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Strict Modes Everywhere — Bringing Order into
Dynamics of Mechanical Systems by a Potential
Compatible with the Geodesic Flow

Arne Sachtler»? and Alin Albu-Schiffer?!

Abstract—Strict nonlinear normal modes provide very regular
families of oscillations within conservative mechanical systems.
However, a strict normal mode will generally be an isolated curve
within the configuration space of the system. In this paper, we
design a potential that will densely fill the configuration space
with strict normal modes such that each configuration belongs
to one mode and each mode passes through a common point,
the equilibrium. As the potential can be realized by (nonlinear)
elastic elements it can be used to execute a variety of periodic
trajectories very efficiently. Most of the required torques will
come from the elastic elements in the system and not from the
actuators. We also design a controller stabilizing the system to
a desired target mode and a controller performing swing-up
and compensating dissipated energy. Finally, we showcase the
approach for a two DoF manipulator. The experiments show
that the approach performed well for the example system.

Index Terms—Compliant Joints and Mechanisms; Modeling,
Control, and Learning for Soft Robots; Mechanism Design;
Energy and Environment-Aware Automation; Dynamics

I. INTRODUCTION

EVERAL applications of robotics can be seen as periodic

or close-to-periodic motions. Consider a pick-and-place
application where a robot picks objects from a conveyor belt
and assorts them into a box. This can be seen as a sequence
of close-to-periodic motions: a base oscillation between the
conveyor belt and the center of the box is slightly modulated
in order to reach the specific positions in the box. Beside
the industrial case, also legged and non-legged locomotion
involves robotic structures oscillating periodically.

Classical industrial robots and also many recent humanoid
(e.g. [2]) or zoomorphic robots use stiff actuation without
any (wanted) elastic elements. The actuation and controllers
generate all the required forces to steer the system onto the
desired trajectories. In that case, a lot of energy exchange
occurs between the actuation (usually the electrical part) and
the mechanical part. This comes with subobtimal energy
efficiency, as energy exchange between these two parts is
subject to losses. Especially, mechanical energy is usually not
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Fig. 1. Aim of this paper: find a potential function such that the configuration
is densely packed with strict modes.

recovered, but dumped to heat in the motor drivers. Therefore,
the question arises if elastic elements in the system may help
to increase energy efficiency. Elastic elements store and release
mechanical energy and create a variety of natural oscillations
in the mechanical system. Optimally, these natural oscillations
coincide with the desired trajectories. Thus, the actuation
will only need to stabilize them and it is expected that the
effort needed for corrective actions on natural oscillations is
much less than for classical trajectory tracking on stiff robots.
If the natural oscillations do not coincide with the desired
trajectories, they might have the correct tendency and will only
need to be modulated by the actuators.

The combination of robotic structures and elastic elements
leads to very complex systems showing a wide variety of non-
linear (including chaotic [3]]) behaviors. Recently, the notion
of nonlinear normal modes was introduced to the robotics
community [1], [4]: Despite the dynamics being very com-
plex, very regular and simple, i.e., low-dimensional intrinsic
motions can be found. These can be collected on continuous
families of periodic solutions. A special case of such periodic
solutions are strict nonlinear normal modes [4], which can
be seen as invariant curves containing the equilibrium. These
curves lie within the configuration space of the elastic robotic
system. In particular, when starting at a configuration on the
strict normal mode, it will oscillate back and forth periodically
on a breaking trajectory and the configuration path will trace
out a subpath of the strict mode.

Strict normal modes provide very structured oscillations.
However, they usually occur, if at all, as isolated curves within
the configuration space. The trajectories will be very complex
if not initialized directly on a strict normal mode.
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Several state of the art publications already deal with
the exploitation of oscillations in elastic robotic systems.
Especially, in the field of legged locomotion research the
question arises if the oscillations can be exploited [S[|—[S8].
These publications usually deal with periodic orbits in general,
not with the special case of normal modes. Moreover, a couple
of publications deal with the question of how to control a robot
onto a nonlinear normal mode [9], [10]. All these publications
have one thing in common: the mechanics and the elastic
elements are considered given and the main question is how
to exploit existing nonlinear normal modes or periodic orbits.

In the present paper, we address another question: given
the structure of a mechanical system, especially its multi-body
dynamics; can we find elastic elements such that strict modes
are everywhere, i.e., such that each point in configuration space
belongs to a strict mode? Such a system would always oscillate
periodically when initializing it with zero velocity (or another
compatible velocity) from anywhere. Therefore, the elastic ele-
ments would help, in a sense, ordering the complex mechanical
system with otherwise complicated solution behavior.

II. STRICT NONLINEAR NORMAL MODES

Consider a conservative mechanical system and let Q denote
the corresponding configuration space manifold. In coordinates
it is characterized by the ordinary differential equation (ODE)

ou
M(Q)Q+C(q,¢i)¢1+afq =0, (D

where M (q) denotes the positive definite and symmetric mass
tensor, C(q, ¢)q denotes centrifugal and Coriolis forces and
U(q) denotes a scalar potential function As in [1] we use
some abuse of notation and refer to q as both the point on the
manifold g € Q as well as its coordinates g € RY™ 2. In (1)
g denotes the configuration variable coordinates and g € 74Q
the joint velocities.

The ODE can also be written coordinate-independently.
Considering that, we endow the manifold Q with a Rieman-
nian metric g generated by the coordinate-independent version
of the inertia tensor M (q). Then, let V.- denote the Levi-
Civita connection [[I1]] on the Riemannian manifold (Q,g)
and let U(q) be the coordinate-independent version of the
potential. We can then write the system dynamics as

where V (no subscript) denotes the gradienﬂ We restate here
the definition of strict normal modes and a theorem from [1]]:

Definition (Strict Normal Mode). Let C C Q be a one-
dimensional submanifold of Q with line segment topology. C
can be parametrized by the parametric curve 7y : [0,1] — Q.
If the tangent bundle TC C T Q is an invariant set of the
differential equation, it will be called a strict normal mode.

Theorem 1. C is a strict normal mode of ([2)) iff

a) C is a geodesic of the Riemannian manifold (Q, g) and
b) VU is tangential to C everywhere on C.

IWhen clear from the context we will refer to % as a column vector.

20n Riemannian manifolds the gradient is a vector W/ obtained by e}g-
plying the inverse metric to the covector of partial derivatives: M ~1(q) %—q.

III. APPROACH

Strict modes are generally isolated curves in the configura-
tion space of a conservative mechanical system. In this work,
we aim at finding a (nonlinear) elastic potential such that strict
modes lie densely in the configuration space Q. In other words,
we require that each ¢ € Q is touched by at least one strict
mode. As will turn out this generally cannot be achieved on
arbitrary large regions of ¢ € Q, so we may need to select a
region QcC Q.

The goal is summarized as follows (compare also Fig. [I):

Problem Statement. Find a potential function U, such that
a predefined region of the configuration space Q containing
the equilibrium q., € Q is densely packed with strict normal
modes, i.e., every configuration q € Q is part of at least one
strict mode C C Q.

From Thm. [Th) it is obvious that each strict mode must be
a geodesic of (Q, g). Therefore, each of the lines in Fig.
can be computed by starting at the equilibrium, choosing an
initial velocity and integrating the geodesic flow. The phrase
integrating the geodesic flow is another term for simulating
the system dynamics without potential.

When keeping the above mentioned statements in mind, we
can interpret the results in [|1]] like this: integrating the geodesic
flow starting from the equilibrium will create candidate strict
normal modes. However, in the classical setting, where U
is fixed, only a few or even no geodesics will also satisfy
Thm. E]a), i.e., the choice of the potential field ¢/ selects the
actual strict modes out of the candidates. In this paper, we
desire a potential compatible with all of the candidates.

Take the system dynamics without the potential and let us
write it in coordinates

M(q)g+C(q,q)q = 0. 3)

The approach in this paper allows to freely select the equilib-
rium configuration of the target system. Let us call the desired
target equilibrium ¢q.,. Using standard integration schemes
like the Runge-Kutta method the potential-free dynamics (3)
can be integrated. We set the system to the target equilibrium
configuration g, and shoot the system into arbitrary directions
by setting the initial velocity g, to arbitrary vectors. Then,
we integrate (3) in order to obtain trajectories g(t). Let
us parameterize g(t) with respect to arc length and call it
~ : [0,]] — Q where [ is the arc length of the curve that
g(t) traces out, i.e., we define a new time s such that the
system travels with unit-speed. For each initial velocity g, a
parametrized curve (s) is obtained (Fig. . It is important to
note that the curves «(s) do not depend on the magnitude, but
only the direction of the initial velocity g, . This is a result of
the definition of geodesics and the fact that the trajectories of
the potential-free multi-body system are geodesics with respect
to the inertia metric tensor [12], [[13]]. Each of the geodesics
~(s) should correspond to a strict nonlinear normal mode of
the system including the potential U.

Let us split the potential U into a fixed and known potential
Uy (usually gravity) and an unknown potential U, to be
determined

Ulq) = Uy(q) + Ue(q). “4)
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We now need to ensure that for every ~(s) computed ac-
cording to the above scheme, the acceleration due to the
generalized force T = ‘Z,Z is tangential to ~(s) for every point

on ~. Formally, the potential U, (q) must satisfy

AU, + U,)
Oq

where a((s)) denotes an unknown scalar function introduced
to write tangentiality as equality. Let [¥]* denote the orthogo-
nal complement of the vector v € R™ written in matrix form,
i.e., a matrix of rank n — 1 whose columns are orthogonal to
4 such that 4"[4]* = 0. Then, the requirement can be
reformulated to

AU, +U.) "
dq

This eliminates the unknown scalar function « and allows to
formulate the problem as an optimization problem where (6]
can be used for a cost function.

The conditions (5) and also (6) are inherently local and do
not provide any information on the overall shape and the global
behavior of the final potential function. In order to achieve a
final function U(q) = U,(q) + U.(q) that does behave like a
potential we specify further constraints on the potential:

U(Qeq) = UO
£4(U, + U)(g) > 0.

M~ (y) = a(¥)%, (5)

M~ ()t =o. (6)

min(Uy + Ue)(q) =
Vq # Qe

The first constraint requires that the potential has its
minimum at the equilibrium q.,. The operator Lx f in
denotes the Lie-derivative of f along the vector field X. By
enforcing positivity of the Lie-derivative along the geodesics
we ensure that the potential strictly monotonically increases
when following the geodesics starting at the equilibrium.
Various methods to find a solution to (6) and the con-
straints - are conceivable. These also include finite
element methods [14] and optimization algorithms. For the
latter the constraint (6) can be relaxed and turned into an
optimization objective. Let us write the target potential U, (q)
as parametric function U, (w, q), where w is a collection of
all the parameters of the function. Then training and test data
can be generated by computing geodesics according to the
proposed scheme. Assume that a total of N geodesics have
been computed and let the i-th geodesic ~y, be expressed by
T; samples. The ¢-th sample of the ¢-th geodesic consist of a
position 7y, and a tangent ;,. We then write the cost function

In combination with ) the cost function (§) yields a
constrained optimization problem.

Also for the choice of the parametric model U, (w,q) a
large palette of possibilities is available [[15]], [16].

One choice would be using linear regression methods with
basis functions. Each of the basis functions can be chosen
such that they are realizable by an elastic element. Assume a
selection of nonlinear elastic elements are available - [|17]] and
[18] review a broad set of methods to design such elements.

(7a)
(7b)

2

U Ue)
+ M_l(’Yit)h/it]L ®)

For instance, given linear and cubic springs a lot of func-
tions can already be implemented. Besides the obvious direct
connection of a springs to a joint, the springs can, among
other possibilities, be attached via crankshaft mechanisms im-
plementing a sine-like force profile. Additionally, when using
one-side mounted compression springs non-linear RELU-like
behaviour can be implemented, which can also be combined
with other mechanisms.

Coupling terms could be introduced by constructing me-
chanical components that compute sums or differences of
adjacent joints, e.g., a shaft and two pairs of bevel gears
combined with an elastic element provide coupled opposing
torques in two adjacent joints. These mechanical implemen-
tations create a selection of possible potential functions that
can be used as basis functions for the regression. This way
the resulting potential can be implemented on the physical
system by tuning the stiffnesses of the springs according
to the optimized parameters. In order to achieve physically
realizable elements, a non-negative least squares solver [[19]]
must be used. Another advantage of non-negative least squares
is sparsity, i.e., one can remove all the elastic elements not
creating any force from the system.

However, due to lack of space, the physical implementation
of the optimized potential is not in focus in this paper and it
will be addressed in future work. We, therefore, here choose
to employ a neural network model with a single output for the
parametric function U, (w, q).

When implementing the potential U, on the mechanical
system it will provide infinitely many strict modes. For con-
servative systems the modes will neither be attractive nor
repulsive. External forces and modelling errors result in the
system not stably oscillating on a desired mode. Also, when
starting at rest the modal oscillation of the system must be
excited. Friction and other dissipative terms remove energy
from the system which must be reinjected.

For these reasons a controller is required for practical
applications. The controller will stabilize the system onto the
desired mode and keep the total energy at a desired level. Let
7.(q,q) be that controller, then the dynamics of the system
can, in coordinates, be written as

ou, ouU, .
M(q)qg+C(q.q)q+ -2+ d(q, q)+—a =7:(q,9).
N—_—— q N—_——

Jq

conservative mechanical system

controller

dampin
poe (active)

and friction  elas. pot.

(passive)

A classical robotic system would generate the sum of the elas-
tic potential and the active controller using the actuators. The
main advantage of the proposed approach is that torques due to
the potential U, are large compared to the controller torques
and that U, creates useful torques, i.e., torques steering the
system on a desired natural oscillation. Because the potential
U can be implemented by (nonlinear) elastic elements on the
physical system, only the torques due to 7.(g, ) need to be
generated by the actuators. Therefore, a large part of required
torques will be provided by the mechanics requiring smaller
actuators and less actuator power. This allows to perform all
of the modal oscillations and desired trajectories that are close
to the modes very efficiently.
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IV. CASE STUDY: DOUBLE PENDULUM

g% xz

We showcase the approach for a
serial system with two degrees of free-
dom (Fig. ). Further, we take the
system outside of a gravitational field
(Ug = 0). You can either think of a
double pendulum in space or a two de-
gree of freedom manipulator on earth
parallel to the earth’s surface. The
system parameters are summarized in
Tab. [ in App. [A] The potential-free
dynamics is governed by (3).

An equilibrium g, for the target system must be selected.
As derived before, the choice of equilibrium and the inertia
tensor fully determines the shape of the strict normal modes
of the target system. Therefore, the equilibrium configuration
should be carefully selected, as it will determine the strict
normal modes that can later be used.

We start with the choice q,, = [—7/6,—7/4]T (Fig. .
Using an Runge-Kutta integrator [20], we compute geodesics
of the system by the proposed method. We set the initial
configuration to g, = ¢, and set an upper time limit in
order to stop the integration. The initial velocity ¢, is set
to unit vectors by sampling the unit-sphere equidistantly. Due
to the nonlinearity, distributing the initial velocities uniformly
does not imply that the configuration space is evenly covered
with geodesics. However, for every point q in the subspace
Q a geodesic passing through it and the equilibrium can be
found. Fig. [3a] shows some of the computed geodesics. Note
that the axes are in radians, so the trajectories correspond to
long motions, where the joints are turned multiple times. In
this large region Q the geodesics intersect, but when selecting
a smaller region the intersections can be avoided. The gray
rectangle in Fig. shows one such region Q and Fig.
shows it magnified.

Fig. 2. Double Pendulum
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Fig. 3. Geodesics of the example system. Restriction to a subregion results
in a space where the geodesics only intersect at the equilibrium.

We perform this procedure for three different settings for the
equilibrium g, and show resulting geodesics in Tab. [} The
first column in Tab. [I| shows the equilibrium configuration, the
second column the geodesics in a properly selected region Q
of the configuration space and the rightmost column shows
the geodesics in Cartesian space. Using the color of the lines,
the geodesics in configuration space can be matched to their
Cartesian reflection. At this point we will continue the example
with the elbow-up setting (row (b) in Tab. m) for the remainder
of this section.

TABLE I
COMPARISON OF DIFFERENT TARGET EQUILIBRIA.

Equilibrium Some Geodesics In Cartesian Space
6 4
3
4 o 4 2
2| deq = |g 2 1
0 0
0 5 A o
2 -2
-4 3
4 6. %
(a) 4 - O Z & TS -TUO-U5 00 05 TO 1O -

O o s
S bE Do s

Abblo—wwa

b | S

AL o s

Lo s oD
Abblo—wuwa

(C) 420 %

We choose a two-layer neural network with tanh-activation
functions and 200 neurons in the first and 100 neurons in the
second layer as model function for U.(w,q). The network
model is implemented in TensorFlow [21]] and the parame-
ters are initialized randomly. In general we formulated the
objective of finding the potential as constrained optimization
problem in (7a)-(8). The cost function is only dependent on
the output-to-input gradient of the neural network, not on the
output itself. It is tuning the network very locally, but does not
have a strong preference in the global shape of the potential.
Therefore, we do not need to enforce the constraints @))
explicitly, but rather pre-train the network to a convex surface
and then switch to the cost (8) to warp and stretch the initially
trained surface to match the desired tangentiality condition (8).

In a first step the network is fitted to a parabola

€))

using an Lo-loss based on (9). The parameters w are optimized
using the ADAM algorithm [22]. A parabola is easy to fit,
therefore we obtain a very low pre-training loss.

Afterwards, we switch to the loss function @ During the
training we frequently sample new training data in order to
prevent overfitting. Although we have not explicitly enforced
the constraints (@3), the local nature of the loss function keeps
the global bowl-like shape of the pre-trained parabola during
the training.

In Fig. [5b] isolines of the resulting po-

. . . 1600
tential are shown in orange and Fig. fa
shows a surface plot. Additionally, the gray 120
lines show some geodesics. We analyze how "
parallel v; = Mﬁl(q)%—g and vy = are.  w
Therefore, we compute the angle between  *°
the vectors v; and v for many points on 0
randomly sampled geodesics and show a
histogram in Fig. 4 The angles are com-
puted in degrees, where an angle of 0° is
optimal in a sense that v; and wvo are parallel.

V(g) = (qd— qeq)" (@ — qeq)

70'5Ang%9n deé)'5

Fig. 4. Residuals
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Fig. 5. Simulation of the double pendulum with the optimized potential for
different initial conditions and visualization of the potential function.

For validation of the potential U, we apply the potential on
the system dynamics, i.e., we simulate

M(@)i +Cla.9)a + 50 =0
for some initial configurations and show the results in Fig. 5]
The initial velocity is always set to zero. Panel (b) shows the
simulated trajectories in the ¢;go-plane. The black stars show
the initial configurations. Moreover, we show time plots for
three of the six trajectories (c-e). We would like to highlight
that the results in Fig. 5] are without any active controller. The
periodic motions are due to the properly tuned potential U..

The results in Fig. 5] confirm that the proposed approach
leads to the desired result. We have shown six example modes,
but infinitely many are present in the system. There is no
preferred mode. Hence, when the system is slightly disturbed
onto another mode, there is no mechanism pulling the same
back onto the desired mode. When the system is subject to
damping, the damping will dissipate energy from the system
and the oscillation will decay. Moreover, the damping will
most likely not be compatible with the mode, i.e., the damping
forces may generally pull the system off the mode.

Hence, we design a controller stabilizing the system onto
the desired mode and a controller injecting energy in the next
section.

(10)

V. CONTROLLERS

In this section two controllers will be derived and evaluated
for the example system. The first controller will stabilize the
system onto one of the infinitely many strict normal modes,
while the other will swing up and keep the system at the
desired energy level.

A. Mode Selection Controller

In order to derive a mode selection controller some way of
labeling the (infinitely many) strict normal modes is required.

Generally, this can be achieved by a function 8 : @ — X,
where dim X = n — 1, i.e., the space of available strict modes
is of dimension n— 1. The value of 8(g) will encode to which
mode the point g belongs. Because all modes pass through the
equilibrium g, such a function cannot exist at that point.

Here, we have n = 2, and thus the labeling function will
be a function into one dimension. The strict normal modes of
the system can be identified by the direction of the velocity
vector ¢ when it passes through the equilibrium. Note that
g and —q identify the same mode and that the space of
directions of a vector is not homeomorphic to the real numbers.
Consequently, we design a function 6 : Q@ — St.

Detailed derivations on the la-
beling function #(q) are attached
in the appendix App.[B] We again
used machine learning techniques
to represent the function 6(q) by
using a neural network model.
Fig. [6] shows a color-coded render-
ing of the labeling function for our
example. One can recognize from
the rendering that, as expected, the
level sets of 6(q) correspond to the strict modes of the system
(see Fig. [5D).

Based on the labeling function 6(q) we derive the controller

- 00 00 .
7o = M(a)5, (komm,ed) _ c@(q)aqTq) A

[ S -
>

g9 in rad
:
L L o —
@Y g inrad

RS

E 0 q1 inlrad 2 3

Fig. 6. Mode labeling function

where kp is a proportional gain and the deviation from the
desired strict mode 6, is computed by the function Af(q,0y).
The equations for Af(q,04) 1} and g—z can also be
found in App. The damping coefficient dg(q) (24b) is
computed based on a desired damping ratio (.

As the labeling function cannot exist at the equilibrium and
does not perform well very close the equilibrium, we only
enable the controller (IT) when the system is outside an e-
ball centered at the equilibrium, i.e., we set

0 if ||q_qeq||2 Se’;‘,

12

T@(qa q) = {

otherwise.

The mode selection controller also allows to switch between
various modes during operation. In (22b) the desired mode is
specified by the real number 6,. Using this value the desired
mode can be selected.

For the experiments, we set kg = 1, ( = 0.7 and € = 0.1
and apply the controller (T2) together with the optimized
potential on the system. We increase ; step-wisely by an
amount of % every 15s. The results are shown in Fig.
where it becomes obvious that, compared to the torques due
to the potential, the controller torques are quite low also when
switching between modes. Fig. [7d| shows a time evolution of
the function 0(q(t)). Especially in this plot it becomes clear
that the function cannot be used at the equilibrium. Each of
the spikes in Fig. [7d] corresponds to a passage through the
equilibrium, where the function value is undefined. However,
this does not compromise the performance as the controller
(I2) is disabled when close to the equilibrium (gray areas).
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Fig. 7. Simulation results with activated mode selection controller when

switching the desired mode step-wisely.

B. Energy Regulation

The task of the energy regulation controller is to swing up
the system to the desired energy level. Additionally, during
operation on the mode the energy regulation controller will
compensate for energy losses by reinjecting dissipated energy.

The mechanical system in combination with the mode
selection controller 7y will already be stabilized onto the
desired mode. Therefore, negative damping can be used to
inject energy into the system. We scale the amount of negative
damping by the difference of the current energy estimate to
the target energy F; and obtain

TnD(q7 q) = BnD (Ed - E(q7 q)) q, (13)
where (3,p is a scalar constant and
. 1, .
E(g,q) = 54" M(a)q +U(q). (14)

This controller will in general not be compatible with the
modes, i.e., the accelerations due to torques by this controller
will not be tangent to the mode.

Let us consider the energy regulation controller by Della
Santina et al. II1.D] as another candidate controller

where [p is another scalar parameter. The controller
accelerates or decelerates the system along the velocity vector.
Therefore, it will be tangent to the mode if we are on a mode.

We simulate the system with the potential U., the mode
selection controller Ty and additionally model joint friction by
a diagonal damping matrix D = 0.31. Further, we initialize
the system at a configuration g, and set the initial velocity
to zero. Our chosen g, corresponds to the energy level of
FEy = 5.0J. The target energy level is set to Ey = 20.0J. We
test the two candidate controllers 7,p and 7 on this problem
setting. The constant S,p is set to S,p = 0.4 and we have tuned

(15)

BE such that both controllers let the system converge to the
same steady state energy after the same time. We got a value
of fp = 0.13.

The simulation results are shown in Fig. [8] It turns out that
the two candidate controllers have advantages and disadvan-
tages.

On the one hand, the mode-compatible controller 75 per-
forms much better during the swing up phase. As can be seen
in Fig. [8a] (blue line) it accelerates the system along the mode.
The control actions by 79 and T g are dynamically decoupled,
i.e., a control action by 7y will not create an immediate change
in potential energy and a control action by 7 will not pull the
system off the mode. In contrast, the simple negative-damping
controller T,p shoots the system into a different direction
(vellow line in Fig. [8a), which must be compensated by the
mode stabilization controller ¢ (Fig. [8c).

2.0
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2 1.0
8 El
£ 05 =
g 2
0.0 En
<0
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Fig. 8. Damped system including the optimized potential, the mode selection
controller and two types of energy regulation.

(¢) Top

On the other hand, after the swing-up phase the ranking
of performances is swapped. The negative damping controller
Typ performs much better at compensating the damping as
the structure is the same as the isotropic system damping. The
mode-compatible controller T cannot compensate the system
damping completely, as it has a different structure. Corrective
torques by the mode selection controller T4 are required, as the
system damping is not compatible with the modes (Fig. [8d).

We want to highlight, that the negative-damping controller
performs so well after the swing up phase only because the
modeled joint friction matches the structure of the controller.
This is a match, which is quite unrealistic for real world
scenarios. Therefore, for applications on hardware, a clas-
sical damping compensation should be used and the mode-
compatible controller T should be used for energy regulation
and swing up.
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C. Sensitivity Analysis

The final potential function U, is represented by a neural
network, which provides a lot of flexibility and easily ac-
cessible algorithms for training. When moving from neural
networks to actual mechanical elastic elements it will be hard
to exactly implement the optimal potential. A mechanically
implemented potential U, will in general not exactly resemble
the optimal potential U,. Although the mechanical implemen-
tation is not addressed in this paper, we perform a sensitivity
analysis here. We add another parasitic potential to the optimal
one and obtain the disturbed potential

0
=Uec(q) + %(q — Q)" [FS } (@—a), (16)

K2

Ue(q)

i.e., we add two linear parasitic springs with stiffness ex; to
the system. The constants «; are selected such that

max
7!

;= =t 17
K A (I7)

7

U

where 7" = max% , 1.e.,
J6) q

ie and qu‘nax = mf}X|Qi — Geq,i
when setting € = 1 the torques to the para?itic potential grow
as high as the ones due to the optimal potential U,.

The system is simulated for different settings of e. Note
that for e = 0 the system is the optimal one, i.e., the optimal
potential U, is present. Both controllers, 79 and T g, are active
with the same settings as before. Results are shown in Fig. [9}
Up to a value of ¢ = 0.1, the trajectory traced out in the
q1g2-plane (Fig. Pa) does not change significantly. However,
the frequency of oscillation is slightly altered (Fig. Ob). For
€ = 0.5 and € = 1.0, we observe larger disturbances. We want
to highlight that we introduced quite high parasitic forces. For
€ = 1 the torques due to the parasitic potential are on average
as high as the torques due to the optimal potential U..

From the power plots (Fig. Pc-e) can be concluded that
increased control action is required for increasing €. Especially
the energy regulation controller (black lines) is removing and
adding energy periodically. This is no surprise, as the control
law (I3) relies on the computation of the energy (I4). Within
(T4) the optimal potential U, is used as the truly implemented
potential U, is generally not known. Consequently, the energy
regulation controller uses a false estimate of the energy.

In a next step we compute the total energy flux introduced
by the individual torque components. Therefore, we integrate
the absolute value of the powers using numerical integration

/|P9| ~ Z |44l ot.

Likewise we compute the total energy fluxes [|Pp| for
the disturbed potential and [ |Pg| for the energy regulation
controller. Table [lI| shows the results. In a physical system the
energy flux in the first row is handled by elastic elements,
which store and release energy. Therefore, for ideal springs,
the first row does not effect the energy efficiency. The last two
rows correspond to energy fluxes through the actuators of the
system. As electrical actuators and their drivers usually do not
recover energy, this energy is lost. Hence, for energy efficient
system the values in the last two rows should be as small as
possible.

(18)
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Fig. 9. Results for the sensitivity analysis. The parasitical potential is

increased over the experiments. The top row shows the evolution of the system
in terms of the joint angles. The bottom row shows power flow due to the
individual torques sources for three different values of e.

TABLE I
COMPARISON OF TOTAL ENERGY FLUXES
€ 0 0.01 0.05 0.1 0.5 1.0
T | Pyl 354.56 | 356.23 | 363.25 | 37243 | 447.18 | 565.60
J1Ps] 2.86 2.85 2.94 3.74 11.72 20.92
[ 1P&] 0.03 1.87 9.44 18.75 89.264 | 181.83

We conclude that the final system admits certain tolerances
in the potential implemented by mechanical elements. The
controllers are able to compensate inaccuracies in the potential
to a certain extent. On the one hand, for moderate inaccuracies
of the potential, the system trajectories change shape only
slightly. However, the timing and frequency of oscillation
changes. The aim of this work was not to do trajectory
tracking, but to basically retain as much as possible from the
dynamics of the mechanical system. On the other hand, the
energy efficiency decreases when the implemented potential
deviates from the optimized one.

VI. CONCLUSION

In this paper we have developed a method to find a potential
that densely endows the configuration space with strict normal
modes, which describe natural periodic oscillations of the
system including the potential. The main take-off message is
that, by designing the potential field to harmonize with the
inertial properties, i.e., with the natural Riemannian metric of
the system, the highly nonlinear system can display a large
variety of very regular motions.

The implementation of the potential directly in the mechan-
ics by combining nonlinear elastic elements that create the
optimized potential was not within the scope of this paper
and will be addressed in future work. However, considering
the sensitivity analysis, it can be concluded that certain dis-
crepancies between the implemented and the optimal potential
can be tolerated.
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The strict modes allow to efficiently execute a variety of
periodic oscillations. Stabilization onto a desired strict mode
can be realized by the proposed mode stabilization controller.
Further the system can be swung up to the desired energy level
using the energy regulation controller. The latter also reinjects
energy that is lost due to damping or interactions. We have
shown in simulations experiments that the control torques are
very low compared to the torques due to the elastic elements.

APPENDIX A
PARAMETERS OF THE DOUBLE PENDULUM
TABLE III
| Linkl | Link2
Mass m1 = lkg mo = lkg
Length 1 =2m lo =2m
Center of Mass from Origin le1=1m lco=1m
Moments of Inertia Iy =1kgm? | I = 1kgm?
APPENDIX B

MODE IDENTIFICATION COORDINATE

The direction of the velocity when passing through the
equilibrium is used to identify a strict mode, where velocity
vectors ¢ and —q identify the same mode. Therefore, we set
the label of the strict mode to

0 = 2 atan2(go, 1), (19)

where ¢; and ¢ are the two components of the velocity vector
at the equilibrium. The factor of 2 ensures that ¢ and —q
correspond to the same label 6.

In order to obtain a function 6(q) encoding the label of the
mode passing through g, we generate system geodesics =y, and
assign a label 6; to them according to (19). Each geodesic is
represented by T; samples v;, € Q. This creates an amount of
>, T; training tuples (=y;,, 6;). However, the raw function 6(q)
cannot be approximated by a scalar function as it parametrizes
S! and it is not defined at the equilibrium. We therefore define
another function

cosf
M@ = lla - aul (g 0)

which can be used to reconstruct 6(q) by
0(q) = atan2(A2(q), A1(q)). 21

In contrast to 6(q) the function A(q) is smooth. We take
a neural network with tanh activation functions, two hidden
layers and two outputs and use it to approximate A(q) based
on the training data (v,,,6;).

As 0 € S! some care must be taken when computing the
difference to the desired mode 6,. Let

_|cosby
d sin 0y

—sind A —A2(q)
cos Gdd} and A(q) = [Aiggg Af(q% ] '

The basic idea is to express 6(q) as rotation matrix. We need
to orthonormalize A(q) by using the singular value decompo-
sition to obtain ULVT = A(q) and set Q(q) = UV, then

(22a)
(22b)

Ra(q,04) = R1Q(q)
Al(q,0q) = atan2(ra1(q,0q),r11(q,04)),

where 7;;(q, 64) are the respective elements in Ra (g, 64). The

derivative of Af(q) with respect to g can be computed using

00

aqT

For the damping design we first transform the mass-matrix

M (q) of the manipulator to §(q) coordinates and then com-
pute the damping coefficient

= [—sinAf cos Af] a—A (23)
dq

mo(g) = ——— (24a)
(%) M7 @5
do(q) = 2¢\/kemo(q) . (24b)
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