gmapping was used to map the environment and the fusion
of Adaptive Monte Carlo Localization (AMCL) and odometry
were employed to retrieve the states of the robot (x,y,θ) with
an estimation uncertainty. Circular obstacles with the radius
of 0.15 and 0.11 m were detected at (x:0.85, y:0) and (x:0.5,
y:0.85) locations, respectively. Turtlebot was initially located in

Fig. 5. (a) Comparison of traveled trajectories optimized by CDDP vs Safe-
CDDP (b) Safety is determined by the distance between the wheel of Turtlebot
and closest obstacle (c) Distributions of distance to closest obstacle.

(x:0, y:0, θ:0) and reaching to goal state (x:1.4, y:0.6, θ:0) via
Safe-CDDP was performed with the prediction horizonN = 90.
Standard deviations of position noise retrieved by AMCL were
approximately 0.001.

Safe-CDDP algorithm was implemented as a ROS node in
C++ using OSQP [27] and Eigen [28] libraries. The execu-
tion of Safe-CDDP node was tested on both Turtlebot’s CPU
(Raspberry Pi-4 Model-B with 8 GB RAM) and a workstation
laptop (Intel i7-6820HQ CPU, 2.70 GHz, 8 cores, 16 GB RAM).
By setting β = 0.8, Turtlebot was able to plan and successfully
travel a safe trajectory to the goal position avoiding the obstacles
with reasonable safety margins, whereas CDDP results in the
trajectories that pass very close to obstacles and sometimes
collide with one of the obstacles (Fig. 5).

Our proposed approach does not require any additional QPs
to be solved compared to CDDP. Only the added computation
is in the form of uncertainty propagation and constraint tight-
ening, which corresponds to less than %2 of CDDP execution.
The worst-case execution times of a single iteration including
backward and forward pass with the trajectory length N = 90
are approximately 63 ms and 22 ms for Raspberry Pi and
workstation, respectively. Then the execution times decrease
dramatically during traveling due to a decrease in active con-
straints and prediction horizon. This ensures the applicability
of the proposed method in real robots with a control frequency
faster than 10 hz.
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V. CONCLUSION

We presented a novel safe trajectory optimization approach
for nonlinear systems with nonlinear state and input constraints
under additive system uncertainties. The proposed method re-
duces over conservatism in the approximation of uncertainty
propagation through prediction. It also enables to impose safety
precautions on general nonlinear constraints. Computational
feasibility and applicability of the proposed approach were
shown in hardware implementation, and the effectiveness of
the method was validated on three different robot dynamics in
simulation.

The proposed approach approximates the future prediction
uncertainty by propagating it considering the implicit gain of the
DDP feedback controller. It is likely that potential approximation
errors in this prediction can be compensated conservatively by
increasing the safety factor. However, an exact solution would
be useful to limit the need for this, but whether it is possible to
find such an exact solution remains an interesting open issue.

Recently, model-based reinforcement learning (RL) has re-
ceived lots of attention, and integration of optimal control with
safety guarantees to systems with learned dynamics seems to
offer great possibilities. The proposed approach would be appli-
cable to data-driven models of system dynamics models when
their prediction uncertainty is modeled as additive Gaussian
noise, which is the case for example for Gaussian Process
models. Thus, we believe that the proposed method can be
integrated as a part of a RL system that would be able to provide
safety guarantees also for its exploration.
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