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Abstract—Bird’s-Eye-View (BEV) maps have emerged as one
of the most powerful representations for scene understanding due
to their ability to provide rich spatial context while being easy to
interpret and process. Such maps have found use in many real-
world tasks that extensively rely on accurate scene segmentation
as well as object instance identification in the BEV space for
their operation. However, existing segmentation algorithms only
predict the semantics in the BEV space, which limits their use in
applications where the notion of object instances is also critical.
In this work, we present the first BEV panoptic segmentation
approach for directly predicting dense panoptic segmentation
maps in the BEV, given a single monocular image in the frontal
view (FV). Our architecture follows the top-down paradigm
and incorporates a novel dense transformer module consisting
of two distinct transformers that learn to independently map
vertical and flat regions in the input image from the FV to
the BEV. Additionally, we derive a mathematical formulation
for the sensitivity of the FV-BEV transformation which allows
us to intelligently weight pixels in the BEV space to account
for the varying descriptiveness across the FV image. Extensive
evaluations on the KITTI-360 and nuScenes datasets demonstrate
that our approach exceeds the state-of-the-art in the PQ metric
by 3.61pp and 4.93pp respectively.

I. INTRODUCTION

Autonomous vehicles require rich, detailed, and compre-
hensive understanding of their surroundings for carrying out
essential tasks such as collision avoidance and object track-
ing [1]. Bird’s-Eye-View (BEV) maps [2], [3], [4] have gained
immense popularity in recent years due to their information-
rich and easily interpretable representation of the world. They
also capture absolute distances in the metric scale which
allow them to be readily deployed in applications such as
motion planning and behavior prediction [5]. Many real-world
tasks such as path planning and trajectory estimation rely on
an accurate semantic scene segmentation as well as object
instance identification in the BEV space for their effective
operation. However, existing BEV map generation approaches
only incorporate semantic information in the BEV maps, which
limits their use in many real-world applications that require
knowledge of object instances.

In this work, we aim to overcome this limitation by proposing
the first BEV panoptic segmentation approach that generates
coherent panoptic predictions in the BEV using monocular
FV images (Fig. 1). Panoptic segmentation allows for the
simultaneous estimation and fusion of both semantic and
instance predictions, which enables complete and coherent
scene understanding [6]. Existing methods generate semantic
BEV maps from monocular images by either (i) using trivial ho-
mography such as IPM [7], (ii) unprojecting the 2D image using
predicted depth [4], or (iii) using dense transformers to learn the
mapping from FV to BEV [3], [8]. The flat-world assumption in
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Fig. 1: Full 360° BEV panoptic segmentation output obtained from
our PanopticBEV model. Given a monocular image in the frontal view,
PanopticBEV directly predicts the panoptic segmentation in the BEV,
consisting of both semantic stuff classes (road, sidewalk, etc.) and
instance-specific thing classes (cars, pedestrians, etc.).

IPM-based approaches hinders their performance in regions that
lie above the ground plane, while depth unprojection-based
methods rely on multi-stage pipelines that fail to reap the
benefits of end-to-end learning. In contrast, dense transformer-
based approaches have shown immense potential due to their
ability to model the complex mapping from FV to BEV without
any additional supervision [3], [8]. However, existing methods
do not account for the different transformation characteristics
of the vertical and flat regions, and thus employ a single
transformer across the entire image. This forces these models
to learn a common mapping for all the different regions in the
image which leads to imprecise BEV predictions.

To address this problem, we propose a dense transformer
module that incorporates two distinct transformers to indepen-
dently map the vertical and flat regions in the input FV image
to the BEV. Our proposed PanopticBEV architecture follows
the top-down paradigm comprising a modified EfficientDet [9]
backbone, the novel dense transformer module, a semantic head,
an instance head, and an adaptive panoptic fusion module. We
observe that the perspective projection makes mapping far-away
objects from FV to BEV extremely challenging. This can be at-
tributed to the fact that a given displacement of far-away objects
in the 3D space, maps to a comparatively smaller displacement
in their 2D position. To alleviate this problem, we derive a math-
ematical formulation to quantify the sensitivity of the FV-BEV
transformation and employ it to normalize the descriptiveness
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across the input image. Moreover, as our proposed approach
is the first to tackle the problem of BEV panoptic segmenta-
tion, we introduce multiple baselines to facilitate quantitative
comparisons. We develop the baselines by combining existing
BEV semantic segmentation models with the instance head and
fusion modules from state-of-the-art FV panoptic segmentation
methods. We perform extensive evaluations of our approach
on the KITTI-360 [10] and nuScenes [11] datasets, and
demonstrate that it substantially outperforms the state-of-the-art.

Our main contributions can thus be summarized as follows:
1) An end-to-end learning architecture for BEV panoptic

segmentation from monocular FV images.
2) A dense spatial transformer module comprising two

distinct transformers that independently learn to map
vertical and flat regions in the input FV image to the BEV.

3) A mathematical formulation of the FV-BEV
transformation sensitivity which we exploit for weighting
pixels in the BEV space during the training phase.

4) Several competitive baselines for the novel task of BEV
panoptic segmentation.

5) A data processing pipeline to generate panoptic BEV
groundtruth labels from annotated LiDAR point clouds.

6) Extensive evaluations along with ablation studies on two
standard real-world datasets, KITTI-360 and nuScenes.

7) Publicly available code and pre-trained models at
http://rl.uni-freiburg.de/research/panoptic-bev.

II. RELATED WORK

FV-BEV Transformation: Numerous works have been pro-
posed to address the challenging task of estimating the BEV
map using monocular images. One common approach is to
use Inverse Perspective Mapping (IPM) [12], or variants of
it, to project the FV image onto the ground plane using a
homography [13], [14], [15]. Several authors address this task
as a generative problem and advocate the use of GANs [14],
[15], [16]. Other works implicitly transform FV images into
the BEV for perception tasks such as 3D object detection [17]
and vehicle extent estimation [18].

Very few works, however, address the more specific task
of generating BEV segmentation maps using monocular FV
images. These works can be broadly classified into two
categories: geometry-agnostic and geometry-aware, based on
whether they account for the geometry of the scene while
transforming the input FV image into the BEV space. Geometry-
agnostic approaches do not utilize the scene geometry and fully
rely on the representational capacity of the network to learn
the transformation. VED [19] and VPN [8] fall under this
category of approaches. The former employs a variational
encoder-decoder architecture with a fully-connected bottleneck
layer, while the latter uses a two-layer multi-layer perceptron to
transform the FV features into the BEV space. Discarding scene
geometry forces the network to approximate it which makes the
output coarser and less accurate. Geometry-aware approaches,
on the contrary, either exploit the scene geometry explicitly or
capture it in the network design implicitly. Cam2BEV [7]
and DSM [20] explicitly capture the scene geometry by
incorporating IPM into their transformers. However, the use
of IPM is limited to pixels on the assumed ground plane and
fails for pixels that lie above it, such as those belonging to

buildings and vehicles. Other works [4], [21] incorporate scene
geometry by unprojecting 2D color pixels into the 3D space
using the estimated monocular depth and then converting them
into BEV maps. Nevertheless, multi-stage approaches prevent
end-to-end learning which results in sub-optimal BEV map
predictions. PON [3] alleviates these problems by proposing an
end-to-end approach to estimate the BEV semantic map from a
monocular image. However, it does not account for the different
transformation characteristics of the vertical and flat regions in
the image which limits its performance on certain classes that
are inadequately modeled by the transformer. Recently, LSS [2]
proposes the estimation of a categorical depth distribution
to unproject the FV features into a volumetric lattice, and
transform it into the BEV frame. However, it struggles to
generalize well across semantic categories resulting in poor
segmentation performance for a large number of classes.

Panoptic Segmentation: Panoptic segmentation is the task
of semantically distinguishing regions in the image at the
pixel-level while simultaneously discerning between instances
of an object. Existing approaches can be classified into two
categories: proposal-based and proposal-free. Proposal-based
approaches independently estimate the semantic and instance
masks using two separate heads before fusing them to generate
the panoptic segmentation output. These approaches typically
suffer from the mask-overlapping problem wherein areas around
thing classes become ambiguous due to the disagreement
between the semantic and instance heads. This problem has
been mitigated by either (i) weakly supervising thing and stuff
classes using bounding boxes and image-level tags [22], (ii)
explicitly constraining the stuff and thing distributions using
a learned binary mask [23], or (iii) performing pixel-wise
classification on the combined semantic and instance logits
mask [24], [25]. Proposal-free approaches, in contrast, yield the
panoptic segmentation output by first predicting the semantic
label for each pixel, before detecting instances by clustering
thing pixels together. Panoptic-DeepLab [26] couples bounding
box corners and object centers while incorporating a dual-
ASPP and dual-decoder structure into each sub-task branch.
SSAP [27] proposes grouping pixels using an affinity pyramid
with a graph partitioning strategy to detect instances while
learning the semantic labels.

Through this work, we address two major limitations of
existing approaches, i.e., (i) the inability of the existing trans-
formers to account for the unique transformation characteristics
of vertical and flat regions in FV images, and (ii) the lack
of object instance information in semantic BEV maps, which
hinders using existing methods in many real-world use-cases.
To this end, we propose a novel dense transformer module that
accounts for the distinct transformation characteristics of the
vertical and flat regions in FV images, and present the first
BEV panoptic segmentation approach.

III. TECHNICAL APPROACH

In this section, we first provide a brief overview of the
proposed PanopticBEV architecture illustrated in Fig. 2, before
diving into the crux of each constituent component. Our net-
work comprises a shared backbone, a dense transformer module,
a semantic head, an instance head, and a panoptic fusion
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Fig. 2: Topology of the proposed PanopticBEV architecture consisting of a modified EfficientDet backbone (in gray) that generates four feature maps with
strides 4, 8, 16, and 32. The resulting multi-scale FV features are independently transformed into the BEV by our novel dense transformer module (in green).
The transformed BEV features are then fed into the semantic (in orange) and instance (in violet) heads, followed by the adaptive panoptic fusion module
that yields the output. In the figure, the blocks represent the shapes of the intermediate tensors obtained after performing a series of mathematical operations.

module. We employ a modified variant of the EfficientDet [9]
topology for the backbone which outputs feature maps at
four different scales E4, E8, E16 and E32. The feature maps
are then input to the dense transformer module, which consists
of two distinct transformers that independently transform the
vertical and flat regions in the input FV image to the BEV.
The dense transformer then combines the transformed vertical
and flat feature maps to yield the corresponding composite
BEV features Ebev4 , Ebev8 , Ebev16 and Ebev32 . Subsequently, the
transformed feature maps are fed into the semantic and instance
heads in parallel, followed by the panoptic fusion module that
generates the final BEV panoptic segmentation output.

A. Network Backbone
The backbone of our network is built upon the Efficient-

Det [9] architecture which has shown tremendous potential on
both segmentation and detection tasks while being computa-
tionally efficient. Specifically, we employ the EfficientDet-D3
topology in the PanopticBEV architecture to achieve the right
trade-off between computational complexity and representa-
tional capacity. However, this can readily be replaced with any
of the other EfficientDet variants according to the available
computational budget. We adapt this backbone to output feature
maps with strides 4-32 instead of the conventional 8-128 by
replacing the input to the first BiFPN layer with feature maps
of strides 4, 8, 16, and 32 from the EfficientNet encoder. This
enables the semantic head to use higher resolution features and
consequently improves spatial scene understanding as well as
reduces the depth ambiguity in the BEV space.

B. Dense Transformer
Our proposed dense transformer is based on the principle

of how different regions in the 3D world are projected onto a
perspective 2D image. Specifically, a column belonging to a flat
region in the FV image projects onto a perspectively-distorted
area in the BEV, whereas a column belonging to a vertical non-
flat region maps to an orthographic projection of a volumetric
region in the BEV space. Fig. S.1 in the supplementary
material illustrates this phenomenon. To tackle this problem,
we employ two distinct transformers to independently map
features from the vertical and flat regions in the FV to the
BEV. Fig. 3 shows an overview of our dense transformer
module. Each scale k of the backbone features E is first fed to
a semantic masking module Mk to generate the vertical and

Fig. 3: Illustration of the dense transformer module consisting of a distinct
vertical and flat transformer. The vertical transformer uses a volumetric lattice to
model the intermediate 3D space which is flattened to generate the vertical BEV
features, and the flat transformer uses IPM followed by our Error Correction
Module (ECM) to generate the flat BEV features. The vertical and flat BEV
features are then merged to generate the composite BEV feature map.

flat semantic masks Svk and Sfk respectively. We then compute
the Hadamard product between the semantic masks and the
backbone features to yield the vertical and flat features Vk
and Fk. Subsequently, we independently transform Vk and
Fk into their BEV representations Vbev

k and Fbev
k using their

respective transformers. We then combine these features in the
BEV space to generate the composite BEV feature map Ebevk .
A more detailed architectural diagram is depicted in Fig. S.2
of the supplementary material.

1) Vertical Transformer: We model the vertical transformer
to implicitly capture the intricate relationship between the FV
and BEV for vertical regions. To this end, we first expand the
2D encoder features Ek of shape C ×Hk×Wk into a perspec-
tively distorted 3D volumetric grid of size Zk×C×Hk×Wk

using 3D convolutional filters. Simultaneously, we generate a
spatial occupancy mask Mspat

k from Ek, which estimates the
probability of a pixel being occupied by a vertical element in
the BEV. We then multiplyMspat

k with the 3D volumetric grid
to constrain the spatial extents of vertical regions in the 3D
grid. We actively supervise Mspat

k using the BEV groundtruth
to guide the transformer during the training phase. We then
collapse the spatially-attended 3D grid along the height dimen-
sion to generate features of size C×Z×W in the BEV space.
Finally, we correct the perspective distortion in the BEV feature



map, carried from the perspective input image, by resampling
the feature map using the known camera intrinsics as described
in [3] to generate the final vertical BEV features Vbev

k .
2) Flat Transformer: The IPM algorithm reinforced with a

learnable error correction module (ECM) forms the basis of our
flat transformer. The IPM algorithm estimates a homography
matrix M which when multiplied with the FV features
transforms them into the BEV space. It is mathematically
sound and parameter-free which allows it to be used in a wide
range of scenarios. However, due to its flat-world assumption,
it is inapplicable for feature points that lie above the defined
ground plane. Since Fk, by definition, is largely devoid of
vertical elements, IPM provides a good basis to transform Fk

into Fbev,ipm
k . However, since the flat regions in the real-world

are not perfectly flat, IPM introduces errors into Fbev,ipm
k . We

resolve these errors using a learnable ECM whose architecture
is inspired by our earlier observation.

To this end, we first estimate regions in FV where the
IPM transformation is ambiguous, and then minimize the
ambiguity by focusing the ECM on these regions. We estimate
the FV ambiguity map Aipm

k by first computing the BEV
confidence map Cipm,bev

k , then estimating the BEV ambiguity
map from it as Aipm,bev

k = 1 − Cipm,bev
k , and subsequently

projecting it into the FV using M−1. We then multiply Aipm
k

with Fk to obtain the ambiguous FV features Famb
k . We also

account for regions ignored by IPM, i.e., flat regions above
the principal point, by adding the features from these regions
to Famb

k . ECM then processes these FV features to generate
the ambiguity-correction features Fbev,amb

k in the BEV. ECM
achieves this by first collapsing the FV features along the height
dimension into a bottleneck dimension B before horizontally
expanding it to obtain the BEV features. Since ECM only
corrects for errors made by IPM and does not predict the entire
FV-BEV mapping, we use parameter-efficient 2D convolutions
instead of parameter-intensive fully-connected layers used in the
competing baselines. This significantly reduces the parameters
in our model and promotes model efficiency. We then add
Fbev,amb

k to Fbev,ipm
k , and refine it using a residual block to

generate flat BEV features Fbev
k . During the training phase, flat

regions in the BEV groundtruth actively supervises Fbev,vis
k ,

obtained from Fbev
k , to guide the ECM and Cipmk estimation.

Finally, Vbev
k and Fbev

k are concatenated in the BEV space
and processed using a single 2D convolution layer to generate
the composite BEV feature map Ebevk .

C. Semantic and Instance Heads
The semantic and instance heads of our PanopticBEV

architecture follow the topology proposed in EfficientPS [25].
Both heads process the composite BEV feature maps,
Ebev4 , Ebev8 , Ebev16 and Ebev32 , and output the semantic logits and
instance logits respectively. Briefly, the semantic head uses DPC
and LSFE [25] modules with depthwise separable convolutions
to separately process feature maps of different scales before
augmenting them using feature alignment connections. These
features are then upsampled to stride 4, concatenated along the
channel dimension, and processed using a 1× 1 convolution
to generate semantic features with Nstuff +Nthing channels. We
further upsample these features to the output resolution and
apply the softmax function to obtain the semantic logits.

We employ a modified Mask-RCNN architecture [28] with
depthwise separable convolutions for the instance head. The
instance head follows a two-stage approach wherein the first
stage uses a Region Proposal Network (RPN) to output a set of
region proposals and objectness scores for each input level. The
second stage processes these proposals to extract region-specific
features which are then used to generate bounding box, class,
and mask predictions. To generate optimal instance predictions,
we use anchors of scales 4, 8, 16 and ratios 0.5, 1, 2, and set
the RPN NMS threshold to 0.7. Further, we set region-specific
NMS and score thresholds to 0.3, 0.1 and 0.2, 0.3 for the
KITTI-360 and nuScenes datasets respectively.

D. Panoptic Fusion Module
Our panoptic fusion module builds upon the approach

proposed in EfficientPS [25]. The EfficientPS fusion module
first merges the per-pixel logits from the semantic and instance
heads to generate panoptic logits having Nstuff + Ninstance
channels. It then computes the stuff and thing class predictions
using the argmax operation before copying them onto an
empty canvas which results in many pixels being classified
as unknown. To this end, we discard the argmax operation
and copy steps, and introduce a cross entropy-based panoptic
loss on the generated panoptic logits. This new fusion module
enables end-to-end training of our PanopticBEV model, thereby
enabling the model to learn panoptic-specific features and
improving the overall PQ score. We evaluate the influence of
this approach in the ablation study presented in Sec. IV-E.

E. Losses
We train PanopticBEV using six loss functions: a weighted

cross entropy loss with hard mining for the semantic head
(Lsem), the standard Mask-RCNN [28] loss for the instance
head (Linst), a cross-entropy loss on the panoptic segmentation
output (Lpo), and binary cross entropy losses on the vertical-
flat mask logits (Lvf ) as well as the vertical (Lv) and flat (Lf )
region prediction masks. The final loss L is thus computed as

L = wcwsLsem + Linst + Lpo + Lvf + λvLv + λfLf , (1)

where wc and ws refer to the class and sensitivity-based weights
described in detail below, and λv = λf = 10.

1) Class-based Weighting: The class-based weight wc

addresses the class imbalance in the dataset by increasing the
weights of infrequent classes such car and truck. We compute
the weight of a class as the inverse square root of its relative
pixel frequency. However, due to the large difference between
class weights, sometimes in the order of a magnitude, the
infrequent class overflows into the frequent class resulting in
fuzzy class boundaries. We address this problem by gradually
decreasing the weight around infrequent classes using a linear
combination of the frequent and infrequent class weights. To
this end, we employ the L1-distance from the boundary of
the infrequent class up to a distance of 20 pixels to compute
the weight pertaining to each component. Mathematically, we
compute the weight of point p which is d pixels away from
the infrequent class boundary using

wp
c = (20− d)winfreq + (d)wfreq, (2)

where d ≤ 20, wfreq and winfreq represent the weights of the
frequent and infrequent classes respectively.



2) Sensitivity-based Weighting: This weighting scheme
normalizes the varying descriptiveness across the FV image
due to the perspective projection. The perspective projection
makes mapping far away objects from the FV into the BEV
significantly more challenging, resulting in high uncertainty in
distant regions. We address this problem by introducing the
concept of FV-BEV sensitivity which we define as the change
observed in the FV when a pixel is displaced by a unit value in
the BEV. Accordingly, close and distant regions mapped into
the BEV have high and low sensitivities respectively. Using
the camera projection equation, we obtain

u =
fxx

z
+ cx, v =

fyy

z
+ cy, (3)

where u, v are the image coordinates of a 3D point p located at
coordinates (x, y, z), fx, fy are the focal lengths of the camera
in terms of pixels, and cx, cy denote the image center offset.
We compute the sensitivity by first quantifying the effect of
moving a pixel by an infinitesimal amount and then applying
the orthographic BEV projection constraints on it. The pixel
displacement in the FV can be denoted as

~dr = ~du+ ~dv, (4)

where ~du and ~dv are estimated using the gradient of Eq. (3) as

~du =
fx
z
~dx+ 0 ~dy − fxx

z2
~dz, (5)

~dv = 0 ~dx+
fy
z
~dy − fyy

z2
~dz. (6)

Substituting Eq. (5) and Eq. (6) in Eq. (4), we obtain

~dr =
fx
z
~dx+

fy
z
~dy − fxx+ fyy

z2
~dz. (7)

Setting ~dy to 0 to account for the orthographic projection of
the 3D points onto a fixed plane, and estimating the sensitivity
map S by computing the norm of ~dr, we obtain

S = ‖ ~dr‖2 =

√
f2xz

2 + (fxx+ fyy)2

z2
. (8)

The sensitivity weight, wsens is then computed by weighting
S by a constant λs = 10, scaling it using the log function,
inverting, and normalizing it to give

wsens = 1 +
1

log(1 + λsS)
. (9)

An illustration of this weighting function is shown in Fig. S.4
of the supplementary material.

IV. EXPERIMENTAL EVALUATION

In this section, we present quantitative and qualitative
evaluations of our proposed PanopticBEV model, and provide
detailed ablation studies that demonstrates the efficacy of our
contributions. We primarily use the panoptic quality (PQ)
metric as the main evaluation criteria, but we also report the
recognition quality (RQ), segmentation quality (SQ), and mean
Intersection-over-Union (mIoU) scores for completeness.

A. Datasets
We evaluate PanopticBEV on the large-scale KITTI-360 [10]

and nuScenes [11] datasets. As the datasets themselves do not
provide BEV panoptic segmentation groundtruth annotations,
we generate the labels using a five-step process as depicted in
Fig. S.3 of the supplementary material. First, we accumulate
LiDAR points belonging to static objects over multiple frames
and store the points belonging to dynamic objects for later
use. Second, we transform both the accumulated static and
dynamic point clouds into the BEV coordinates using the
known ego pose and camera extrinsics. We subsequently
project the transformed point cloud onto the XZ-plane using
an orthographic projection to generate a sparse BEV image.

Third, we densify the sparse BEV image using a series of
morphological dilate and erode operations on each class. We
then project the 3D bounding boxes onto the BEV image and
fuse them with the densified dynamic points to obtain the object
instance masks. To prevent tree canopies from occluding the
underlying classes, we add pixels belonging to the vegetation
class at the end and only to regions that do not contain any other
label. Fourth, we introduce a new stuff label called occlusion,
depicted using light-gray in Fig. S.3, to account for regions
occluded by other classes and thus not visible in the FV image.
We define a pixel to be occluded if it is lower than a previously
seen pixel along a 2D ray cast from the camera across the
BEV image. Lastly, we zero-out the pixels lying outside the
field-of-view of the camera and crop the resulting image to the
required dimensions to obtain the BEV panoptic segmentation
labels. Tab. S.1 in the supplementary material summarizes the
various parameters used to generate the labels.

For the KITTI-360 dataset, we use sequences 0, 2-9 for
training and hold out sequence 10 for validation, and for the
nuScenes dataset, we follow the train-val split specified in [3]
to obtain 702 train and 148 validation sequences.

B. Training Protocol
We train PanopticBEV using an image of size 1408× 768

pixels for KITTI-360 and 768× 448 pixels for nuScenes. We
augment the dataset using random horizontal flips, and random
perturbations of the image brightness, contrast and saturation.
We initialize the EfficientDet backbone with weights pre-trained
on the COCO dataset while the remaining layers are randomly
initialized using Xavier with biases set to zeros. We optimize
the network with SGD for a total of 20 epochs on KITTI-
360 and 30 epochs on nuScenes. We use a batch size of 8, a
momentum of 0.9, and a weight decay of 0.0001. We employ
a multi-step training schedule with an initial learning rate of
0.005 and decay it by a factor of 0.5 and 0.2 at epochs 10 and
15 for KITTI-360, and at epochs 15 and 25 for nuScenes.

C. Quantitative Results
We evaluate the performance of our PanopticBEV model

in comparison with IPM [12] and four novel baselines.
For the IPM baseline, we apply the IPM algorithm on the
panoptic segmentation masks obtained from the state-of-the-art
EfficientPS [25] model. Further, we create four baselines by
combining two state-of-the-art BEV semantic segmentation
models, View Parsing Network (VPN) [8] and Pyramid
Occupancy Network (PON) [3], with the instance head and



Dataset Method PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

K
IT

T
I-

36
0

IPM [12] + EPS [25] 3.93 25.87 6.46 0.01 12.99 0.01 6.18 33.24 10.14
VPN [8] + EPS [25] 17.62 64.74 25.93 10.45 67.37 14.87 21.72 63.24 32.24
VPN [8] + PDL [26] 16.41 64.27 24.58 7.48 65.51 11.26 21.52 63.55 32.19
PON [3] + EPS [25] 14.95 57.77 22.27 8.92 64.86 12.86 18.38 53.71 27.64
PON [3] + PDL [26] 14.95 62.56 21.77 9.46 63.84 13.35 18.08 61.82 26.59

PanopticBEV (Ours) 21.23 63.89 31.23 12.97 65.59 18.60 25.96 62.92 38.46

nu
Sc

en
es

IPM [12] + EPS [25] 5.63 35.13 8.62 0.04 13.87 0.07 9.35 49.29 14.32
VPN [8] + EPS [25] 14.35 63.67 21.16 6.35 66.16 9.52 19.69 62.00 28.92
VPN [8] + PDL [26] 14.91 64.44 22.01 7.76 68.62 11.39 19.67 61.64 29.08
PON [3] + EPS [25] 14.52 61.91 21.06 9.28 62.69 13.50 18.01 61.39 26.11
PON [3] + PDL [26] 14.72 63.04 21.21 8.98 65.40 12.78 18.54 61.46 26.83

PanopticBEV (Ours) 19.84 64.38 28.44 14.64 66.37 20.39 23.30 63.05 33.81

TABLE I: Evaluation of BEV panoptic segmentation performance on the KITTI-360 and nuScenes datasets. All scores are in [%].

Dataset Method Road Side. Build. Wall Manm. Veg. Ter. Occ. Per. 2-Wh. Car Truck mIoU

K
IT

T
I-

36
0 IPM [12] 53.50 15.04 8.14 1.99 - 21.97 18.93 0.00 0.03 0.80 6.79 4.21 11.95

VED [19] 65.37 29.94 31.65 8.96 - 38.93 28.67 38.93 0.01 0.06 27.17 9.41 25.37
VPN [8] 70.98 35.58 22.56 13.46 - 37.32 31.59 43.27 3.91 4.83 38.17 10.60 28.39
PON [3] 73.37 33.98 27.60 9.14 - 36.84 32.97 45.31 1.56 2.95 36.96 14.53 28.66

PanopticBEV† (Ours) 75.50 40.08 28.68 16.41 - 40.91 35.58 48.29 4.76 8.46 42.48 15.30 32.40

nu
Sc

en
es

IPM [12] 50.56 8.69 - - 18.79 21.42 10.44 0.00 0.12 0.09 6.00 1.21 11.73
VED [19] 73.68 23.20 - - 34.07 33.47 29.28 32.14 1.58 1.95 29.67 22.74 28.18
VPN [8] 73.16 23.82 - - 33.03 32.27 29.47 31.01 2.54 6.25 30.72 23.55 28.58
PON [3] 74.07 23.25 - - 31.56 34.40 29.03 32.21 2.94 5.56 32.21 27.56 29.28

PanopticBEV† (Ours) 77.32 28.55 - - 36.72 35.06 33.56 36.65 4.98 9.63 40.53 33.47 33.65

TABLE II: Evaluation of BEV semantic segmentation performance. All values are in [%] and ’-’ indicates that the respective class is not present in the dataset.

Dataset Method # Params (M) MAC Runtime

Trans. Total (G) (ms)

K
IT

T
I-

36
0

IPM [12] + EPS [25] - 45.0 418.1 140.6
VPN [8] + EPS [25] 152.5 192.1 559.3 61.7
VPN [8] + PDL [26] 152.5 175.9 496.9 66.7
PON [3] + EPS [25] 58.2 97.6 719.2 254.9
PON [3] + PDL [26] 58.2 92.2 655.1 282.9

PanopticBEV (Ours) 9.5 39.5 379.4 277.5

nu
Sc

en
es

IPM [12] + EPS [25] - 45.0 117.0 120.8
VPN [8] + EPS [25] 61.9 101.5 440.0 59.5
VPN [8] + PDL [26] 61.9 85.3 306.3 67.8
PON [3] + EPS [25] 62.0 101.4 859.0 302.4
PON [3] + PDL [26] 62.0 95.6 697.9 307.8

PanopticBEV (Ours) 9.9 39.8 377.7 238.7

TABLE III: Comparison of model efficiency on KITTI-360 and nuScenes.

panoptic fusion module from two FV panoptic segmentation
networks EfficientPS (EPS) and Panoptic-DeepLab (PDL) [26].
Tab. I presents the results from this comparison on both the
KITTI-360 and nuScenes datasets.

We observe that our proposed PanopticBEV model outper-
forms all the baselines by a large margin on both the datasets.
PanopticBEV achieves an improvement of 3.61 pp over the best
performing baseline VPN + EPS on the KITTI-360 dataset, and
an improvement of 4.93 pp over the best performing baseline
VPN + PDL on the nuScenes dataset in terms of the PQ
score. Moreover, we observe a significant improvement in the
RQ score as compared to the VPN-based baselines which
signifies that our model achieves better detection performance.
Furthermore, the consistent improvement in PQTh and PQSt

scores can be attributed to our dense transformer module which
independently transforms the vertical and flat regions resulting

in richer BEV features. We also observe that the baselines
do not generalize well across both the datasets. For instance,
VPN + EPS achieves the best performance on KITTI-360, but
performs the worst among learnable-transformer models on
nuScenes. Whereas, PanopticBEV consistently outperforms all
the baselines by a large margin on both datasets, demonstrating
its effective generalization ability.

We also evaluate the performance of PanopticBEV for the
task of semantic segmentation, by discarding the instance head
and the panoptic fusion module. We denote this model as
PanopticBEV† and compare its performance with IPM [12]
and three state-of-the-art BEV segmentation methods, namely,
Variational Encoder Decoder (VED) [19], VPN [8], and
PON [3]. Tab. II presents the results of this comparison on both
the datasets. We observe that our PanopticBEV† model once
again substantially outperforms the existing methods, thereby
achieving state-of-the-art performance. We observe a significant
improvement in performance for classes such as road, sidewalk,
two-wheeler, car, and truck. This improvement in both the
vertical and flat semantic classes can be attributed to the
targeted transformations performed by our dense transformer.
The region-specific vertical and flat transformers capture the
intricate relationship pertaining to these regions resulting in
improved spatial as well as boundary estimates.

D. Evaluation of Model Efficiency
In this section, we evaluate the efficiency of our PanopticBEV

model on both the datasets. From Tab. III, we observe that our
model is more than two-times more parameter efficient than
the baselines and uses significantly fewer Multiply-Accumulate
(MAC) operations. A large chunk of the efficiency can be
attributed to our dense transformer module that consumes



Model Tv T IPM
f ECM wc ws Scales Fusion PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

M1 - - - - - 4-32 Ours 13.12 50.65 20.06 2.45 33.03 3.74 19.21 60.72 29.39
M2 X - - - - 4-32 Ours 10.95 49.79 17.18 2.36 30.75 3.56 15.86 60.67 24.97
M3 - X - - - 4-32 Ours 12.35 44.46 19.00 2.59 16.52 3.91 17.92 60.43 27.61
M4 X X - - - 4-32 Ours 20.20 62.89 29.81 10.51 63.61 15.62 25.74 62.47 37.92
M5 X X X - - 4-32 Ours 20.33 63.94 29.94 11.99 65.99 17.20 25.09 62.77 37.23
M6 X X X X - 4-32 Ours 20.38 64.73 29.73 12.33 67.90 17.38 24.99 62.91 36.79

M7 X X X X X 4-32 Ours 21.23 63.89 31.23 12.97 65.59 18.60 25.96 62.92 38.46

M8 X X X X X 8-64 Ours 20.55 63.68 30.37 10.49 64.26 15.73 26.30 63.35 38.74
M9 X X X X X 4-32 EPS [25] 20.53 64.85 29.72 11.72 65.55 16.39 25.56 64.46 37.33

TABLE IV: Ablation study on the various architectural components proposed in our PanopticBEV model. The results are reported on the KITTI-360 dataset.
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Fig. 4: Qualitative results of BEV panoptic segmentation in comparison with the best performing baseline from Tab. I on the KITTI-360 and nuScenes datasets.
We show the Improvement/Error map which depicts pixels misclassified by the baseline and correctly predicted by the PanopticBEV model in green, pixels
misclassified by PanopticBEV and correctly by the baseline in blue, and pixels misclassified by both models in red.

more than six-times fewer parameters as compared to its
counterparts. This can be primarily attributed to the use of 2D
and 3D convolutions instead of the fully-connected layers in
the dense transformer module. Our PanopticBEV model has an
inference time of nearly 280ms on KITTI-360 and 240ms on
nuScenes, most of which is due to the expensive 3D convolution
operations in Tv . Given that our model uses significantly fewer
MAC operations, we believe that optimizing the implementation
of 3D convolutions would result in a substantial decrease in
the inference time and enable real-time performance.

E. Ablation Study
In this section, we study the influence of various architectural

components proposed in this work. Tab. IV presents the
results of this study on the KITTI-360 dataset. We begin with
model M1 comprising of a bare-bones variant of PanopticBEV
that maps the input FV image to the BEV space without any
transformer or associated loss functions, and add the various

components to it. Upon adding only the vertical transformer
(Tv) in model M2, or only the horizontal transformer (Tf )
in model M3, we observe a significant decrease in model
performance. This is due to the fact that Tv, by itself, is not
powerful enough and corrupts the BEV feature space, while
T IPM
f , by itself, distorts the features of objects above the

ground plane resulting in a significant 14.23 pp drop in the
SQTh score. However, when both Tv and T IPM

f are used
to independently transform the vertical and flat regions into
the BEV (model M4), we observe a notable improvement of
7.08 pp in the PQ score, which demonstrates the utility of our
region-specific transformers. Note that the model M4 already
outperforms all the BEV panoptic segmentation baselines
reported in Tab. I. In model M5, we incorporate ECM to account
for irregularities in the flat regions, which further increases
the PQ score to 20.33%. We then use our spatial class-based
weighting scheme in model M6 to prevent overflowing of
infrequent thing classes resulting in a noticeable improvement



in the SQ and SQTh scores. Finally, we employ our novel
sensitivity-based weighting function in model M7 which leads
to an improvement of 0.98 pp in the PQ score and 1.5 pp in the
RQ score. This large improvement in the RQ score demonstrates
that our sensitivity-based weighting scheme enables the model
to achieve a good balance between precision and recall of the
matched segments. We denote model M7 as our proposed
PanopticBEV architecture. Additionally, model M8 shows
the improvement in performance due to using features of
strides 4-32 in our backbone instead of 8-64 used in the
standard EfficientDet architecture, and model M9 shows the
improvement due to our panoptic fusion scheme as compared
to that used in the EfficientPS architecture. We also perform an
additional ablation study to analyze the impact of multi-scale
features on the performance of our model, which we present
in Sec. S.3 of the supplementary material.

F. Qualitative Evaluation
We qualitatively evaluate the performance our Panop-

ticBEV model in comparison to the best performing baseline,
VPN + EPS, in Fig. 4. We observe from the Improvement/Error
map that our model accurately segments all the object instances
in the scene despite being only partially visible in the FV
image. In Fig. 4(a), we observe that our model segments the
white car in front of the ego-vehicle as a single instance and
also accurately segments the parked vehicles on the right,
while the baseline fails to do so. This observation also extends
to Fig. 4(b) in which all the three cars in the distance are
accurately segmented by our model. Fig. 4(c) demonstrates
the ability of our model to segment instances of objects with
the right orientation. We observe that the baseline incorrectly
segments objects having an orientation that is not parallel
to the optical axis in the FV image, e.g., the white van
angled towards the left. Lastly, Fig. 4(d) demonstrates that our
model effectively estimates the BEV panoptic segmentation
predictions even in challenging weather conditions. We provide
additional qualitative results of the BEV panoptic and BEV
semantic segmentation in Fig. S.5, Fig. S.6, Fig. S.7, Fig. S.8
and Fig. S.9 of the supplementary material.

V. CONCLUSION

In this paper, we present the first end-to-end trainable BEV
panoptic segmentation architecture that takes monocular images
in the FV as input and predicts coherent panoptic segmentation
masks in the BEV. Our PanopticBEV architecture incorporates
the proposed dense transformer module which uses two
distinct transformers to independently transform features
belonging to vertical and flat regions in the input FV image
to the BEV. We also introduce a sensitivity-based weighting
scheme to account for the varying levels of descriptiveness
across the FV image by intelligently weighting pixels in the
BEV space. Using extensive evaluations on the KITTI-360 and
nuScenes datasets, we demonstrate that our model outperforms
both the BEV panoptic and semantic segmentation baselines,
thereby setting the new state-of-the-art for both these tasks.

ACKNOWLEDGMENT

This work was partly funded by the Federal Ministry of
Education and Research (BMBF) of Germany under ISA 4.0
and by the Eva Mayr-Stihl Stiftung.

REFERENCES

[1] J. V. Hurtado, R. Mohan, W. Burgard, and A. Valada, “Mopt: Multi-object
panoptic tracking,” arXiv preprint arXiv:2004.08189, 2020.

[2] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from arbitrary
camera rigs by implicitly unprojecting to 3d,” in European Conf. on
Computer Vision, 2020.

[3] T. Roddick and R. Cipolla, “Predicting semantic map representations from
images using pyramid occupancy networks,” in IEEE Conf. on Computer
Vision and Pattern Recognition, June 2020.

[4] M. H. Ng, K. Radia, J. Chen, D. Wang, I. Gog, and J. E. Gonzalez,
“Bev-seg: Bird’s eye view semantic segmentation using geometry and
semantic point cloud,” arXiv preprint arXiv:2006.11436, 2020.

[5] N. Radwan, W. Burgard, and A. Valada, “Multimodal interaction-aware
motion prediction for autonomous street crossing,” The International
Journal of Robotics Research, vol. 39, no. 13, pp. 1567–1598, 2020.

[6] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic
segmentation,” in IEEE Conf. on Computer Vision and Pattern Recognition,
June 2019.

[7] L. Reiher, B. Lampe, and L. Eckstein, “A sim2real deep learning approach
for the transformation of images from multiple vehicle-mounted cameras
to a semantically segmented image in bird’s eye view,” in Int. Conf. on
Intelligent Transportation Systems, 2020.

[8] B. Pan, J. Sun, H. Y. T. Leung, A. Andonian, and B. Zhou, “Cross-
view semantic segmentation for sensing surroundings,” IEEE Robotics &
Automation Letters, vol. 5, no. 3, pp. 4867–4873, 2020.

[9] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Conf. on Computer Vision and Pattern Recognition, 2020.

[10] J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger, “Semantic instance
annotation of street scenes by 3d to 2d label transfer,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2016.

[11] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[12] H. A. Mallot, H. H. Bülthoff, J. Little, and S. Bohrer, “Inverse perspective
mapping simplifies optical flow computation and obstacle detection,”
Biological cybernetics, vol. 64, no. 3, pp. 177–185, 1991.

[13] S. Ammar Abbas and A. Zisserman, “A geometric approach to obtain a
bird’s eye view from an image,” in IEEE/CVF Int. Conf. on Computer
Vision Workshops, 2019.

[14] X. Zhu, Z. Yin, J. Shi, H. Li, and D. Lin, “Generative adversarial frontal
view to bird view synthesis,” in Int. Conf. on 3D Vision, 2018.

[15] T. Bruls, H. Porav, L. Kunze, and P. Newman, “The right (angled)
perspective: Improving the understanding of road scenes using boosted
inverse perspective mapping,” in IEEE Intelligent Vehicles Symp., 2019.

[16] K. Mani, S. Daga, S. Garg, S. S. Narasimhan, M. Krishna, and K. M.
Jatavallabhula, “Monolayout: Amodal scene layout from a single image,”
in IEEE Wint. Conf. on Appl. of Computer Vision, 2020, pp. 1689–1697.

[17] T. Roddick, A. Kendall, and R. Cipolla, “Orthographic feature transform
for monocular 3d object detection,” British Mac. Vision Conf., 2019.

[18] A. Palazzi, G. Borghi, D. Abati, S. Calderara, and R. Cucchiara, “Learning
to map vehicles into bird’s eye view,” in Int. Conf. on Image Analysis
and Processing. Springer, 2017, pp. 233–243.

[19] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman, “Monoc-
ular semantic occupancy grid mapping with convolutional variational
encoder–decoder networks,” IEEE Robotics & Automation Letters, 2019.

[20] S. Sengupta, P. Sturgess, L. Ladický, and P. H. S. Torr, “Automatic
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Bird’s-Eye-View Panoptic Segmentation Using
Monocular Frontal View Images

- Supplementary Material -

Nikhil Gosala and Abhinav Valada

In this supplementary material, we present additional details
about our novel dense transformer module and additional
figures to illustrate the principle behind it. We then describe
our methodology for generating BEV panoptic segmentation
groundtruth labels for the KITTI-360 and nuScenes datasets.
Furthermore, we provide additional qualitative results for
both the BEV panoptic segmentation and BEV semantic
segmentation.

S.1. TECHNICAL APPROACH

In this section, we illustrate the principle governing our dense
transformer module and also provide more details pertaining
to the topology of the dense transformer. We then present
an illustration of our sensitivity-based weighting function and
describe its formulation.

A. Dense Transformer Principle

We design our novel dense transformer module based on the
principle of how different regions of the 3D world are projected
into a 2D image, as illustrated in Fig. S.1. A column belonging
to flat regions in the world maps to a perspectively-distorted
area in the BEV space. Since flat regions are fully observable
unless occluded by another object, the transformation of the
flat regions into the BEV involves correcting the perspective
distortion and inferring the missing information in distant
regions using the learned model.

Conversely, a column belonging to a vertical region maps
to an orthographic projection of a volumetric region in the
BEV space. Being projections of 3D volumetric objects such as
vehicles and humans, vertical regions are not fully observable
and often completely lack a dimension. For instance, a car
is not fully observable because of the absence of information
pertaining to its spatial extents. Furthermore, their depth in the
world, as captured from a monocular camera, is also ambiguous
which further makes the problem even more challenging. Trans-
forming a vertical non-flat object into the BEV thus requires
the prediction of both its spatial location and extents which
the model learns using a data-driven paradigm in our setting.

B. Dense Transformer Architecture

Our proposed dense transformer module transforms the
intermediate features of the network backbone, using two
distinct transformers that independently transform features
belonging to vertical and flat regions in the input FV image to
the BEV coordinates. Fig. S.2 presents the detailed topology of
our dense transformer module. The semantic masking module

Fig. S.1: Illustration of the contrasting transformation patterns observed for
the vertical and flat regions when transforming a monocular FV image into
the BEV space.

Mk, first processes each scale Ek from the network backbone
to predict the vertical and flat semantic masks Svk and Sfk .
Mk achieves this using a sequence of three 2D convolutional
layers with 3× 3 kernels. We then obtain the vertical and flat
FV features Vk and Fk, by computing the Hadamard product
between Ek and the corresponding semantic mask. We actively
supervise Svk and Sfk using the FV groundtruth vertical-flat
masks to guide Mk during the training phase.

For the KITTI-360 dataset, we create the FV vertical-flat
semantic groundtruth by grouping corresponding classes in the
FV panoptic segmentation groundtruth. On the contrary, due
to the lack of such groundtruth labels in the nuScenes dataset,
we generate pseudo-labels for the FV vertical-flat masks using
the approach described in Sec. S.2.

The vertical transformer processes the vertical FV feature
map Vk, to generate the vertical BEV features Vbev

k . We first
expand Vk into a 3D volumetric lattice using a single 3D
convolutional layer with a 3 × 3 kernel. Simultaneously, we
generate a spatial occupancy mask Mk for vertical regions to
estimate the probability of a pixel being occupied by a vertical
element in the BEV. We generate this spatial occupancy mask
by first expanding the number of channels in Vk to the depth
dimension (Z) using a sequence of 2D convolutions, and then
flattening it along the height dimension. We then broadcast
this spatial occupancy mask over the volumetric lattice to
constrain the spatial extents of the vertical regions in the 3D
grid. Subsequently, we reshape the 3D volumetric lattice and
collapse it along the height dimension using a 3D convolutional
layer with a 3×3 kernel to generate the perspectively-distorted
vertical features in the BEV space. We correct the perspective
distortion in the vertical BEV feature map, carried forward
from the perspective projection of the input FV image, by
resampling the feature map using the known camera intrinsics
and BEV projection resolution using the approach proposed
in [3]. We further process the output of the resampling step
using a 2D convolutional layer with a 3x3 kernel to generate
the final vertical BEV features Vbev

k .



Fig. S.2: Detailed architectural diagram of our novel dense transformer module. Every convolution is followed by an in-place activated batch norm layer that
applies both the batch norm and the non-linearity using a single function. All intermediate convolutions use a kernel of size 3×3 while all the channel-mapping
and output convolutions use a 1× 1 kernel. The perspective distortion in the feature maps is represented using slanted lines while the feature maps unwarped
using a resampling operation are represented using a regular checkerboard-like grid. The outputs of the semantic masking module Sfk and Svk are actively
supervised by a FV vertical-flat mask during the training phase. The vertical spatial attention mask Mspat

k and the flat region estimation mask Fbev,vis
k are

supervised using the BEV groundtruth during training. H , W in the figure represent the height and width of the input feature map, and Z represents the depth
of the BEV prediction.

We transform the flat FV feature map Fk into the flat BEV
feature map F ipm

k , using our flat transformer module. The
flat transformer is based on the IPM algorithm reinforced
with an error correction module (ECM) to account for the
errors introduced by IPM. The IPM algorithm generates a
non-learnable homography M , which when multiplied with
the FV features generates features in the BEV. Due to its
flat-world assumption, the IPM algorithm is applicable only
to feature points that lie on the defined ground plane. Since
Fk, by definition, contains only flat regions, using the IPM
algorithm to transform the flat FV features into the BEV
generates acceptable results. However, since flat regions in the
3D world as not perfectly flat, using only the IPM algorithm
introduces errors into the BEV prediction.

We account for these errors using a learnable ECM that
is optimized alongside the IPM algorithm during the training
phase. The ECM works by estimating regions where the IPM
could potentially be erroneous and applies the ECM to these
regions. To this end, we first compute the confidence in the IPM
transformation Cbev,ipm

k , by a applying a single 2D convolution
with a 3×3 kernel followed by a channel mapping layer with a
1×1 kernel to the output of IPM F bev,ipm

k . The IPM ambiguity
is then computed using the equation Abev,ipm = 1− Cbev,ipm.
Examples of the IPM confidence and ambiguity maps are
shown in Fig. S.2.

We transform the IPM ambiguity map from the BEV

back into the BEV using the inverse of the estimated IPM
homography, i.e., M−1. We then multiply the FV ambiguity
map with the flat FV features to mask out regions of high
confidence while retaining only the ambiguous regions. We also
estimate flat features ignored by IPM, i.e., features above the
principal point, and add them to the FV ambiguity map to allow
the ECM to operate on such areas as well. We then collapse
these ambiguous flat features along the height dimension to
a bottleneck dimension of size B using a 3× 3 convolution,
followed by a 2D convolution in the bottleneck dimension to
further refine the collapsed features. Subsequently, we expand
the bottleneck features along the depth dimension using a 2D
convolution and further refine the expanded feature map using
another 2D convolution. Here, we account for the perspective
distortion in the BEV feature map by resampling it using
the known camera intrinsics using the approach described
in [3], to generate the ambiguity correction features in the
BEV Fbev,amb

k . We then add Fbev,amb
k to the output of IPM

Fbev,ipm
k , and refine it using a residual block consisting of

two 2D convolutional layers with a 3× 3 kernel, followed by
another 2D convolutional layer to generate the final flat BEV
feature map Fbev

k .
The vertical and flat BEV feature maps Vbev

k and Fbev
k are

subsequently concatenated along the channel dimension and
processed using a 2D convolutional layer to generate the final
composite feature map Ebevk in the BEV coordinates.



Fig. S.3: Illustration of outputs from each stage of the BEV panoptic segmentation ground truth generation pipeline. In the first stage, point clouds are
motion-compensated and accumulated over multiple time steps to generate a relatively dense point cloud. The accumulated point cloud is then orthographically
projected into the BEV using the ego pose. The third stage densifies the projected BEV image using a series of morphological dilate and erode operations on
each class. Simultaneously, 3D bounding boxes are used to densify regions belonging to thing classes. In the fourth stage, an occlusion mask representing
regions occluded by other classes is generated, and the last stage masks the regions outside the field-of-view of the camera.

Dataset Image Size Resolution Dilation Erosion
StT StS Veg. ThV ThP StT StS Veg. ThV ThP

KITTI-360 768× 704 0.074m/px 3 9 9 9 7 3 5 3 5 5
nuScenes 896× 768 0.077m/px 3 9 9 9 7 3 5 3 5 5

TABLE S.1: The parameters used to generate the panoptic BEV ground truth from annotated LiDAR point clouds. In our setting, the BEV image has a
resolution of 7.4 cm/px and 7.6 cm/px for KITTI-360 and nuScenes dataset respectively. In the table, StT refers to tall classes consisting of wall, pole, traffic
light and traffic sign, while StS refer to short stuff classes which comprises of classes ground, road, sidewalk, parking, fence and terrain. Veg. refers to the
vegetation class, and ThV and ThP refers to all vehicle and person thing classes respectively.

Fig. S.4: Illustration of the sensitivity-based weighting function across the
BEV space. The ego-vehicle, depicted by the car, is located at the bottom
of the plot. Close regions are highly sensitive in the FV image and can be
easily mapped to the BEV, resulting in the sensitivity weight described by
Eq. (9) being low for such regions. On the contrary, mapping far-away regions
is much more difficult which results in their low sensitivity and accordingly a
high sensitivity weight.

C. Sensitivity-Based Weighting

The sensitivity-based weighting function accounts for the
varying descriptiveness across the FV image by intelligently
weighting pixels in the BEV space. Owing to the perspective
projection of 2D cameras, the apparent motion observed in the
FV image when a 3D point close to the camera is moved by
a unit value is significantly larger than the motion observed
when a far-away pixel is moved by a similar amount. In other
words, close regions have a high sensitivity while far regions
have low sensitivity. This disparity makes it extremely difficult
to differentiate between small changes in distance for the
far-away regions. To address this disparity, we introduce a
sensitivity-based weighting function as described in Eq. (9)
to up-weight pixels belonging to far-away regions. This up-
weighting focuses the network on farther regions which helps
in improving the performance of the model. Fig. S.4 shows
a plot of the sensitivity-based weighting function across the
BEV space.

S.2. DATASETS

A. KITTI-360 and nuScenes Dataset Preparation

We generate the dense panoptic BEV groundtruth annotations
for both the KITTI-360 and nuScenes datasets using a five
stage pipeline as depicted in Fig. S.3. The pipeline takes as
input, the annotated LiDAR point clouds, 3D bounding boxes,
ego vehicle pose and camera extrinsics, and outputs a dense
panoptic groundtruth image in the BEV coordinates. In the first
stage, static LiDAR points, i.e., points belonging to stationary
objects, are accumulated over multiple frames to generate
a dense static point cloud. Simultaneously, dynamic points,
i.e., points belonging to movable objects, are also stored for
use in the downstream stages. In the second stage, both the
accumulated static point cloud and the dynamic point cloud
are transformed into the BEV coordinate system of the kth

frame using the camera extrinsics M and the ego pose for the
kth frame ek. This transformed point cloud is then projected
onto the XZ-plane using an orthographic projection to generate
the initial BEV image. However, this BEV image is extremely
sparse with the dynamic objects being invisible and having a
sparsity factor greater than 60%.

The third stage, thus, densifies this image using a sequence
of morphological dilate and erode operations independently on
each class. To address the lack of LiDAR points on the far
side of dynamic objects, 3D bounding boxes are projected into
the BEV image and are intelligently fused with the existing
dynamic points to obtain realistic looking instances. To ensure
that the tree canopies do not occlude the underlying classes,
they are added to the BEV image in the end and only in regions
that do not contain any other label. Since it is extremely difficult
for the network to hallucinate labels behind occlusions (ex:
regions behind cars), the fourth stage generates an occlusion
mask using the height map obtained from the second stage. A
new stuff label occlusion, depicted using light-grey in Fig. S.3,
is introduced to incorporate the occlusion mask into densified
panoptic BEV image. Lastly, the pixels that lie outside the
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Fig. S.5: Additional qualitative results comparing the performance of our PanopticBEV model with the best performing baseline on the KITTI-360 dataset. The
rightmost column shows the Improvement/Error map which depicts the pixels misclassified by the baseline but correctly predicted by the PanopticBEV model
in green, pixels misclassified by the PanopticBEV model but correctly predicted by the baseline in blue, and pixels misclassified by both models in red.

field-of-view (FoV) of the camera are zeroed-out, and the
image is cropped to the required dimensions to generate the
final panoptic BEV labels. The parameters that we use to
generate the BEV panoptic segmentation labels are summarized
in Tab. S.1.

B. Frontal View Annotations for nuScenes
The nuScenes dataset does not provide dense semantic

segmentation or panoptic segmentation groundtruth labels for
FV images. This poses a challenge to our training procedure
which relies on the vertical-flat groundtruth labels to supervise
the semantic masking module in our transformer during the

training phase. We address this challenge by generating pseudo-
labels for the vertical and flat regions in the FV image using
the EfficientPS model. We train the network using a set of
manually annotated vertical-flat masks containing 478 images,
and use this network to generate pseudo-labels for all images
in the training set.

S.3. ADDITIONAL ABLATION STUDIES

A. Multi-scale Features

Multi-scale features are typically employed for the tasks for
object detection and instance segmentation, wherein they play
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Fig. S.6: Additional qualitative results comparing the performance of our PanopticBEV model with the best performing baseline on the nuScenes dataset. The
rightmost column shows the Improvement/Error map which depicts the pixels misclassified by the baseline but correctly predicted by the PanopticBEV model
in green, pixels misclassified by the PanopticBEV model but correctly predicted by the baseline in blue, and pixels misclassified by both models in red.

Model E32 E16 E8 E4 PQ SQ RQ mIoUsem

M1 X - - - 17.70 60.00 26.24 30.57
M2 X X - - 18.88 65.36 27.86 30.47
M3 X X X - 20.82 63.78 30.44 31.53

M4 X X X X 21.23 63.89 31.23 32.14

TABLE S.2: Ablation study on using features from different scales in our
PanopticBEV model. The results are reported on the KITTI-360 dataset.

a crucial role in detecting and segmenting objects of different
sizes in the image. Since panoptic segmentation encompasses
instance segmentation, which in turn encompasses object
detection, we hypothesize that multi-scale feature maps are
crucial for achieving good panoptic segmentation performance.
We validate our hypothesis by performing an ablation study on

the influence of multi-scale feature maps on the performance
of our model. We begin with a base model consisting of only
the smallest feature scale and iteratively add the larger feature
scales to it. We report the Panoptic Quality (PQ), Segmentation
Quality (SQ), Recognition Quality (RQ) as well as the semantic
mIoU (mIoUsem) for each model. Tab. S.2 presents the results
of this ablation study. We observe that model M1 consisting
of only the smallest feature scale E32 performs the worst in
terms of the PQ metric, achieving a score of only 17.70%. The
low PQ score is a consequence of the low RQ score which
can be attributed to the poor object detection and instance
segmentation performance of this single-scale model. Upon
adding E16, we observe a notable 1.18 pp improvement in the
PQ score, most of which can be attributed to a similar increase
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Fig. S.7: Qualitative results showing the performance of our PanopticBEV model in regions with bumpy roads and sudden inclination changes.
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Fig. S.8: Qualitative comparison of BEV semantic segmentation with the best performing previous state-of-the-art model on the KITTI-360 dataset. The
rightmost column shows the Improvement/Error map which depicts the pixels misclassified by the previous state-of-the-art but correctly predicted by the
PanopticBEV model in green, pixels misclassified by the PanopticBEV model but correctly predicted by the previous state-of-the-art in blue, and pixels
misclassified by both models in red.

in the RQ score. We observe a similar trend upon adding the E8
and E4 feature scales with the PQ value increasing by 1.94 pp
and 0.41 pp respectively. This consistent increase in the PQ
score upon adding the different feature scales, largely driven
by a corresponding increase in the RQ score, indicates that
multi-scale features play a crucial role in the object detection
performance in the BEV space. Furthermore, we observe from
Tab. S.2 that the semantic segmentation performance of the
model follows a similar trend and increases from 30.57%
when using only E32 to 32.14% when using all the four feature
scales. This increase in performance can be attributed to the

presence of both semantically rich small-scale features as well
as contextually-rich large-scale feature maps in the model M4.
We can thus conclude that the use of multi-scale features
improves the performance of our model both in terms of the
PQ metric as well as the semantic mIoU score.

S.4. ADDITIONAL QUALITATIVE RESULTS

A. Panoptic Segmentation

We qualitatively evaluate the performance of our proposed
PanopticBEV model in comparison to the best performing
baseline VPN [8] + EPS [25] on both the KITTI-360 and
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Fig. S.9: Qualitative comparison of BEV semantic segmentation with the best performing previous state-of-the-art model on the nuScenes dataset. The rightmost
column shows the Improvement/Error map which depicts the pixels misclassified by the previous state-of-the-art but correctly predicted by the PanopticBEV
model in green, pixels misclassified by the PanopticBEV model but correctly predicted by the previous state-of-the-art in blue, and pixels misclassified by both
models in red.

nuScenes datasets. Fig. S.5 and Fig. S.6 present the qualitative
comparison for the KITTI-360 and nuScenes datasets respec-
tively. We observe in both Fig. S.5 and Fig. S.6 that our model
consistent performs better than the VPN + EPS baseline over a
wide range of traffic scenarios and environmental conditions. In
Fig. S.5(a) and Fig. S.5(c), we observe that our PanopticBEV
model accurately estimates the spatial location as well as the
semantic category of the bus while the baseline fails to do so
in both scenarios. Furthermore, we observe in Fig. S.5(e) and
Fig. S.5(f) that our PanopticBEV model accurately estimates the
number of traffic participants even in crowded scenarios, while
VPN + EPS often fails to detect the instances in the scene and
also often hallucinates objects. Furthermore, the predictions of

stuff classes such as road and sidewalk is often consistent
in the outputs of both the approaches, with PanopticBEV
having slightly better and sharper results compared to the
VPN + EPS model. We make similar observations in Fig. S.6
in which our PanopticBEV model consistently outperforms the
VPN + EPS baseline for both the stuff and thing classes. For
example, in Fig. S.6(a), Fig. S.6(b), Fig. S.6(c), Fig. S.6(d),
and Fig. S.6(f) our PanopticBEV model reliably segments
most of the vehicles in the scene, even when they are at
large distances and are occluded. Similar to the observation
made earlier, the VPN + EPS baseline often splits an instance
into multiple instances segments and also fails to detect many
object instances in the scene. In Fig. S.6(e), we observe that



our PanopticBEV model generalizes effectively to night-time
scenes which can be seen in the accurate segmentation of the
white car. Whereas, the VPN + EPS model fails to do so and
predicts an incorrect orientation for the vehicle. This general
trend of our model to accurately detect the number, position,
and the orientation of thing classes can be specifically attributed
to our dense transformer module. Independently processing
the vertical and flat regions allows the distinct region-specific
transformers to learn vertical and flat cues which helps the
network make accurate predictions and significantly improves
the overall performance of our model.

B. Regions with Non-Flat Ground

In this section, we qualitatively evaluate the impact of a non-
flat ground on the performance of our approach. Such a situation
usually occurs when the road is either bumpy or has sudden
changes in elevation (e.g. climbing up / descending down a hill).
In such scenarios, using only the IPM algorithm results in an
incomplete and distorted projection of flat regions in the BEV
space due to the change in the extrinsic transformation between
the ground and the camera. We account for this disparity by
applying our learnable Error Correction Module (ECM) on
regions where the IPM transformation is ambiguous, as well
as on regions neglected by the IPM algorithm (e.g. flat regions
above the principal point of the camera which contains road
segments when the road is bumpy or inclined). We present
multiple examples in Fig. S.7 to convey this idea as well
as to qualitatively evaluate the performance of our model in
such scenarios. We observe that our model accurately predicts
the flat regions even when they are bumpy and inclined. For
instance, in Fig. S.7(d), the road has a significant upward
inclination, but our model is able to accurately predict the
road surface. However, due to angle of the road surface, the
sidewalk in the distance is extremely difficult to observe and
is incorrectly predicted by our model as road. In Fig. S.7(f),
the road slopes downwards while the grass on the edges slopes
upwards. Our model is also able to account for such dynamic
changes in the flat regions and accurately predicts both the road
and terrain classes. These results show that our PanopticBEV

model generates accurate panoptic segmentation maps even
in the presence of bumpy and hilly terrain, thus enabling its
deployment over a wide range of challenging terrains.

C. Semantic Segmentation

We qualitatively evaluate the performance of BEV semantic
segmentation by comparing with the previous state-of-the-art
model PON [3]. Fig. S.8 and Fig. S.9 present the results of this
comparison for the KITTI-360 and nuScenes datasets respec-
tively. We observe from Fig. S.8(a), Fig. S.8(b), Fig. S.8(e), and
Fig. S.8 (f) that our PanopticBEV model efficiently captures
the spatial extents of the thing classes resulting in well-defined
segmentation of object boundaries. Whereas, the predictions
from the PON model shows multiple instances of thing class
fused together in a single blob instead of multiple distinct
objects. In Fig. S.8(b) and Fig. S.8(d), we observe that PON
incorrectly classifies the truck and the car respectively, while
our PanopticBEV model accurately segments them. From the
Improvement/Error map shown in the third column of Fig. S.8,
we see that the number of green pixels significantly exceed the
number of blue pixels indicating that our PanopticBEV model
generates more accurate semantic predictions compared to the
previous state-of-the-art PON model on the KITTI-360 dataset.

By analyzing the results on the nuScenes dataset shown in
Fig. S.9, we observe that our PanopticBEV model consistently
outperforms the previous state-of-the-art PON model both in
terms of distinguishable vehicle boundaries as well as the
accuracy of the semantic class predictions. Fig. S.9(d) shows
an example of an extremely complex image wherein most
regions of input image are occluded by rain drops. Even in
such challenging conditions, our PanopticBEV model yields
superior BEV semantic segmentation maps which are more
accurate compared the output from the PON model. This can
be primarily attributed to our dense transformer module which
enables the model to learn consistent and coherent features for
both the vertical and flat regions in the image. Moreover, these
results demonstrate that our PanopticBEV model is extremely
versatile allowing it to be used in a wide range of challenging
environmental conditions and traffic situations.
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