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DIRECT: A Differential Dynamic Programming Based Framework for
Trajectory Generation
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Abstract— This paper introduces a differential dynamic pro-
gramming (DDP) based framework for polynomial trajectory
generation for differentially flat systems. In particular, instead
of using a linear equation with increasing size to represent
multiple polynomial segments as in literature, we take a new
perspective from state-space representation such that the linear
equation reduces to a finite horizon control system with a
fixed state dimension and the required continuity conditions
for consecutive polynomials are automatically satisfied. Conse-
quently, the constrained trajectory generation problem (both
with and without time optimization) can be converted to
a discrete-time finite-horizon optimal control problem with
inequality constraints, which can be approached by a recently
developed interior-point DDP (IPDDP) algorithm. Furthermore,
for unconstrained trajectory generation with preallocated time,
we show that this problem is indeed a linear-quadratic tracking
(LQT) problem (DDP algorithm with exact one iteration). All
these algorithms enjoy linear complexity with respect to the
number of segments. Both numerical comparisons with state-
of-the-art methods and physical experiments are presented to
verify and validate the effectiveness of our theoretical findings.
The implementation code will be open-sourced1.

I. INTRODUCTION

Recent decade has witnessed many emerging applications
of unmanned systems, such as search and rescue [1], envi-
ronmental monitoring [2] and mapping [3], etc. As one of
the fundamental problems in robotics and control researches,
trajectory planning of mobile robots has been actively stud-
ied, see [4]–[6].

Although polynomial-based approaches can generate
energy-optimal smooth trajectories with fixed time alloca-
tion efficiently, they are usually formulated as a quadratic
programming problem of big size and solved via various
commercial solvers. In addition, although there are several
methods considering bi-level optimization on energy and
time in view of high nonlinearity and non-convexity of joint
energy-time optimization, the computation complexity with
respect to the number of segments is unknown in general.
On the other hand, although DDP based methods enjoy
linear complexity in the length of prediction horizon, they
usually can only plan a relatively short time ahead for highly
nonlinear systems such as quadrotor as the discretization step
should be very fine.

This research is supported by the National Research Foundation, Singa-
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Innovation. ∗Equal contribution. K. Cao, M. Cao, S. Yuan and L. Xie (cor-
responding author) are with School of Electrical and Electronic Engineering,
Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
(email: kun001@e.ntu.edu.sg; {mqcao, shyuan, elhxie}@ntu.edu.sg).
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Fig. 1: (Top) Trajectory generated using our proposed
method in a two-room environment, the safe corridor con-
sists of 34 polyhedra. (Bottom) Snapshots of a quadrotor
executing the trajectory generated.

To address these issues, we propose DIRECT, a differential
dynamic programming based framework for trajectory gen-
eration. In particular, this framework uses a state-space
equation to characterize the polynomial trajectory such that
half of its coefficients can be saved and the continuity
conditions on the derivatives of two consecutive segments
can be automatically satisfied. By leveraging the differen-
tial flatness of quadrotor systems and this perspective of
polynomial trajectory, we further reformulate the trajectory
generation problem into a finite-horizon free-end discrete-
time optimal control problem such that it can be addressed
by DDP algorithm without fine discretization and the help of
solvers. Unlike many existing approaches where optimization
with respect to time and polynomial coefficients are carried
out alternately, this algorithm features joint optimization of
all variables directly, which explains the naming of this
framework.

The proposed approach is based on the observation that the
state at the proximal endpoint of an odd order polynomial
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is solely determined by half of the coefficients (low-order
terms) while the state at the distant endpoint is co-determined
by all of the coefficients and time. Along with the continuity
condition, a long trajectory of multiple segments can be
characterized by the initial state and a sequence of control
inputs which are functions of the other half of the coefficients
(high-order terms) and time. By incorporating the final
state constraint into the terminal cost and introducing the
safety and dynamical feasibility constraints on the state and
control variables via control points, the optimization problem
is reformulated into a discrete-time finite-horizon optimal
control problem with inequality constraints. The resulting
problem either with or without time optimization can be
solved under the same framework via a recently developed
IPDDP algorithm in [7] with linear complexity. In addition,
we show that this problem can be further simplified to a
LQT problem if there is no constraint and hence admits an
analytical solution, which is still within the DDP framework
(exactly one round of backward forward iteration). Our
contributions can be summarized as follows:
• We show that an odd-order piecewise-polynomial tra-

jectory can be characterized by state-space equations;
• We propose a DDP-based framework to generate poly-

nomial trajectories with / without time optimization and
constraints;

• We achieve comparable results with state-of-the-art
methods and perform extensive real-world experiments.
The code will be open-sourced.

The rest of this paper is organized as follows. Some
related works are presented in Section II. Section III de-
tails the DDP-based framework for trajectory generation.
Some specializations of this scheme are discussed in Section
IV. Section V gives some comparisons with state-of-the-art
methods and real-world implementations. Section VI draws
the conclusion.

Notations: In this paper, the sets of real, positive real
and nonnegative real numbers are denoted by R, R+ and
R≥0, respectively. Denote by Rn and Rm×n the sets of
n-dimensional real vectors and m × n real matrices, re-
spectively. Let Z+ and Z≥0 be the sets of positive and
nonnegative integers, respectively. Let ‖x‖ be the 2 norm
of x and ‖x‖2A = x>Ax. Denote by A> and A−1 the
transpose and inverse of A ∈ Rn×n, respectively. Let
In ∈ Rn×n be the n-dimensional identity matrix and 1n
the n-dimensional column vector with all entries of 1. Let
⊗ denote the Kronecker product and In = {0, . . . , n −
1}. Let x(i) be the i-th order derivative of vector x and
x[i] = [x(0), . . . ,x(i−1)]. Denote the vectorization operation
by vec(·), i.e., vec([a,b]) = [a>,b>]>.

II. RELATED WORKS

A. Trajectory planning for quadrotors

The seminal work [4] firstly proved the differential flatness
for quadrotor and proposed the minimum snap piecewise
polynomial trajectory generation problem, which can be
transformed into a quadratic programming (QP) problem
with safety corridors being included as linear constraints

on discretized points and hence can be solved efficiently
via solver. The time allocation and dynamical feasibility
problems were approached by projected gradient with back-
tracking line search in an outer loop and temporal scaling,
respectively. Later, the authors in [5] proposed a closed-
form solution for the trajectory generation problem with
a generalized cost where the time allocation, safety, and
dynamical feasibility aspects are handled by gradient de-
scent of joint energy-time cost, addition of waypoints, and
temporal scaling, respectively. In [8], the authors presented
an efficient safe flight corridor construction method and a
temporal scaling step (similar to [5]) on time allocation to
generate safe and dynamical feasible trajectories. To avoid
high nonlinearity related to joint space-time optimization,
some recent works propose methods that iteratively optimize
spatial and time variables in two separate subroutines. The
authors in [6] introduced a spatial-temporal optimization
method which iteratively refines the geometrical coefficients
and time-warping functions via QP and second order cone
program (SOCP), respectively. In [9], the authors decom-
posed the trajectory optimization problem as a bi-level
optimization problem where the gradient required in the
outer loop is analytically obtained from the dual solution
of the inner loop QP. An alternating minimization scheme
was proposed in [10] where complex safety constraints were
not considered. Recently in [11], the authors formulate an
unconstrained nonlinear optimization that can be solved
by quasi-Newton methods efficiently, but the safety and
dynamical feasibility are enforced as penalty functions on
discretized points instead of hard constraints. In terms of
large scale trajectory (≥ 103), the authors in [12] proved that
the minimum snap problem with fixed time allocation can be
solved in linear complexity by exploiting the structure of op-
timality conditions. The computational complexity has been
further improved in [13] by eliminating a matrix inversion
operation. An outer loop with analytical projected gradient
was introduced for [12] in [14] such that the time allocation
can be optimized. However, the computational complexity is
unspecified for the case with safety and dynamical feasibility
constraints.

B. DDP algorithms

The DDP algorithm firstly introduced in [15] enjoys
linear computational complexity (w.r.t. horizon) and local
quadratic convergence [16] and has been applied in trajectory
optimization of various systems, e.g., biped walking [17]
and robotic manipulation [18]. Much research has been
devoted to generalizing the DDP to the case with inequality
constraints and can be generally classified into two cate-
gories. The first category converts the constrained problems
to unconstrained ones via penalty [19] while the other deals
with the constraints explicitly by identifying the active ones
[20]. To avoid the combinatorial problem regarding the active
constraints, a constrained version of Bellman’s principle of
optimality has been introduced in [7], [21], which augments
the control input with dual variables. However, these DDP
algorithms have only been applied to a short-duration (e.g.
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2 ∼ 3s, 200 ∼ 300 steps of sampling period 0.01s) quadrotor
planning problem and takes quite long time for simple
constraints (≥ 5s, see Table 7 in [21]). In this paper, we
shall exploit the differential flatness of quadrotors and the
linear complexity property of DDP algorithm to generate
long-duration smooth trajectories efficiently.

III. DDP BASED FRAMEWORK FOR TRAJECTORY
GENERATION

In this section, we shall first introduce our proposed state-
space representation for polynomial trajectories and then
present our algorithm for jointly optimizing energy and time.

A. State-space representation

We consider the problem of generating an N -segment n-
th order polynomial trajectory in d-dimensional space with
the k-th segment pk ∈ Rd being parametrized by:

pk(t) = C>k b(t), t ∈ [0, tk], (1)

where Ck ∈ R(n+1)×d is the coefficient matrix and b(t) =
[1, t, . . . , tn]> is the n-order monomial basis. Hence, the
entire trajectory on [0, τN−1] can be defined with

p(t) = pk(t− τk−1) = C>k b(t− τk−1)

for t ∈ [τk−1, τk] where τ−1 = 0 and τk =
∑k
i=0 tk, k ∈ IN .

Following [4], [11], [13], we consider the problem of
enforcing the smoothness of trajectory up to the (m− 1)-th
(m = n+1

2 ) order derivative and optimizing on the energy
cost up to the m-th order derivative.

We consider a single segment k. By (1), the collection of
trajectory up to (m − 1)-th order derivative can be written
as follows:

p
[m]
k (t) = C>k b[m](t). (2)

Collecting both the endpoints, one has:

[p
[m]
k (0),p

[m]
k (tk)] = C>k [b

[m](0),b[m](tk)] := C>k F>k ,
(3)

where Fk can be expressed explicitly with a 2-by-2 block
matrix [13], i.e., Fk =

[
Fk,11 0
Fk,21 Fk,22

]
, where each block is of

size m×m, and

[Fk,11]ij =

{
(i− 1)!, if i = j,

0, otherwise,

[Fk,21]ij =


(j − 1)

(j − i)!
tj−ik , if i ≤ j,

0, otherwise,

[Fk,22]ij =
(m+ j − 1)!

(m+ j − i)!
tm+j−i
k .

(4)

Next, we partition Ck according to the block structure of Fk,
i.e., Ck = [C>k,1,C

>
k,2]
> and obtain the following equality:

(p
[m]
k (tk))

> = Fk,21F
−1
k,11(p

[m]
k (0))> + Fk,22Ck,2, (5)

where Ck,1 was substituted with F−1k,11(p
[m]
k (0))>.

Fig. 2: State space representation.

Letting xk = vec(p
[m]
k (0)), vk = vec(C>k,2), uk =

[v>k , tk]
> and by the continuity condition p

[m]
k (tk) =

p
[m]
k+1(0), one has

xk+1 = A(tk)xk + B(tk)vk := f(xk,uk), (6)

where A(tk) = (Fk,21F
−1
k,11)⊗ Id and B(tk) = Fk,22 ⊗ Id.

As shown in Fig. 2, this operation transfers the original repre-
sentation of trajectory into a state-space equation, where the
system state is the state (position, velocity, acceleration, etc.)
at each endpoint and the control input is a concatenation of
half of the coefficients of the segment (i.e., Ck,2) and dura-
tion (i.e., tk). Unlike previous application of DDP algorithms
in quadrotor planning and control where direct discretization
is used, this representation enables the characterization of a
long-duration trajectory with fewer number of variables.

B. Objective function

Previous results on generating polynomial trajectories
(e.g., [4], [13]) usually consider the so-called interpolating
splines [22], where the spline must pass some prescribed
waypoints exactly at specific times. However, for the trajec-
tory generation problem for time-critical aggressive flights,
quite often it is sufficient that the generated trajectories only
pass through the vicinity of these waypoints, i.e., smoothing
splines [23]. In this paper, we aim to find a smoothing spline
such that the following objective function can be minimized:

J(C, T ) =
N−1∑
k=0

(‖xk − xk,g‖2Qk
+

∫ tk

0

m∑
i=1

ηi,k‖p(i)
k (t)‖2dt

+ wkt
2
k) + ‖xN − xN,g‖2QN

,
(7)

where C := {Ck}k∈IN and T := {tk}k∈IN . In this
cost function, the first term is designed to minimize the
discrepancy between the current state xk and the desired
state xk,g at the beginning of each segment, which “attracts”
the endpoint to a prescribed waypoint; the second and third
terms penalize the aggressiveness of planned trajectory up
to the m-th order and flight time during the k-th segment,
respectively; the last term penalizes the discrepancy between
the terminal state xN and the goal state xN,g; and Qk, ηi,k,
wk, (k ∈ IN ), and QN denote the weights for each term.
It can be found that different from the literature (e.g., [4],
[13]) where hard constraints for the endpoints of pk were
used, we have softened these constraints by incorporating
them into an objective function.
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For usually considered minimum jerk or minimum snap
trajectories, Qk = 0, ηi,k = 0 for all i = 1, . . . ,m − 1 and
k ∈ IN . In this case, one can partition b(m)(t)(b(m)(t))>

into 2-by-2 block matrix with the size of each block being
m×m.

Observing that only the right-bottom block is non-zero and
denoting it by Rv(t), one can rewrite (7) as

J(U) =
N−1∑
k=0

(‖xk − xk,g‖2Qk
+ ‖uk‖2Rk

) + ‖xN − xN,g‖2QN

(8)
with U := {uk}k∈IN and Rk =
diag(ηm,k

∫ tk
0

Rv(t)dt, wk).

Remark III.1. For the case with Qk 6= 0, ηi,k > 0 for some
i = 1, . . . ,m − 1 and k ∈ IN , an equation similar to (8)
can be obtained by using

‖p(i)
k (t)‖2 = (b(i)(t))>CkC

>
k b(i)(t)

= (vec(C>k ))
>[b(i)(t)(b(i)(t))> ⊗ Id] vec(C

>
k )

and vec(C>k ) =
[
(F−1

k,11⊗Id)xk

vk

]
. In addition, while other

general differentiable functions can be used for each cost
term in (7), we use a quadratic form for simplicity.

C. Constraints

In general, there are two types of methods handling the
safety and dynamical feasibility constraints. The first method
discretizes each segment of trajectory and adds inequality
constraints on the states at these time instants, while the issue
is that the feasibility for the continuous time interval cannot
be guaranteed. The other method is to add constraints on a
set of control points, which are the vertices of the convex hull
containing the segment, but it suffers from conservativeness.
A recent work [24] proposes the MINVO basis, which has
been shown to be less conservative than the widely used
Bezier basis. We use the MINVO basis to construct a set of
control points for our polynomial trajectory. Denote the i-th
order control points by Ξ

〈i〉
k ∈ R(n+1−i)×d, which can be

computed by:
Ξ
〈i〉
k = T〈i〉(tk)Ck, (9)

where T〈i〉(tk) ∈ R(n+1−i)×(n+1) represents the transfor-
mation matrix from polynomial coefficients to the i-th order
control points.

Assuming that a safe flight corridor (consists of N convex
polyhedra) can be generated from perception system and
polyhedron k is represented by sk hyperplanes. With (9),
the safety constraint can be written as:

Wk · (Ξ〈0〉k )> � (1>n+1 ⊗ h
〈0〉
k ), (10)

where each row of Wk ∈ Rsk×d and h
〈0〉
k ∈ Rsk

corresponds to the parameters of a single hyperplane in
polyhedron k.

On the other hand, the dynamical feasibility is encoded by
the following box constraint on the i-th order control points
Ξ
〈i〉
k with i ∈ [1,m− 1]:

h
〈i〉
k Id×(n+1−i) � (Ξ

〈i〉
k )> � h〈i〉k Id×(n+1−i), (11)

where h
〈i〉
k < 0 and h

〈i〉
k > 0 are the lower and upper

bounds (e.g., minimal / maximal velocity / acceleration),
respectively.

Additionally, one more inequality constraint on time can
be introduced to avoid negative time allocation during opti-
mization:

tk ≥ t, (12)

where t ∈ R+.
Concatenating the vectorized forms of (10) and (11) with

(12), one has

gk := diag(Hk,−1)[x>k ,u>k ]> − [h>k ,−t]> � 0, (13)

where

Hk =


T〈0〉(tk)⊗Wk

−T〈1〉(tk)⊗Id
T〈1〉(tk)⊗Id

...
−T〈m−1〉(tk)⊗Id
T〈m−1〉(tk)⊗Id

diag(F−1k,11 ⊗ Id, Imd)

and

hk = [(1n+1 ⊗ h
〈0〉
k )>,−h〈1〉k 1>nd, h

〈1〉
k 1>nd, · · · ,

− h〈m−1〉k 1>(n−m+2)d, h
〈m−1〉
k 1>(n−m+2)d]

>.

D. The overall problem and algorithm

With the objective function and constraints constructed
above, we can formulate the trajectory generation problem
as the following multi-stage constrained optimal control
problem:

min
U

(8)

s.t. (6), (13),x0 is given.
(14)

It should be noted that the constraint and objective func-
tion in (14) are respectively in linear and quadratic forms, in
fact, all the matrices involved are functions of tk and hence
they are not linear-quadratic. Therefore, we shall solve the
formulated problem via IPDDP [7], which generalizes the
traditional unconstrained DDP to a constrained version. Sim-
ilar to DDP, the IPDDP algorithm iterates between backward
pass, which computes control inputs to minimize a quadratic
approximation of cost in the vicinity of the current trajectory,
and forward pass, which updates the current trajectory to a
new one, until some terminating condition is triggered.

Define VN = ‖xN−xN,g‖2QN
. Let `k = ‖xk−xk,g‖2Qk

+

‖uk‖2Rk
+ λ>k gk, and Lk = `k + Vk+1 for all k ∈ IN ,

where λk � 0 is the Lagrange multiplier. In the following,
we shall omit subscript k and denote (·)k+1 by (·)+ for
clarity. Letting (·)a := ∂(·)

∂a and (·)ab := ∂2(·)
∂a∂b , one has the

following iteration which resembles traditional DDP:

Lλ = g, Lλx = gx, Lλu = gu, Lλλ = 0,

Lx = `x + f>x V
+
x , Lu = `u + f>u V

+
u ,

Lxx = `xx + f>x V
+
xxfx + V +

x � fxx,

Lux = `ux + f>u V
+
uxfx + V +

x � fux,

Luu = `uu + f>u V
+
uufu + V +

x � fuu,

(15)
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where � denotes the tensor contraction and f is defined
in (6). In addition to the decision variable δuk (i.e., the
first order variation of uk), the primal-dual version of DDP
introduces the additional decision variable δλk. Both δuk
and δλk can be represented in an affine form of δxk by
solving the optimality conditions of an approximation of
constrained Bellman equation (see (6) in [7]), i.e.,[

ku Ku

kλ Kλ

]
= −

[
Luu Luλ

ΛLλu G

]−1 [
Lu Lux

r ΛLλx

]
, (16)

where ku, Ku, kλ and Kλ are the update gains for δuk and
δλk, respectively; r = Λg+µ1, G = diag(g), Λ = diag(λ)
and µ is a perturbation constant.

With these at hand, the gradient and Hessian of Vk can be
updated by

Vx = L̂x + L̂xuku,

Vxx = L̂xx + L̂xuKu,
(17)

with the following equation:

L̂x = Lx − LxλG−1r,

L̂u = Lu − LuλG−1r,

L̂xx = Lxx − LxλG−1ΛLλx,

L̂ux = Lux − LuλG−1ΛLλx,

L̂uu = Luu − LuλG−1ΛLλu,

(18)

where δλk was eliminated.
The forward pass resembles the traditional DDP while

updating both the control input uk and the dual variable λk:

x†0 = x0,

u†k = uk + ku
k + Ku

k (x
†
k − xk),

λ†k = λk + kλ
k + Kλ

k (x
†
k − xk),

x†k+1 = f(x†k,u
†
k),

(19)

where x†, u†, and λ† denote the new state, control variable,
and dual variable, respectively.

Algorithm 1 presents the entire algorithm for generating a
polynomial trajectory using IPDDP. It should be noted that
the presented algorithm requires a feasible initial trajectory.
This can be generated from a similar adaptation of the
Infeasible-IPDDP algorithm in [7].

IV. SPECIALIZATIONS

In last section, we have introduced an algorithm for
jointly optimizing energy and time subject to safety and
dynamical feasibility constraints. In that algorithm, part of
the polynomial coefficient Ck,2 (i.e., vk) and allocated time
tk for segment k are both regarded as control inputs in the
formulation (14). In this section, we shall show that this
framework can be reduced to two other types of simpler
problems.

Algorithm 1 DIRECT

Input: xk,g, Qk, ηm,k, wk, xk,g, k ∈ IN , QN , a feasible
trajectory with C and T .

Output: C∗, T ∗.
Convert C, T to U
for iter = 1 : max iteration do

Set VN , Vx,N , Vxx,N
for k = N − 1, . . . , 0 do

Evaluate (15)
Compute control inputs and auxiliary matrices from
(16) and (18)
Update Vx, Vxx according to (17)

end for
Set x†0 = x0

for k = 0, . . . , N − 1 do
Update the control variable u†k, multiplier λ†k and
next state x†k+1 according to (19)

end for
if termination condition is satisfied then

break
end if

end for
Extract U∗ and convert back to C∗ and T ∗

A. Fixed time allocation

It can be easily found that the above algorithm can be
used for constrained polynomial trajectory generation with
preallocated time. In particular, letting tk = const and
redefining uk = vk for all k ∈ IN , (6) turns to be a
linear-time-varying system and (13) is a linear-time-varying
constraint w.r.t. [x>k ,v

>
k ]
>2. The problem can be formally

written as:

min
V

J(V) =
N−1∑
k=0

(‖xk − xk,g‖2Qk
+ ‖vk‖2Rk

)

+ ‖xN − xN,g‖2QN

s.t. xk+1 = Akxk + Bkvk,

Hk[x
>
k ,v

>
k ]
> � hk,

x0 is given,

(20)

where V := {vk}k∈IN . In this case, Algorithm 1 can still
be used for solving such type of problem3, with all ` and
f related terms in (15) being precomputed and saved during
the initialization stage instead of being reevaluated at each
iteration.

B. Fixed time allocation and no constraint

If neither safety nor dynamical feasibility constraint is
considered, one has the following problem:

2The “time-varying” is in the sense of k.
3It is also a typical linear-time-varying model predictive control (MPC)

problem, which can be solved by existing MPC algorithms.
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min
V

J(V) =
N−1∑
k=0

(‖xk − xk,g‖2Qk
+ ‖vk‖2Rk

)

+ ‖xN − xN,g‖2QN

s.t. xk+1 = Akxk + Bkvk,

x0 is given.

(21)

We show that (21) is indeed a LQT problem by proving
that Rk � 0. Firstly, the positive semi-definiteness Rk =
ηm,k

∫ tk
0

Rv(t)dt can be easily established by the linearity of
integral. Secondly, denoting the last m elements of b(m)(t)
by σ(t), one has

σ(t) = [
m!

0!
t0, · · · , n!

(m− 1)!
tm−1]>

= diag({(m+ i)!}m−1i=0 )[
1

0!
t0, · · · , 1

(m− 1)!
tm−1]>

=: Ψτ .

On the other hand, τ can be written as τ = eA
>te1

with A =
[
0m−1 Im−1

0 0>m−1

]
and e1 = [1,0>m−1]

>. Since the

pair (A, e>1 ) is observable, the matrix
∫ τ
0
eA
>te1e

>
1 e

Atdt
is nonsingular for any τ > 0. Therefore,∫ tk

0

Rv(t)dt =

∫ tk

0

Ψττ>Ψ>dt = Ψ

(∫ tk

0

ττ>dt

)
Ψ>

is positive definite and this shows that (21) is an LQT
problem.

Let PN = QN . The backward iteration for the resulting
LQT problem reduces to

Kk = (B>k Pk+1Bk + Rk)
−1BkPk+1Ak,

Pk = A>k Pk+1(Ak −BkKk) + Qk,

qk = (Ak −BkKk)
>qk+1 + Qkxk,g,

kk = (B>k Pk+1Bk + Rk)
−1Bkqk+1,

(22)

where Kk and kk are the parameters for expressing the new
control inputs as a linear form of current state (resembles ku

and Ku in (16)). The forward pass reads:

uk = −Kkxk + kk,

xk+1 = Akxk + Bkuk,
(23)

which iteratively computes the control input and next state.
Algorithm 2 summarizes the above iteration and this

gives the analytical solution to the unconstrained fixed-time
polynomial trajectory generation problem (21). It should be
noted that Algorithm 2 can be regarded as a simplified
version of Algorithm 1 with exact one iteration.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we shall demonstrate the efficacy of
our proposed framework by comparing with state-of-the-art
methods as well as performing real-world experiments.

Algorithm 2 LQT-based trajectory generation.

Input: xk,g, Qk, ηm,k (k ∈ IN ), QN , T .
Output: C∗.

Set PN = QN , qN = xN,g
for k = N − 1, . . . , 0 do

Compute Kk, kk according to (22)
end for
for k = 0, . . . , N − 1 do

Compute the control variable uk and next state xk+1

according to (23)
end for
Extract U and convert it to C∗

A. Benchmarks for trajectory generation methods

For trajectory generation with time optimization as well as
safety and dynamical feasibility constraints, we compare our
algorithm with the alternating spatial-temporal optimization
[6] and bi-level optimization with analytic gradient [9].4 In
[6] the energy and time costs are separately optimized while
in [11] the overall cost function takes a similar form as ours,
but without the terminal cost and the time cost takes the
form of wktk. The benchmark is conducted using an i7-
8550U CPU. Our algorithm is implemented in three steps:
1) initialize our algorithm with Infeasible-IPDDP [7] and
zero initial condition to find a feasible solution with wk = 1
and QN = I; 2) feed the obtained solution into Algorithm
1 with wk = 20 and QN = 100I to jointly optimize
energy and time; and 3) feed the obtained solution into
Algorithm 1 with fixed time allocation setting (see Section
IV-A). The algorithm in [6] is implemented as it is (the
coefficient of time is set as 10). The algorithm in [9] is
implemented in C++ with MOSEK5 solver for the inner
loop QP and backtracking line search for the outer loop and
the coefficient of time is set as 20. We randomly generate
10 paths with 64 safety flight corridors (the facet number
ranges from 6 to 117, and is 28 on average) and extract
2 ∼ 64 of them to implement these three algorithms. The
initial allocation time is set by the subroutine in [6]. We
consider the problem of generating minimum jerk trajectory
with n = 5, where the maximal velocity and acceleration are
set as 2m/s and 2m/s2, respectively. The success rate versus
number of segments is shown in Fig. 3. The success rate is
dropping in general with the increasing number of segments.
The success rate of our algorithm is marginally higher than
Gao’s in some cases since the terminal constraint is softened
in our formulation. As a result of terminal constraints and
enforcing the dynamical feasibility via control points in
inner QP, Sun’s method has the lowest success rate. The
overall computation time and the reduction rate of the flight
time (computed by [

∑N−1
k (tinik − t∗k)]/

∑N−1
k tinik , where

tinik is the initial allocated time for segment k and t∗k is the
optimized allocated time computed by each algorithm) and

4According to Fig. 9 of [11], these two algorithms are the state-of-the-art
methods for generating a safe and dynamical feasible trajectory with time
optimization. The code for [11] is currently unavailable.

5https://www.mosek.com/

https://www.mosek.com/
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the control effort are also compared in Fig. 3. It can be
found that for middle number of segments (N ≤ 40), our
algorithm consumes less time than the other two algorithms.
For N > 40, our algorithm still consumes less time than
Gao’s while more than Sun’s. The reason is that the outer
loop of Sun’s method terminates in only a few iterations
and gets stuck in local minimum in these cases, which can
be seen from the relatively low reduction rate in Fig. 3.
In addition, there is a trade-off between flight time and
control effort: a shorter flight time (i.e., higher reduction rate)
corresponds to a higher control effort. Unlike Gao’s method
which has increasing reduction rate and control effort w.r.t.
N , our algorithm maintains relatively consistent reduction
rate and level of control energy. Since our formulation also
incorporates the terminal cost term (see (14)), the change of
this term affects the other two terms and hence causes the
fluctuation of control energy in our approach, as observed in
Fig. 3. Overall, for the application of trajectory generation
with N ∈ [10, 30], our algorithm achieves comparable results
with Gao’s method while consumes less runtime.

For trajectory generation with fixed time allocation and
without constraint, we compare our Algorithm 2 with [13].
Our parameters are set as ηm,k = 10−5, Qk = 100I,
k ∈ IN , QN = 100I. We randomly sample 100 times
for each number of waypoints and run 4 algorithms (2 for
minimum jerk trajectory and 2 for minimum snap trajectory).
The average runtime versus number of segments is shown
in Fig. 4. It can be found that all the algorithms enjoy
linear complexity w.r.t. number of segments. Although our
algorithm for minimum jerk trajectory consumes around
three times the time of [13], the gap for minimum snap
trajectory is much narrower(around 1.5 times). Furthermore,
based on the results reported in [13], our algorithm is faster
than the optimized version of algorithm in [12], which is
one order of magnitude slower than [13] (we do not plot the
result of [12] as the code is not available.)

B. Flight experiments

The proposed framework is implemented in ROS and we
conduct multiple flight experiments of a small quadrotor
executing the trajectories generated using our method. We
use stereo camera fusion with IMU [25] for localization
and state estimation of the quadrotor in the environment
and use the robust and perfect tracking (RPT) controller
[26] for trajectory tracking. Firstly, we conduct a set of
experiments where a long trajectory is generated in a pre-
built map consisting of two rooms and multiple obstacles, as
shown in Fig. 1. The trajectory is generated by the i7 onboard
computer and executed by the quadrotor immediately. We
use multiple settings of dynamical feasibility. The trajectory
with maximal velocity and acceleration set as 2.5m/s and
3m/s2 is shown in Fig. 5. In the second set of experiments
the onboard computer generates safe and feasible trajectories
online to reach target points set by a commander remotely.
The video of the experiments can be found online6 or in the
supplemental material.

6https://youtu.be/BM8_ABM_2VM

Fig. 3: Success rate, average runtime, flight time reduction
rate and control effort of the three algorithms. “Gao” and
“Sun” refer to the algorithms proposed in [6] and [9],
respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to use a state-space
equation to characterize a piecewise-polynomial trajectory
such that the trajectory generation problem (either with or
without time optimization and constraints) can be subse-
quently solved via DDP algorithm. The proposed framework
is implemented in C++ without the use of solvers, and the
efficiency of our proposed framework was demonstrated by
comparing with state-of-the-art methods as well as real-world
experiments.

The proposed framework opens up opportunity for further

https://youtu.be/BM8_ABM_2VM
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Fig. 4: Comparison of large scale trajectory generation.

Fig. 5: The trajectory command generated from our proposed
method.

developments. For example, the joint energy-time optimiza-
tion can be extended to a multi-robot scenario with non-
collision constraints. The fixed-time optimization can be used
for online trajectory replanning due to its fast computation.
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