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Abstract— We present a method of extrinsic calibration for
a system of multiple inertial measurement units (IMUs) that
estimates the relative pose of each IMU on a rigid body
using only measurements from the IMUs themselves, without
the need to prescribe the trajectory. Our method is based
on solving a nonlinear least-squares problem that penalizes
inconsistency between measurements from pairs of IMUs. We
validate our method with experiments both in simulation and
in hardware. In particular, we show that it meets or exceeds the
performance—in terms of error, success rate, and computation
time—of an existing, state-of-the-art method that does not
rely only on IMU measurements and instead requires the use
of a camera and a fiducial marker. We also show that the
performance of our method is largely insensitive to the choice
of trajectory along which IMU measurements are collected.

I. INTRODUCTION

Inertial sensors are widely used in mobile robot navigation
systems. These sensors are typically packaged in an inertial
measurement unit (IMU), which consists of a triaxial ac-
celerometer to measure specific force along orthogonal axes
and of three gyroscopes to measure angular rates about these
same axes. While it is still common to use only a single IMU
as the basis for a navigation system, it has been recognized
that the simultaneous use of multiple IMUs on the same
robot may result in higher measurement accuracy, increased
bandwidth, and better fault tolerance than could have been
achieved with a single IMU of the same total size, weight,
power, and cost [1]–[7]. In order to realize these benefits,
however, it is necessary to perform extrinsic calibration—
that is, to estimate the relative position and orientation (i.e.,
the relative pose) of each IMU with respect to the robot on
which they are all mounted.

Existing methods of extrinsic calibration for multi-IMU
systems fall into three categories. First, there are methods
that rely on the use of instruments (e.g., rate tables) to
precisely control the trajectory of the robot on which the
IMUs are mounted [8]–[11]. Calibration is then a matter
of choosing the relative pose of each IMU that minimizes
the difference between expected and actual measurements.
We largely ignore methods in this first category, since our
goal in this paper is to perform extrinsic calibration from
data collected in flight along arbitrary trajectories. Second,
there are methods that rely on the use of aiding sensors,
for example a camera. “Kalibr” is one such method—it
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TABLE I: COMPARING DIFFERENT METHODS OF
EXTRINSIC CALIBRATION FOR MULTIPLE IMUS

characteristics estimated
quantities

method free from
camera?

arbitrary
trajectory?

code
available? p q g

Iq

Qiu et al. [14] • • - - • -

Kim et al. [15] • • - • • -

Schopp et al. [16] • • - • • -

Rehder et al. [13] - - • • • •
Kortier [17] • - - • • •

Our Method • • • • • •

p: IMU position, q: IMU orientation, g
Iq: gyroscope misalignment,

•: applicable, -: not applicable

assumes the navigation system consists of a single camera
and of multiple IMUs, and applies well-known algorithms
to estimate the pose of each IMU (one-by-one) with respect
to the camera, given images of fiducial markers [12], [13].
Again, we largely ignore methods in this second category,
since our goal in this paper is to perform extrinsic calibration
without the use of aiding sensors. However, we do use Kalibr
as a benchmark in our hardware experiments (Section IV),
since it is available as open-source and provides excellent
performance. Third, there are methods that—like ours—
require neither instruments nor aiding sensors [14]–[17].
Instead, these methods require only measurements from the
IMUs themselves. We were particularly inspired by the
method of Schopp et al. [16], which—like ours—is based
on solving a nonlinear least-squares problem that penalizes
inconsistency between expected and actual measurements.
Indeed, one way to think about what we are trying to do
in this paper is to extend methods in this third category to
eliminate certain limitations (e.g., applying only to arrays
of accelerometers and not gyroscopes) and to relax certain
assumptions (e.g., that accelerometer and gyroscope axes are
perfectly aligned in each IMU).

Section II presents our method of extrinsic calibration.
Section III validates our method with experimental results in
simulation using OpenVINS [18]. Section IV validates our
method with experimental results in hardware, using Kalibr
as a benchmark. Section V discusses a number of directions
for future work.

Both the code and dataset used in this paper are available
online.1

1https://github.com/jongwonjlee/mix-cal
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II. METHODOLOGY

A. Notation

We use B
AR ∈ SO(3) to denote the rotation matrix that

describes the orientation of frame FA in the coordinates of
frame FB . We use C(·) to denote the operator that converts
a unit quaternion B

Aq to the corresponding rotation matrix
B
AR. Coordinate transformations are expressed as follows:

Bp = B
ARAp = C

(
B
Aq
)
Ap.

We will use the following symbols to distinguish between
different types of quantities:
• a tilde (̃ · ) means a sensor measurement,

• a hat (̂ · ) means an estimate,
• a zero superscript ( · )0 means an initial guess (before

optimization),
• and an asterisk superscript ( · )∗ means a final value

(after optimization).

B. Inertial sensor model

We model the accelerometer measurements from each
IMU as

I ã = IaWI − Ig + ba + na (1)

where
• IaWI is the linear acceleration of the IMU frame with

respect to the world frame, expressed in the IMU frame,
• Ig is the acceleration of gravity expressed in the IMU

frame,
• ba is a time-varying bias that is described by a random

walk

ba,k+1 − ba,k ∼ σba

√
∆t · N (0, 1) ,

• and na is stochastic noise

na ∼ σa/
√

∆t · N (0, 1)

where ∆t is the sampling interval of the IMU. We model
the gyroscope measurements from each IMU as

gω̃ = C(gIq)IωWI + bg + ng (2)

where
• C(gIq) is the rotation matrix (written in terms of the

corresponding quaternion) that describes the orientation
of the IMU frame with respect to the gyroscope frame
and that allows us to model gyroscope misalignment,

• IωWI is the angular velocity of the IMU frame with
respect to the world frame, expressed in the IMU frame,

• bg is a time-varying bias that is described by a random
walk

bg,k+1 − bg,k ∼ σbg

√
∆t · N (0, 1) ,

• and ng is stochastic noise

ng ∼ σg/
√

∆t · N (0, 1) .

In what follows, we assume the square roots of noise density
σa, σg and bias instability σba , σbg in continuous-time have
been identified for all sensors prior to extrinsic calibration.

We choose not to include the non-orthogonality and scale
factors of both the accelerometers and gyroscopes in our
calibration process. These parameters can be calibrated in
advance using one of several existing approaches [19]–[22].
We do, on the other hand, model gyroscope misalignment
which is frequently ignored in existing calibration pro-
cesses [21], [22]. We show in Section III that including these
parameters in our calibration process can reduce the RMSE
of the remaining calibration parameters. In addition, we
choose not to include time offset parameters or asynchronous
measurements in our calibration process. There exist several
approaches to estimate these parameters separately in soft-
ware or to correct these issues in hardware [23]–[25].

C. Problem statement (multi-IMU extrinsic calibration)

Suppose there are N + 1 IMUs and that we index the
frames attached to each of these IMUs as

I0, . . . , IN .

We use I0pI0In := pIn to denote the relative position of
frame In with respect to frame I0, written in the coordinates
of frame I0. We use I0

In
q := qIn to denote the quaternion

describing the relative orientation of frame In with respect
to frame I0. Note that these IMU frames I0, . . . , IN are
assumed to be aligned with the accelerometers. Gyroscopes
measurements are taken in frames g0, . . . , gN , where a given
frame gn is misaligned from the IMU frame In by quaternion
gn
In

q. Given a sequence of measurements

In ãk,
gnω̃k

at each time k ∈ {1, . . . ,K} for each IMU n ∈ {0, . . . , N},
the goal of extrinsic calibration is to estimate the parameters

pI1 , . . . , pIN

qI1 , . . . , qIN
g0
I0

q, g1I1q, . . . , gN
IN

q.

To facilitate the estimation of these extrinsic parameters, we
have found that it is helpful to simultaneously estimate the
time-varying accelerometer and gyroscope biases

ban,k, bgn,k

at each time k ∈ {1, . . . ,K} for each IMU n ∈ {0, . . . , N},
as well as the angular acceleration of the base IMU

I0αWI0,k :=I0 αk

at each time k ∈ {1, . . . ,K}. These extra parameters can be
thought of as auxiliary or slack variables. Note that we do
not attempt to estimate the full trajectory of the rigid body
to which the IMUs are mounted.

D. Solution approach (maximum-likelihood estimation)

Defining X 0,k = {g0I0q, ba0,k, bg0,k,
I0αk} and Xn,k =

{pIn , qIn ,
gn
In

q, ban,k, bgn,k}, the overall parameters X =



{
Xn,k |n ∈ {0, . . . , N}, k ∈ {1, . . . ,K}

}
can be estimated

by solving a non-linear least-square problem

min
X

{ ∑
n∈{1,...,N}
k∈{1,...,K}

(∥∥ra (Xn,k, X 0,k; In ãk,
I0 ãk,

g0ω̃k

)∥∥2
Σa

+ ‖rg (Xn,k, X 0,k; gnω̃k,
g0ω̃k)‖2Σg

)
+

∑
n∈{0,...,N}

k∈{1,...,K−1}

(
‖rba

(Xn,k)‖2Σba

+
∥∥rbg (Xn,k)

∥∥2
Σbg

)}
(3)

where ‖·‖2Σ denotes Mahalanobis distance with a covariance
matrix Σ.

The residual ra relates the nth accelerometer’s measure-
ment (In ãk) compensated by its bias (ban,k) to the specific
force reconstructed by the base IMU measurement (In âk)

ra =
(
In ãk − ban,k

)
− In âk.

In âk is formulated by mapping the specific force at base
IMU into the nth IMU, parametrized by their geometric
relationship and rotational motion

In âk = I0
In

R−1
{
I0 âk +

[
I0ω̂k

]2
× pIn + [I0αk]× pIn

}
,

I0 âk = I0 ãk − ba0,k,
I0ω̂k = g0

I0
R−1

(
g0ω̃k − bg0,k

)
where I0

In
R = C

(
qIn

)
, g0

I0
R = C

(g0
I0

q
)
. Note that [·]× is an

operator converting a cross product into a skew-symmetric
matrix form. As the sensor measurement subtracted by their
own bias has an uncertainty due to zero-mean gaussian white
noise—i.e. ã − ba = na from Eq. (1) and ω̃ − bg = ng

from Eq. (2), the corresponding covariance matrix for ra is
Σa = {2 · σa2/∆t+ (σg

2/∆t)2} · I3×3.
rg is a residual relating the nth gyroscope’s measurement

(gnω̃k) to that of base gyroscope’s (g0ω̃k), both of which are
compensated by their own biases (bgn,k, bg0,k)

rg = I0ω̂WIn − I0ω̂WI0

= I0
In

R gn
In

R−1
(
gnω̃k − bgn,k

)
− g0

I0
R−1

(
g0ω̃k − bg0,k

)
where I0

In
R = C

(
qIn

)
, gn

In
R = C

(gn
In

q
)
, and g0

I0
R =

C
(g0
I0

q
)
. This relation holds as the same rotational motion is

experienced at any locations on the same rigid body. Similar
to the covariance matrix for ra, the covariance matrix for rg
is Σg = 2σg

2/∆t ·I3×3. Note that ra and rg both take g0ω̃k

as input and therefore are correlated.
rba

and rbg
accounts for bias evolution along time

rba = ban,k+1 − ban,k

rbg = bgn,k+1 − bgn,k.

These residuals’ covariance matrices Σba
, Σbg

comes from
the bias evolution in discretized time domain; hence, Σba

=
σba

2∆t · I3×3, Σbg
= σbg

2∆t · I3×3.

E. Degenerate cases

The solution to Eq. (3) can be found when the Fisher
information matrix (FIM) is invertible [26]. This is identical
to the condition when the Jacobian of Eq. (3),

J =


J1,0 J1,1 · · · J1,N

J2,0 J2,1 · · · J2,N

...
...

. . .
...

JK,0 JK,1 · · · JK,N


composed of submatrices at each time k ∈ {1, . . . ,K} for
each IMU n ∈ {0, . . . , N}

Jk,n =



[
∂ra
∂X0

∂rg
∂X0

∂rba
∂X0

∂rbg
∂X0

]T
∈ R12×12 if k 6= K,n = 0[

∂ra
∂Xn

∂rg
∂Xn

∂rba
∂Xn

∂rbg
∂Xn

]T
∈ R12×15 if k 6= K,n 6= 0[

∂ra
∂X0

∂rg
∂X0

]T
∈ R6×12 if k = K,n = 0[

∂ra
∂Xn

∂rg
∂Xn

]T
∈ R6×15 if k = K,n 6= 0

is full rank. In this paper, we do not derive all cases
where this condition breaks, which we call degenerate cases.
However, degenerate cases do exist. The exact set of degen-
erate cases will vary with respect to the number of IMUs,
their geometric arrangement, the number of timesteps, the
distribution of measurement, and more.

Previous work on the self-calibration for camera-IMU
systems [27], [28] find that motions such as constant ac-
celeration or rotation along a single axis at a constant rate
result in a failure mode. In line with this, we run our exper-
iments (wherein we compare our IMU extrinsic calibration
techniques to a camera-IMU system) on trajectories where
such motions are avoided.

III. SIMULATION EXPERIMENTS

To verify the robustness of our multi-IMU extrinsic
calibration along arbitary trajectories as stated above, we
performed several experiments using OpenVINS [18], an
open-source visual-inertial simulator. It is commonly the
case that engineering drawings dictate a reasonable initial
guess for the (nominal) position and orientation of a set
of sensors, but manufacturing tolerances place the sensors
at different locations and orientations. Therefore, our ro-
bustness evaluation considers sensors placed at a nominal
position with initial guesses for parameter estimates selected
according to samples from a Gaussian distribution about
these nominal positions and orientations. Then we consider
the robustness of our solutions where the initial guess for
extrinsic parameters may be well outside these tolerances.
We show that, even outside typical manufacturing tolerances,
our method is robust to different initial conditions.

A. Implementation details

We assumed that four IMUs were mounted to a rigid
body. Table II shows the reference pose of each IMU. The
accelerometers’ noise and random walk characteristics were
σa = 2 × 10−3 m/s2/

√
Hz and σba

= 3 × 10−3 m/s2 ·√
Hz, while those of gyroscopes were σg = 1.6968 ×

10−4 rad/s/
√

Hz and σbg = 1.9393×10−5 rad/s·
√

Hz. The
first values of simulated time-varying biases ban,1 and bgn,1



TABLE II: REFERENCE IMU POSES IN SIMULATION

index position [mm] orientation [rad]*
IMU0 [0, 0, 0] [0, 0, 0]
IMU1 [200, 0, 0] [π, 0, 0]
IMU2 [0, 200, 0] [0, π, 0]
IMU3 [0, 0, 200] [0, 0, π]

* in this table, orientation is given as XYZ Euler angles

were sampled from a uniform distribution on the interval
[−0.05, 0.05]. Gyroscope misalignment was generated by
rotating the reference orientation of each IMU about an
axis chosen uniformly at random by an angle sampled from
a zero-mean normal distribution with standard deviation
of 1◦. IMU measurements were generated at 100 Hz and
have synchronized time stamps while the rigid body was
moved along six different trajectories from the TUM-VI
Dataset [29]. Fig 1 shows one of these trajectories.

B. Results when initial guesses are within typical manufac-
turing tolerances

Table III shows the root mean square error (RMSE) of
the estimated extrinsic parameters—the relative position pIn

and orientation qIn of each IMU n ∈ {1, . . . , N} with
respect to the base IMU0—over twenty trials along each
trajectory in the case when initial guesses were within
typical manufacturing tolerances. The initial guess of each
relative position was sampled from a normal distribution with
mean equal to the reference position and with a standard
deviation along each axis of 5 mm. The initial guess of each
relative orientation was generated by rotating the reference
orientation about an axis chosen uniformly at random by
an angle sampled from a zero-mean normal distribution
with a standard deviation of 5◦. Our results show that,
when we included gyroscope misalignment g

Iq in the set
of parameters to be estimated (with an initial guess of
zero misalignment), our proposed method achieved sub-
millimeter and sub-degree error for all trajectories, which
is comparable to other existing methods [15], [16]. Our
results also show, in particular, that it is important to estimate
gyroscope misalignment (something that not all methods
listed in Table I do, for example Kim et al.[15])—without
estimating misalignment, position and orientation errors were
between one and two orders of magnitude higher.

Table IV shows the RMSE of the estimated angular accel-
erations I0α∗k and time-varying biases b∗an,k

, b∗gn,k for each
time k ∈ {1, . . . ,K} and each IMU n ∈ {0, . . . , N} over
the same twenty trials along each trajectory. The initial guess
of each angular acceleration I0α0

k was found by numerical
differentiation of gyroscope measurements g0ω̃k from the
base IMU. The initial guess of each time-varying bias b0

an,k

and b0
gn,k

was zero. Recall that angular accelerations and
time-varying biases are extra parameters that we think of as
auxiliary or slack variables and that their estimation is not
our main focus. Nonetheless, results show that our proposed
method reduces RMSE in estimates of all extra parameters

when compared to initial guesses. To help visualize these
results, Fig. 2 shows the error of each estimated angular
acceleration I0α∗k and of each time-varying bias b∗a0,k

, b∗g0,k
for the base IMU as functions of time over a single trial along
each trajectory.

C. Results when initial guesses are outside typical manufac-
turing tolerances

Next, we study the extent to which the proposed method
can reliably estimate extrinsic parameters when initial
guesses are outside typical manufacturing tolerances.

Table V shows the RMSE of the estimated position be-
tween each IMU n ∈ {1, . . . , N} with respect to IMU0 over
the same twenty trajectories. Results are reported where the
initial guesses for the relative position have between 0 and
30 mm error and initial guesses for relative orientation have
between 0 and 90 degrees error. Our results show that—up
to 60 degrees of error in the initial orientation and 30 mm
of error in the initial relative position—relative position is
estimated to within 0.2 millimeters.

Table VI shows the RMSE of the estimated orientation
between each IMU n ∈ {1, . . . , N} with respect to IMU0
over the same twenty trajectories. Again, results are re-
ported where the initial guesses for the relative position
have between 0 and 30 mm error and initial guesses for
relative orientation have between 0 and 90 degrees error.
Our results show that—up to 60 degrees of error in the
initial orientation and 30 mm of error in the initial relative
position—orientation is estimated to within 0.03 degrees.

Again, these initial errors are outside manufacturing toler-
ances considering the simulated platform’s scale as stated in
Table II. Therefore, we conclude that our proposed method
is robust to a poor initial guess of extrinsic parameters.

IV. HARDWARE EXPERIMENTS

In this section, we show that the proposed multi-IMU
method can estimate extrinsic calibration parameters on par
or better than Kalibr, a state-of-the-art and open-source
calibration method [13]. In particular, because Kalibr re-
lies upon camera images, it can perform poorly in ill-lit
conditions or on trajectories that result in blurry images.
The proposed method, because it does not use a camera,
performs well despite these conditions. We demonstrate this
point by comparing the performance of both methods for
trajectories where the calibration image pattern—essential
for using Kalibr—generally work well. Next we present
calibration results for trajectories where blurry images and
ill-lit conditions occur and may cause Kalibr to fail. All data
and code are freely available online (see link in Section I).

A. Implementation details

Figure 3 shows the sensor rig that we used to collect
a dataset with which to evaluate the performance of our
method and of Kalibr. We placed two IMUs (labeled IMU0
and IMU1) and a camera (labeled CAM) on an optical bread-
board. Each IMU consisted of one triaxial accelerometer (ST
IIS3DWB) and three single-axis gyroscopes (Silicon Sensing
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Fig. 1: An example trajectory for experiments in simulation (room4 in TUM-VI Dataset [29]).

TABLE III: RMSE OF ESTIMATED EXTRINSIC PARAMETERS OVER 20 TRIALS

Without Estimation of
Gyroscope Misalignment

With Estimation of
Gyroscope Misalignment

trajectory length [m] duration [s] p [mm] q [deg] p [mm] q [deg] g
Iq [deg]

room1 146.79 141.03 3.8003 1.6397 0.1704 0.0191 0.0391
room2 141.60 144.07 4.3648 2.0671 0.2318 0.0284 0.0422
room3 135.52 141.02 3.9474 1.1735 0.1445 0.0167 0.0353
room4 68.70 111.37 2.8717 1.0320 0.1806 0.0307 0.0651
room5 131.64 142.32 2.5525 1.0384 0.0809 0.0189 0.0425
room6 67.27 130.83 4.2959 1.1324 0.2128 0.0150 0.0344

TABLE IV: RMSE OF ESTIMATED ANGULAR ACCELERATIONS AND TIME-VARYING BIASES OVER 20 TRIALS

RMSE of Initial Guesses RMSE of Final Estimates

trajectory I0α [rad/s2] ba [m/s2/
√

Hz] bg [m/s2 ·
√

Hz] I0α [rad/s2] ba [m/s2/
√

Hz] bg [m/s2 ·
√

Hz]

room1 0.3147 9.6880× 10−3 7.5516× 10−3 0.1353 7.2235× 10−3 5.7869× 10−4

room2 0.2844 1.0285× 10−2 9.2693× 10−3 0.1256 5.9214× 10−3 1.0158× 10−3

room3 0.2940 1.0937× 10−2 7.8867× 10−3 0.1384 9.4185× 10−3 5.2697× 10−4

room4 0.2360 1.0516× 10−2 9.3446× 10−3 0.1297 5.3291× 10−3 5.6598× 10−4

room5 0.2331 1.1235× 10−2 9.6848× 10−3 0.1288 1.0378× 10−2 4.9971× 10−4

room6 0.2127 9.2290× 10−3 1.1778× 10−2 0.1370 7.7067× 10−3 5.2553× 10−4

TABLE V: RMSE OF IMU POSITION ESTIMATE AS A
FUNCTION OF DIFFERENCE (δp, δq) BETWEEN INITIAL

GUESS AND REFERENCE VALUE (UNIT: [MM])

δp [mm]

0 10 20 30

δ
q

[d
eg

]

0 0.1767 0.1763 0.1782 0.1765

30 0.1788 0.1787 0.1777 0.1783

60 0.1779 0.1773 0.1782 0.1772

90 39.3668 45.8379 29.9102 60.3195

TABLE VI: RMSE OF IMU ORIENTATION ESTIMATE AS A
FUNCTION OF DIFFERENCE (δp, δq) BETWEEN INITIAL

GUESS AND REFERENCE VALUE (UNIT: [DEG])

δp [mm]

0 10 20 30

δ
q

[d
eg

]

0 0.0223 0.0221 0.0223 0.0219

30 0.0226 0.0223 0.0222 0.0222

60 0.0223 0.0223 0.0223 0.0223

90 25.2160 5.7559 8.3864 18.6798
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Fig. 2: Error of estimated angular acceleration and of each time-varying bias for the base IMU as functions of time over a
single trial along six trajectories in simulation (red, green, blue are along x, y, and z axes, respectively).

Fig. 3: Sensor rig used for hardware experiments.

CRM100 and CRM200). The camera was an Intel RealSense
D435i. We emphasize that this camera was necessary to run
Kalibr but was not needed by (and was not used by) our
proposed method.

The noise and random walk characteristics of the ac-
celerometers and the gyroscopes were found by analysis of
Allan variance in the usual way [30], and were provided
as input both to our method and to Kalibr. For the ac-
celerometers, we obtained σa = 1.13 × 10−1 m/s2/

√
Hz

and σba
= 2.54×10−3 m/s2 ·

√
Hz. For the gyroscopes, we

obtained σg = 3.74 × 10−3 rad/s/
√

Hz and σbg
= 7.39 ×

10−5 rad/s ·
√

Hz. IMU measurements were all generated at
100 Hz but were not synchronized.

The intrinsic parameters of the camera (distortion, focal
length, and principal point) were found using the camera
calibration package from Intel that accompanies the D435i
camera, and were provided as input to Kalibr (but not to our

method, which does not use camera images).
The intrinsic parameters of each IMU (scale factors

and axis nonorthogonality) and the constant time offset
were found by application of Kalibr itself to a preliminary
dataset—distinct from the one we subsequently used to test
extrinsic calibration—in which the sensor rig moved directly
in front of a fiducial marker with excitation along all DOFs,
as recommended by the authors of that method [13]. There
are many other ways in which these intrinsic parameters and
the time offset could have been obtained (and are obtained,
in practice)—our choice to use Kalibr itself for intrinsic
calibration and time synchronization was meant to make our
subsequent evaluation of extrinsic calibration as favorable
to Kalibr as possible, so as to provide a fair comparison
with our proposed method. These intrinsic parameters and
the time offset were provided as input both to our method
and to Kalibr.

The reference positions and orientations used to compute
errors in estimation of extrinsic calibration parameters were
derived from the optical breadboard on which the IMUs
were mounted. In particular, IMU0 and IMU1 were mounted
100 mm apart along the x and y axes, at the same position
along the z axis, and at the same orientation—so, we
assumed the following reference values:

pI1 =
[
0.1 0.1 0.0

]T
qI1 =

[
0 0 0 1

]T
We also assumed a reference value of zero gyroscope mis-
alignment. We believe these are reasonable assumptions,
given that the breadboard has an absolute hole-to-hole tol-
erance of ±0.01 mm and a flatness tolerance of ±0.15 mm



over 0.09 m2, and given that PCB manufacturing tolerances
are typically sub-millimeter in position and sub-degree in
orientation. However, we acknowledge that the reference po-
sitions and orientations we assumed are themselves a source
of error in our experiments. As a consequence, we focus
on establishing that both our method and Kalibr produce
estimates that have “comparable” error with respect to these
reference positions and orientations, rather than on rigorously
establishing that our method produces “lower” error (at least
in the baseline condition).

To collect data, we moved and rotated the sensor rig along
a number of arbitrary trajectories, each lasting 60 seconds. To
ensure a fair comparison between our method and Kalibr, we
kept the calibration pattern in view of the camera during all
of these trajectories. We collected data under three different
conditions. In the baseline condition (21 trajectories), we
used lighting that is known to work well with Kalibr. In the
blurry condition (23 trajectories), we moved and rotated the
rig much more quickly in a way that sometimes resulted in
blurry images. In the ill-lit condition (21 trajectories), we
used poor lighting that makes the calibration pattern less
discernible by the Intel D435i camera.

B. Comparison of our method with Kalibr

Table VII shows the RMSE of the estimated extrinsic
parameters—the relative position pI1 and orientation qI1 of
IMU1 with respect to the base IMU0—over all trajectories
in each condition, obtained both using Kalibr and using
our proposed method. This table also shows the RMSE of
gyroscope misalignment (relative to its assumed reference
value) when each method is asked to include misalignment—
and, in the case of Kalibr, also scale factors and axis non-
orthogonality—in the set of parameters to be estimated.
For both methods, the initial guess of relative position
was the zero vector and the initial guess of relative ori-
entation was the zero rotation. For both methods, when
gyroscope misalignment was estimated, the initial guess of
misalignment was the zero rotation. For our method, the
initial guess of angular acceleration was found by numerical
differentiation of gyroscope measurements from IMU0, and
the initial guess of each time-varying bias was zero (same
as for experiments in simulation). For both our method and
Kalibr under the baseline condition, RMSE in position is
on the order of millimeters and RMSE in orientation is on
the order of degrees. The results shown provide evidence
that our method matches the performance of Kalibr under
the baseline condition regardless of whether or not each
method is asked to estimate any other intrinsic parameters.
We do note that, in contrast to simulation, the estimation
of gyroscope misalignment (or other intrinsic parameters)
seemed to make performance worse both for our method
and for Kalibr, although this may be a result of incorrect
reference values as discussed in the previous section.

Table VII also shows the success rate of each method
under each condition. We define “success” as producing
a result, regardless of its quality. For Kalibr, this means
completion without any thrown errors. For our method,

this means convergence by Ceres Solver [31] without early
termination. We define “success rate” as the ratio of suc-
cesses to the total number of trajectories. The results shown
provide evidence that Kalibr often fails in blurry or ill-
lit conditions—note, as well, the corresponding increase in
RMSE of estimated extrinsic calibration parameters even in
those cases when Kalibr succeeds. Our method is, of course,
unaffected by blurry or ill-lit conditions—but the fact that
it succeeded across all three sets of trajectories with similar
RMSE in all cases does provide evidence that our method is
insensitive to the choice of trajectory.

Finally, Table VII shows the computation time required
for each method using an octa-core Intel i7-10700 CPU
operating at 2.90GHz with 32GB of RAM. We provide these
results to benchmark future work and not to make any claims
about the relative efficiency of our method, although we do
note that it requires at most about 5 seconds to complete.

V. CONCLUSION

In this paper, we proposed an extrinsic calibration for a
multi-IMU system using only measurements collected along
arbitrary trajectories. We demonstrated the extent to which
our method is insensitive to the choice of trajectories through
simulations. We also substantiated that the proposed work
shows comparable or even exceeds performance compared
to a benchmark, which necessitates the use of a camera with
a fiducial marker and accompanies its own failure cases.

In this paper, all accelerometer and gyroscope measure-
ments collected along a calibration trajectory are used to
compute the optimization cost function. However, it may
not be necessary to use all of these measurements in the
optimization process. In fact, there exists prior work that
does select a subset of measurements for calibration [32],
[33]. Future work along these lines may both improve
the computation time of our method and may allow this
method to be robust to particular degenerate motions (as we
discussed in Section II-E).

In this work, we assumed sensors were time synchronized
and had the same sample rates. Although there exist methods
to synchronize sensors or to subsample the sensors collecting
data at different rates, it would be more efficient to incorpo-
rate this into our extrinsic calibration process. It may even
lead to more accurate extrinsic parameter estimates.
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