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Abstract—Classical mechanical systems are central to con-
troller design in energy shaping methods of geometric control.
However, their expressivity is limited by position-only metrics
and the intimate link between metric and geometry. Recent
work on Riemannian Motion Policies (RMPs) has shown that
shedding these restrictions results in powerful design tools, but
at the expense of theoretical stability guarantees. In this work, we
generalize classical mechanics to what we call geometric fabrics,
whose expressivity and theory enable the design of systems that
outperform RMPs in practice. Geometric fabrics strictly gener-
alize classical mechanics forming a new physics of behavior by
first generalizing them to Finsler geometries and then explicitly
bending them to shape their behavior while maintaining stability.
We develop the theory of fabrics and present both a collection of
controlled experiments examining their theoretical properties and
a set of robot system experiments showing improved performance
over a well-engineered and hardened implementation of RMPs,
our current state-of-the-art in controller design.

Index Terms—Dynamics, Optimization and Optimal Control

I. INTRODUCTION

CLASSICAL mechanical systems [1] are the workhorse
of controller design in geometric control1 [4]. Their

popularity derives from both powerful conservation properties
[5] lending to simply Lyapunov stability and convergence
analysis [6] and their link to Riemannian geometry (see
geometric mechanics [4, 7]), enabling the shaping of, for in-
stance, straight-line end-effector behavior. However, classical
mechanical systems have fundamentally limited expressivity.

When designing behavior in parts—such as combining
target reaching with obstacle avoidance, joint limit avoidance,
posturing, and speed regulation—these classical mechanical
systems combine as metric-weighted averages of component
policies (see Section III-B). Three limitations are clear from
this perspective: (1) priority metrics depend only on position
and not full system state; (2) the geometry is fundamentally
linked to the metric making it impossible to design both
independently; and (3) controllers, as a result, overly rely
on potentials, dampers and unnatural task hierarchies. Recent
work in Riemannian Motion Policies (RMPs) [8], demon-
strated that removing the restrictions of classical mechanics
can result in powerful design tools. However, RMPs sacrifice
theoritcal insight for expressivity, forcing practitioners to gain
experience before becoming proficient.

Geometric fabrics, a new physics of behavior, generalize
classical mechanics while retaining the powerful mathematics

1Geometric control encompasses operational space control [2] and potential
field methods [3]; we refer to them all here as geometric control.

of classical systems and promoting flexibility to circumvent
the above issues. Geometric fabrics are what we call bent
Finsler geometries [7]—the Finsler system generalizes the
Riemannian geometry of classical systems giving us velocity-
dependent metrics, and the bending terms enable the inde-
pendent shaping of associated policies. Constraint forces are
simple examples of bending terms commonly deployed to
follow trajectories or trace surfaces [9], but our bending terms
extend far beyond constraints. We derive fabrics that bend
Finsler geometries to match any given nonlinear geometry
using a technique called geometry energization.

One may view fabrics as a class of systems that instan-
taneously look like classical systems (with mass matrices,
corresponding inertias, and forces), but which change from
moment to moment as a function of state, similar to variable
impedance systems; even concepts such as contact models
generalize. In most cases, techniques for classical systems
apply to fabrics, but now with the expressivity of RMPs.

Concretely, this work: (1) generalizes classical mechanics
to capture the flexibility required for behavioral design; (2)
develops an expressive class of RMPs that are stable, path
consistent, and agnostic to parameterization (covariant); (3)
develops a fabric component algebra analogous to the RMP
algebra; and (4) presents experiments validating the theory
and showing we can exploit the theoretical properties to out-
perform a well-tuned implementation of RMPflow.

We start by reviewing background in Section III and discuss
the limitations of classical systems. We then define geomet-
ric fabrics in Section IV-B, show that constrained fabrics
are themselves fabrics, and present a simple stability and
convergence theorem. Subsection IV-D presents energization,
showing that fabrics are in a sense complete and can take on
the shape of any geometry. Finally, we discuss computation
in generalized coordinates in Subsection IV-E and use those
results to define an algebra of fabric components in Section V
which can be used to derive computational algorithms. Sec-
tion VI then analyzes empirically the advantages of geometric
fabrics over standard unbent Riemannian and Finsler systems,
and Section VII studies a full robot system implementation
of fabrics, comparing it to a well-engineered and hardened
implementation of RMPs.

The appendix and our website2 contains extended discus-
sion, proofs, and additional experimental demonstrations.

2https://sites.google.com/nvidia.com/geometric-fabrics-behavior
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II. RELATED WORK

Second-order systems are natural for control since robots,
themselves, are second-order systems (see [10] for similar
arguments), so we restrict our attention here to those.

Geometric control [4, 2, 9], which uses energy shaping of
classical mechanical systems for behavioral design, is the most
directly related area. We discuss the limitations of classical
systems in Section III-B and propose geometric fabrics to
eliminate them. Energy shaping methods can leverage this
broader class of systems for more expressive design. Dynamic
Movement Primitives (DMPs) [10] are another closely related
area. DMPs operate by perturbing stable systems with a
forcing term that either vanishes or is periodic—the resulting
system inherits its stability from the underlying stable system.
This idea is again highly-compatible with geometric fabrics
since we can swap out the underlying stable system with any
stable second-order system, including geometric fabrics (see
Appendix B-A for details). Optimal control [11] is another
relevant area and again highly compatible. Any optimal con-
troller optimizes over a dynamics function. Traditionally, that
dynamics function is derived from classical mechanics, but
fabrics are a viable generalized alternative that would enable
building behavior into the dynamics to aid the optimization.

An alternative approach to fabrics, developed independent
of this work, is the Pullback Bundle Dynamical System
(PBDS), derived as a class of stable Riemannian systems
on the tangent bundle [12]. PBDSs separate priority metric
and policy design but in turn require task policies to be
srictly Riemannian, a subset of the HD2 geometries of fabrics.
Contact dynamics is also less clear, although such extensions
are likely possible. Another related area is Control Lyapunov
Functions (CLF) [13] which constitute a general technique for
stabilizing systems. CLFs work by projecting unstable systems
onto a Lyapunov stable class introducing potentially large
projection errors. With fabrics we directly design inherently
stable nonlinear systems so the final system both captures
the desired behavior and is stable by construction. Finally,
earlier work introduced Geometric Dynamical Systems (GDS)
[8] as a stable class of RMPs. We now know that GDSs are
better expressed as Finsler systems which are unbent fabrics.
Appendix B-B details this relation and Subsection VI shows
empirically their limitations.

Other control approaches, including λ0-PMP models [14],
are first-order differential IK models related to classical Rie-
mannian systems but lack the second-order fidelity and veloc-
ity dependence we address here. Fractal impedance methods
[15] define locally optimal controllers that asymptotically
track simultaneous position and force profiles. However, these
are specialized controllers unlike geometric fabrics which
describe a very general class of second order dynamical
systems without any explicit notion of trajectory tracking or
specific objectives. Moreover, composable energy policies [16]
optimize actions over a product of stochastic policies to re-
solve multiple policy conflicts. Geometric fabrics address this
issue as well through geometric policies. Alternative works
try to further resolve multi-policy conflicts with hierarchical
prioritization and null-space projections [17, 2, 18]. However,

these structures are overly strict and relative priorities should
instead continuously adjust.

Finally, Finsler and spray geometry in mathematics [19] are,
of course, highly relevant. That literature, however, remains
insurmountably challenging for most roboticists. We work
from the re-derivations presented in [7]; it’s an area of future
work to lower the barrier-to-entry and leverage related ideas
from the literature. To the best of our knowledge geometric
fabrics and results on constrained fabrics and energization are
novel, as are the fabric component algebra and resulting tools
for putting them into practice.

III. BACKGROUND

A. Finsler and general nonlinear geometries

We briefly review some of the main ideas behind Finsler
and general nonlinear geometries of paths (Homogeneous of
Degree 2 (HD2) geometries)—see [7] for details. We call any
smooth differential equation q̈+h(q, q̇) = 0 an HD2 geome-
try when h is HD2 in velocities so that h(q, αq̇) = α2h(q, q̇).
We often write it in resolved form q̈ = −h(q, q̇) = π(q, q̇)
and refer to π(q, q̇) as a geometric policy to give policy
semantics. The HD2 property enforces that integral curves are
path consistent, i.e., they follow geometric speed-independent
paths [7]. Finsler geometries are HD2 geometries defined
by their minimum length geodesics using the calculus of
variations. Their generalized arc-length measures are defined
by a Finsler structure Lg(q, q̇):

Definition III.1. A Finsler structure is a Lagrangian with the
following three properties:

1) Lg(q, q̇) ≥ 0 with equality if and only if q̇ = 0.
2) Lg is positive homogeneous (HD1) in q̇ so that
Lg(q, αq̇) = αLg(q, q̇) for α ≥ 0.

3) ∂2q̇q̇Le � 0 when q̇ 6= 0 where Le = 1
2L

2
g .

The first two properties enforce that Lg(q, q̇) is a speed-
independent measure of length (see [7]). The third property
ensures the equations of motion of the associated Finsler
energy Le, derived from the Euler-Lagrange equation as
d
dt∂q̇Le−∂qLe = M(q, q̇)q̈+ξ(q, q̇) = 0, with M = ∂2q̇q̇Le
(mass / metric) and ξ = ∂q̇qLeq̇ − ∂qLe (geometric terms),
are well-formed with positive definite mass. These (closed)
equations of motion (absent potential, damping, or external
forces) define an HD2 (Finsler) geometry [7].

A simple example of a Finsler geometry is Riemannian
geometry. The Riemannian Finsler structure measures length
Lg(q, q̇) =

(
q̇TM(q)q̇

) 1
2 = ‖q̇‖M using a symmetric

positive definite metric M(q) dependent on position only.
The corresponding energy is the well-known classical kinetic
energy Le = 1

2L
2
g = 1

2‖q̇‖
2
M = 1

2 q̇TM(q)q̇ for mass M. This
link between geometry and system energy is reflected more
generally in the link between Finsler geometry and Finsler
energy, with equations of motion tracing geodesics.

Every Lagrangian system has an associated conserved en-
ergy (its Hamiltonian) H = ∂q̇LT q̇ − L = pT q̇ − L where
p = ∂q̇L is the generalized momentum. When the Lagrangian
is a Finsler energy Le = 1

2L
2
g with equations of motion

M(q, q̇)q̈ + ξ(q, q̇) = 0, the Hamiltonian can be expressed
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He = Le = 1
2 q̇TMq̇, showing that Le itself is the energy and

can be expressed in the classical form [7].
The Finsler metric M(q, q̇) is Homogeneous of Degree 0

(HD0) which means M(q, αq̇) = M(q, q̇). M is, therefore,
dependent on velocity direction ̂̇q but not on speed. That
means, for any system M(q, q̇)q̈+ f(q, q̇) = 0 (where f may
capture more than just ξ), the resolved equation q̈ = −M−1f
defines a geometric policy if and only if f is HD2.

B. Energy Shaping with Classical Mechanical Systems
Classical mechanical systems have traditionally been im-

portant tools for energy shaping in controller design [4]. The
main idea of energy shaping is to design a virtual classical
mechanical system that captures a desired behavior, then
control the physical system to behave like it thereby inheriting
the stability of the virtual system. This idea is powerful which
is why it has been so important and popular in control. But
we show here that classical systems have limited expressivity
as tools for behavioral design.

Let Q be a generalized coordinate domain constrained
by C(q) = 0 with Jacobian J(q). A constrained classical
mechanical system evolves according to the equation [1]:

M(q)q̈ + ξ(q, q̇) + J(q)Tλ(q, q̇) = −∂qψ(q)−B(q, q̇)q̇,

where M(q)q̈ + ξ(q, q̇) = 0 form the equations of mo-
tion of an unforced system with kinetic energy K(q, q̇) =
1
2 q̇TM(q)q̇ (the term ξ(q, q̇) captures fictitious forces which
we call here geometric forces in reference to their role in
Finsler geometry), the function ψ(q) is a potential function,
B(q, q̇) is a positive definite damping matrix, and λ(q, q̇) are
the Lagrange multipliers of the constraint force. With B = 0
the system conserves total energy E(q, q̇) = K(q, q̇) +ψ(q);
with nonzero B the energy dissipates, and the system con-
verges to a local minimum of the potential on the constrained
domain and is therefore inherently stable.

Unfortunately, a simple analysis shows that these systems
have limited expressivity. Consider multiple classical systems
Mi(q)q̈ + fi(q, q̇) = τi, where now fi captures all forces
excluding constraints (fictitious, potential, and damping—
constraint forces are often added to the combined system after
summing, so we ignore them here) and we single out τi as the
force the other systems place on system i. For instance, these
component systems may express reaching a target, avoiding
obstacles, joint limit avoidance, and posturing of the arm. The
internal forces τi must sum to zero

∑
i τi = 0, so we have∑

i

(
Miq̈ + fi

)
=
∑
i τi = 0. Assuming each Mi is full

rank, we can write πi = −M−1
i fi and express the resulting

combined acceleration as3

q̈ =

(∑
i

Mi

)−1∑
i

Miπi, (1)

which is simply a metric-weighted average of constituent
policies πi, where each policy takes the form:

πi(q, q̇) = −M−1
i

(
ξi(q, q̇) + ∂qψi(q) + Bi(q, q̇)q̇

)
.

3A similar result holds if Mi is not full rank. Intuitively, we can add a
small ε to the diagonal then take the limit ε→ 0 in Equation 1.

Each component policy is defined by geometric forces, its
potential function, and its damping matrix; they averaged
together using the mass matrices as spectral priority weights
(with Eigenvalues expressing different priorities along each
Eigenvector). Three limitations manifest from this analysis.

First, priority metrics are functions of position only and
not full position-velocity state. Many tasks are best expressed
with velocity aware priorities which classical metrics cannot
represent. E.g. any barrier avoidance task (obstacle, self, joint
limit avoidance) should care about the barrier while moving
toward it, but should forget about it when moving away.

Second, geometric forces can be powerful—they define the
Riemannian geometry of the system associated with the metric
M(q) [4, 7]—but in classical systems they are intrinsically
linked to the metric which also plays the role of the policy’s
priority matrix. Only one of the two can be designed, the other
becomes an artifact. This coupling results in fighting between
components (when the metric is compromised) or forces an
over-reliance on potentials and dampers (when the geometry
is compromised). An example of a Riemannian geometry
working against the policy is the robot’s own (unshaped)
inertia which will fight a potential. Likewise, straight-line end-
effector motion is a useful shaped geometry, but that defines
a largely irrelevant priority metric.

Third, when the geometric forces cannot be used, we must
shape the behavior entirely using potential functions and
dampers. Potential functions add to the total potential energy
affecting where local minima fall resulting in task conflict.
Moreover, potentials are only position-dependent and can
induce spring-like oscillations when damping is insufficient.
Alternatively, one can increase damping, or even entirely shape
the behavior using dampers, but that can slow the system when
mutliple contributions combine. Geometric forces, on the other
hand, are path consistent and will shape the behavior without
shifting the system local minima.

Note that the second and third limitations are largely the
motivation for hierarchical task prioritization [18]—when mul-
tiple potentials may conflict or priority metrics are compro-
mised, designers preserve task fidelity by instituting a task
hierarchy whereby lower-priority tasks are projected into the
null-space of higher-priority tasks [17, 2]. However, these task
hierarchies are often pragmatic solutions to these fundamental
problems and somewhat artificial in practice. For instance, the
relative priorities of reaching targets and avoiding obstacles
should adjust continuously; it is unclear which is globally
higher priority.

Geometric fabrics remove these limitations by (1) intro-
ducing velocity-dependent metrics using Finsler geometries,
and (2) decoupling system geometry from priority metric
using bending terms. Now, the system’s behavior is primarily
directed by the fabric, the potential is applied for a specific
task, and damping for convergence and speed control.

IV. GEOMETRIC FABRICS: A NEW PHYSICS OF BEHAVIOR

Geometric fabrics are a strict generalization of classical
mechanics (with classical systems being a type of fabric)
which retain the powerful mathematical properties exploited in
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control while removing the expressivity limitations outlined in
Subsection III-B. In particular, fabrics’ priority metrics depend
on full state and are decoupled from their associated geometric
policy. Stability of these systems is easily analyzed using
energy conservation (see Theorem IV.4). We derive fabrics
as bent Finsler geometries using what we call bending terms
which generalize constraint forces. These bending terms are
powerful and can be used to bend a Finsler geometry to
align with any desired HD2 geometry using a process we
call geometry energization. We additionally derive formulas
for calculation in generalized coordinates which we use in
Section V to construct an algebra of fabric components to aid
systems engineering.

A. Bending Finsler geometries

An important concept in geometric fabrics is the bending
of a Finsler geometry. Geometric bending is implemented
using system modification terms that both perform no work
(conserve energy) and are geometric (HD2). An example of
such a bending term is the classical constraint force that keeps
a system moving along a constraint surface. These forces are
zero-work by design (see the Principal of Virtual Work [1]) and
are known to preserve the geometric character of the system.
Bending terms, as defined and characterized in the following
Lemma, generalize classical constraints.

Lemma IV.1. Let Le be a Finsler energy with unforced
equations of motion M(q, q̇)q̈+ξ(q, q̇) = 0, and let ψ(q) be
a potential function and B(q, q̇) be a positive definite damping
matrix. The modified system Mq̈ + ξ + ff = −∂ψ−Bq̇ with
modifying term ff (q, q̇) has total energy H = Le + ψ that
decreases at a rate

Ḣ = −q̇TBq̇ (2)

if and only if q̇T ff = 0 everywhere. We call such a term ff
a zero-work modification. When ff is additionally HD2, the
unforced system (with ψ = 0 and B = 0) is geometric and
we say ff is a bending term that bends the Finsler geometry.
Moreover, if ψ is lower bounded, H is lower bounded.

Proof. See Appendix D-A.

Bending terms are geometric forces that are everywhere
orthogonal to the direction of motion and thereby conserve
energy by performing no work.

B. Geometric fabrics

Geometric fabrics generalize classical systems in two steps:
(1) they generalize the classical Riemannian geometries to the
broader class of Finsler geometries; and (2) they bend the
resulting Finsler geometry using bending terms which include,
but are not limited to, constraint forces.

Definition IV.2 (Geometric fabric). Let Le = 1
2L

2
g be a Finsler

energy derived from Finsler structure Lg with equations of
motion M(q, q̇)q̈ + ξ(q, q̇) = 0. A geometric fabric is a
system that evolves according to

M(q, q̇)q̈ + ξ(q, q̇) + ff (q, q̇) = 0, (3)

where ff (q, q̇) is any bending term. Geometric fabrics are
denoted F = (Le, ff ).

The fabric defines a nominal behavior independent of a
specific task. Potential functions then push away from that
nominal behavior to drive the system toward task goals, and
damping dissipation ensures convergence. The full equations
of motion of the system then become:4

M(q, q̇)q̈ + ξ(q, q̇) + ff (q, q̇) + J(q)Tλ(q, q̇) (4)
= −∂qψ(q)−B(q, q̇)q̇,

where ψ(q) is a potential function, B(q, q̇) is a positive
definite damping matrix, and λ are the Lagrange multipliers
of constraint forces with constraint Jacobian J. We see many
similarities to the classical equations given in Subsection III-B.
The potential function injects energy into the system and drives
it toward its local minimum, while the damper bleeds energy
off for stability. Lemma IV.3 characterizes constrained geo-
metric fabrics and shows that a constrained geometric fabric
is itself a geometric fabric. Theorem IV.4 proves stability of
these systems.

Lemma IV.3. Let (Le, ff ) be a geometric fabric with Finsler
energy Le, bending term ff , and associated equations of
motion Mq̈+ξ+ff = −∂ψ−Bq̇ for potential ψ and damping
matrix B. Under equality constraint C(q) = 0, assuming
(q, q̇) already satisfy the constraint, the resulting constrained
equations of motion are

Mq̈ + P//
(
ξ + ff

)
+ P⊥MJ̇q̇ = −P//

(
∂ψ + Bq̇

)
(5)

where, J = ∂qC denotes the constraint Jacobian, P⊥ =
JT (JM−1JT )−1JM−1 projects orthogonally to the con-
straints, and P//= I−P⊥ projects parallel to the constraints.
Importantly, the left hand side defines a fabric (Le, f̃f ) where
f̃f = P⊥(MJ̇q̇− ξ) + P//ff is a constrained fabric.

Proof. See Appendix D-B.

The constrained system in Equation 5 is intuitive. P//
(
ξ+ff

)
projects the original fabric to operate parallel to the constraint
and −P//(∂ψ + Bq̇) does the same with the forcing terms.
P⊥MJ̇q̇ independently creates the required curvature force
to keep the system moving along the constraint, modifying
the original fabric’s bending term.

C. Stability analysis

The following theorem presents a general result on the
stability and convergence of forced geometric fabrics.

Theorem IV.4 (Geometric fabric stability). Suppose F =
(Le, ff ) is geometric fabric operating under equality con-
straints c(q) = 0 and inequality constraints g(q) ≥ 0 (both
of which may be empty). Then for any ψ(q) lower-bounded
on the constrained domain and any bounded positive-definite
damping matrix B(q, q̇) the system evolving according to

4A broader theory of optimization fabrics [20] drops the geometric re-
quirement but retains the optimization properties outlined in Theorem IV.4.
Geometric fabrics are a type of fabric that most naturally generalizes classical
mechanics. We refer to geometric fabrics simply as fabrics.
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Equation 4 (with C consisting of c and the active subset of
g) converges to a local minimum of the optimization problem

min
q∈Q

ψ(q) s.t. c(q) = 0 and g(q) ≥ 0 (6)

under any contact model contributing as equality constraints
with dissipation when in contact and conserving or dissipating
energy on impact.

Proof. See Appendix D-C

D. Completeness: Energizing HD2 geometries

The next theorem is central to the theory of fabrics. It
shows fabrics are complete in the sense that they can be bent
to align with any given geometry. Completeness shows we
have independent control over priority metric design (Finsler
metric) and geometric policy design (desired geometry).

Theorem IV.5 (Energized fabrics). Let q̈ = π(q, q̇) be an
HD2 geometry, and suppose Le is a Finsler energy with
equations of motion Mq̈ + ξ = 0 and energy He = Le.
Then q̈ = π(q, q̇) + αHe q̇ is energy conserving when

αHe = −(q̇TMq̇)−1q̇T
[
Mπ + ξ

]
, (7)

and differs from the original system by only an acceleration
along the direction of motion. The new system is a geometric
fabric, known as an energized fabric, expressed as:

Mq̈ + ξ −Pe

[
Mπ + ξ

]
= 0, (8)

where Pe = M
1
2

[
I − v̂v̂T

]
M− 1

2 is a metric-weighted

projection matrix with v = M
1
2 ẋ and v̂ = v/‖v‖.

Proof. See Appendix D-D.

We denote the energization operation using an operator
energizeLe [·] that outputs a geometric fabric given an HD2
geometry π so that

energizeLe [π] =
(
Le, −Pe

[
Mπ + ξ

])
(9)

is the energized geometry. Note that the energization operator
can be applied to a non-geometric policy as well. In that
case, we write the output in the same form using the same
energization coefficient calculation in Equation 7, but with the
knowledge that the resulting transformed system will conserve
energy but not be a geometric fabric.

An informative example is when Le = 1
2‖q̇‖

2 measures the
squared velocity norm. Here M = I and ξ = 0, so under
Equation 7 the system reduces to

q̈ =
[
I− ̂̇q ̂̇qT ]π(q, q̇), (10)

where ̂̇q = q̇/‖q̇‖ is the normalized velocity. In other words,
the energized system projects accelerations of the geometric
policy π orthogonal to the direction of motion so they curve
the system without changing its speed.

E. Constraints in generalized coordinates

We showed above that we can construct fabrics by ener-
gizing geometries (see Theorem IV.5) and constraining them

(see Theorem IV.3). There we calculated explicit constraint
forces in the ambient space for analysis, but in many cases,
it’s natural to express constrained systems in generalized
coordinates such as the joint angles of the robot. This section
presents a fundamental result showing how to calculate an
energized policy in generalized coordinates.

First we formally derive how to constrain systems using
generalized coordinates. Let M(x, ẋ)ẍ + f(x, ẋ) = 0 be
any system of this form defined on a space X (M need
not derive from a Finsler energy and f captures all system
forces). Suppose φ : Q → X defines a surface in X with
generalized coordinates Q and Jacobian J = ∂qφ (note that
the rows of J here are orthogonal to those of the implicit
surface Jacobian due to the differing representation). We have
x = φ(q), ẋ = Jq̇, and ẍ = Jq̈ + J̇q̇; plugging that last
expression for ẍ into the system equation and multiplying
through by J gives an expression for the constrained system
in generalized coordinates:(

JTMJ
)
q̈ + JT

(
f + MJ̇q̇

)
= 0. (11)

This equation has the same form as the original system in
X , but with M → JTMJ and f → JT

(
f + MJ̇q̇

)
. This

transformation is known as the pullback of the system into the
generalized coordinates, and can be expressed as an operation
on system parameters

pullφ
[
(M, f)

]
=
(
JTMJ, JT

(
f + MJ̇q̇

))
. (12)

For Lagrangian systems, this pullback operation is consistent
with the generalized coordinate calculation of the Euler-
Lagrange equation. Specifically, if L(x, ẋ) is any Lagrangian
in X , we can define

pullφ
[
L
]

= L
(
φ(q),

d

dt
φ(q)

)
. (13)

Then if EL[L] =
(
M, ξ

)
denotes the application of the Euler-

Lagrange equation to construct equations of motion Mẍ+ξ =
0, we have

pullφ
[
EL[L]

]
= EL

[
pullφ[L]

]
= pullφ

[
(M, ξ)

]
. (14)

The following theorem reveals that a constrained energized
system in generalized coordinates can be constructed by first
constraining the metric-weighted geometry then energizing
directly in the generalized coordinates.

Theorem IV.6. Let LXe (x, ẋ) be a Finsler energy on X with
equations of motion Mẍ + ξ = 0 and let π(x, ẋ) be an HD2
geometry on X . If φ : Q → X is a full rank differentiable
map defining a constraint in X with generalized coordinates
Q, then

pullφ
[
energizeLX

e
[π]
]

= energizeLQ
e

[
pullφ

[(
M,−Mπ

)]]
,

where LQe = pullφ[LXe ] and
(
M,−Mπ

)
denotes the param-

eters of the metric weighted geometry M
(
ẍ− π(x, ẋ)

)
= 0.

Proof. See Appendix D-E.
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V. DESIGNING WITH FABRICS

Theorem IV.6 is fundamental to fabric design because
it enables us to design using transform trees. A transform
tree is a tree of differentiable maps, where each node is a
task space and each edge is a differentiable map mapping
a parent space (domain) to a child space (co-domain). The
tree-structure expresses sparsity patterns important for com-
putational efficiency, but conceptually we can think of the
tree as a single differentiable map linking the root space to
the stacked joint output space of all nodes. From that view
it’s clear that we can exploit Theorem IV.6 to say that the
resulting constrained system constraining the joint ambient
space fabric is equivalent to the system defined by pulling the
ambient space fabric to the root. In light that, it’s often useful
to design geometric fabrics in parts, viewing each part as an
HD2 geometric policy π with an associated priority metric
defined by a Finsler energy Le, each living on a node space
of a transform tree. Then computationally we can pull the
pieces back to the root exploiting sparsity in the same way
as in earlier work [8]. When designing we can reason about
what the geometry of each part should be and how we should
prioritize it, understanding that they will combine a metric-
weighted average of geometries.

Let G = {L, f} compactly denote a system of the form
Mẍ + f = 0 paired with a Finsler energy from which M
derives. We call G a fabric component. Note that this system
by itself is not a geometric fabric, which must be a bent Finsler
system. Here f can be arbitrary. For instance, it often denotes
f = −Mπ derived from geometric policy π.

The scaled sum of two fabric components G1 = {L1, f1}
and G2 = {L2, f2} is given by

αG1 + βG2 =
{
αL1 + βL2, αf1 + βf2

}
, (15)

where α, β ∈ R+. Likewise, the pullback of a fabric compo-
nent across a map x = φ(q) with Jacobian J is

pullφ
[
{L, f}

]
=
{

pullφ[L],JT
(
f + MJ̇q̇

)}
. (16)

See Appendix E-A for formal derivations of these formulas.
These expressions are easily derived using the basic defini-
tions of Finsler energy pullback and fabric pullback from
Section IV-E. It is easy to show that summation is linear
(which implies associativity and commutativity), and pullback
across the composition of functions is equal to the pullback
across each pullφ2◦φ1

[G] = pullφ1
[pullφ2

[G]].
Given a transform tree, we populate the nodes with these

fabric components and exploit this algebra to recursively pull
each component from child to parent and sum the results at the
parent (with optional scalar weights). What results is a final
fabric component at the root G̃ = {L̃, f̃} and associated Finsler
energy L̃. G̃ represents system M̃q̈ + f̃ = 0 in generalized
coordinates defining an HD2 geometric policy π̃ = −M̃−1f̃
since it is formed as a metric-weighted average of pullback
geometries from each component (and the metrics are HD0).
The final fabric is simply the energization of this geometry
with the associated Finsler energy:

F = energizeL̃
[
π̃
]
. (17)

In practice, we also leverage the geometric path consistency of
the final geometric policy to regulate speed without affecting
the path traced during execution (see [7]).

A. Speed control through damping regulation

Because we have the flexibility now to encode the nominal
behavior into the fabric itself we can leverage accelerations
along the direction of motion (known to leave the geomet-
ric paths unchanged) to design dampers that regulate speed
without affecting the behavior. We use dampers of the form

fdamp = −β(q, q̇)M(q, q̇)q̇, (18)

with β ∈ R+ so that the resulting acceleration M−1fdamp =
−βq̇ acts solely along the direction of motion. The potential
then has a dual role to (1) speed the system (the accelera-
tion component parallel to the direction of motion) and (2)
force the system off a nominal path toward the goal (the
acceleration component orthogonal to the direction of motion).
See Appendix E-B for a discussion on how to calculate β to
effectively control a target measure of speed.

B. Tools for fabric design

Finsler energies and HD2 geometries share a common
requirement of being Homogeneous of Degree 2 (HD2).
Appendix E-C presents a number of methods for designing
such functions which we use throughout our experiments. At
a high-level these tend to revolve around designing HD0 terms
(which can rely on velocity directionality but not the norm
(speed)), and scaling them by some measure of Finsler energy
(such as the squared norm of the velocity) to bring them
from HD0 to HD2. We use these techniques to design the
fabrics used in our experiments as described in Sections VI
and VII-A.

VI. PARTICLE EXPERIMENTS

Geometric fabrics have two parts to their generalization:
(1) moving from Riemannian geometries to Finsler geome-
tries; (2) bending those Finsler geometries. These experiments
explore how both of those pieces affect the system by com-
paring four types of systems: (i) strictly Riemannian systems
(classical mechanical systems); (ii) standard Finsler systems
(enabling velocity-dependent metrics, but without bending
terms); (iii,iv) bent variants of each of the first two. In the
discussion below, we often refer to both Riemannian and
Finsler systems as unbent fabrics and the bent variants as
geometric fabrics; there are four combinations in total: unbent
Riemannian, unbent Finsler, bent Riemannian, bent Finsler
(this last one being a full geometric fabric).

We start with a collection of particles at rest to the right of
a circular obstacle and we observe the behavior of different
variants controlled to two different speeds attracting the parti-
cles to a point to the left of the obstacle (small square) under
the influence of obstacle avoidance.
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A. Point Attraction

This term uses task map x = φ(q) = q − qd where
q, qd ∈ R2 are the current and desired particle position in
Euclidean space. The metric is designed as Gψ(x) = (m −
m)e−(αm‖x‖)

2

I + mI, where m, m ∈ R+ are the upper and
lower isotropic masses, respectively, and αm ∈ R+ controls
the width of the radial basis function. We design the potential
gradient directly as ∂qψ(x) = Mψ(x)∂qψ1(x), with ψ1(x) =

k
(
‖x‖+ 1

αψ
log(1 + e−2αψ‖x‖

)
, where k ∈ R+ controls the

overall gradient strength, αψ ∈ R+ controls the transition rate
of ∂qψ1(x) from a positive constant to 0. For the unbent
fabric, the system derives from L = ẋTGψ(x)ẋ − ψ(x).
For the geometric fabric, we use fabric component defined
by geometry ẍ = −∂xψ1(x) and energy Le = ẋTGψ(x)ẋ.

B. Circular Object Repulsion

This term uses task map x = φ(q) = ‖q−qo‖
r − 1, where

qo is the origin of the circle and r is its radius. Two different
metrics are designed to prioritize object repulsion, Gb(x) = kb

x2

and Gb(x, ẋ) = s(ẋ) kbx2 . Moreover, kb ∈ R+ is a barrier gain
and s(ẋ) = 1 if ẋ < 0 and s(ẋ) = 0, otherwise. We design
the potential gradient as ∂qψb(x) = Mb(x)∂qψ1,b(x) with
ψ1,b(x) = αb

2x8 , and αb ∈ R+ For the unbent fabric, the system
derives from either L1 = Gb(x)ẋ2 − ψb(x) (Riemannian) or
L2 = Gb(x, ẋ)ẋ2 − ψb(x) (Finsler). For the geometric fabric,
we use fabric component defined by ẍ = −s(ẋ)ẋ2∂xψ1,b(x)
and energy either L1 or L2.

C. Discussion

Fig. 1 visualizes the results of all for variants each under
two different speeds vd = 2, 4 to analyze degree of consistency
under speed changes. For each variant, all particles avoid the
object and reach the target position except the one shot directly
at the object’s local minimum. However, we observe several
differences in behavior.

First, the unbent fabrics (left column) have more pro-
nounced changes in paths across the different speed levels.
This is amplified for Finsler systems (bottom two rows) using
Gb(x, ẋ) since the velocity gate does not modulate the obstacle
avoidance policy. Instead, the mass of the obstacle avoidance
policy vanishes, while components of its force remain. This ef-
fect is amplified when traveling at a higher velocity, producing
the “launching” artifacts. In contrast, geometric fabrics (right
column) produce more consistent paths across speed levels
without any launching artifacts.

Second, Finsler metrics (bottom two rows) facilitate
straight-line motion to the desired location once past the
obstacle by allowing the system to forget about it as a function
of directionality. Riemannian metrics are unable to represent
that directional dependence (top two rows) and can be seen
clinging to the obstacle even once past it.

Finally, the repulsive forces from the unbent fabrics (right
column) consistently push the center particle farther out
from the object than with geometric fabrics (right column).
Importantly, geometric fabrics allow for heightened obstacle
avoidance behavior without shifting the system minima.

Fig. 1. Particle behavior for an unbent fabric and a geometric fabrics with
different metric designs. See Section VI-C for discussion.

VII. FRANKA PANDA EXPERIMENTS

Our second set of experiments is a study of geometric
fabrics on a full 7 degree-of-freedom robot arm. The geo-
metric fabric is designed once, and tested across a variety
of problems. We compare its performance to our current,
best performing Riemmanian Motion Policy (RMP) that has
powered our manipulation processes for a variety of settings.
Both policies are evaluated at 100 Hz and integrated with
first-order Euler routines. Note that since this is purely a
motion generation problem, the sim-to-real gap is minimal
since smooth trajectories can easily be executed on physical
robots using standard trajectory following controllers. We,
therefore, focus only a simulated analysis here.

A. Geometric Fabrics Design

The geometric fabric policy ultimately consists of only three
differently designed components. Each component consists of
a Finsler energy Le(x, ẋ) and policy π(x, ẋ).

1) Joint Space Attraction: The Finsler energy is designed
as Le = m

2 ‖ẋ‖
2, where m ∈ R+ is the amount of isotropic

mass. The policy is designed as π = −‖ẋ‖2∂xψ(x) with
ψ(x) = k log (cosh(α(xd − x))) where k, α ∈ R+ are gains
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Fig. 2. Robot reaching for a target (orange sphere) while blocked by an
obstacle (blue) under a geometric fabric policy (left) and an RMP (right).

that control scaling and sharpness, respectively, and x and
xd are the current and desired joint space positions. This
component acts to posture the arm largely within the null space
of higher-priority tasks such as target reaching.

2) Distance Space Repulsion: The Finsler energy is de-
signed as Le = k

2xs(ẋ)ẋ2, where k ∈ R+ scales the barrier
function and s(ẋ) = 1 if ẋ < 0 and s(ẋ) = 0, otherwise. We
define a potential ψ(x) = kb

x + kr
α log

(
1 + e−α(x−xo)

)
, where

kb, kr ∈ R+ control the scaling of the barrier and soft rectified
linear unit (ReLU) functions, respectively and x ∈ R+ is
a signed distance space (e.g., distance to object). Moreover,
α ∈ R+ controls the sharpness in the ReLU and xo ∈ R+

shifts the activation of the ReLU. We deploy this potential
alongside a geometric variant π = −ẋ2∂xψ(x), for joint-
limit avoidance, self-collision avoidance, and object-collision
avoidance. The geometric policies are weighed significantly
higher than potentials, which play the role of soft-penalty on
the obstacle constraint here. The potential policy is included
to shift the system minima away from numerical singularities,
e.g., as x→ 0, then ẋ→ 0 and ∂xψ(x)→∞, which generates
numerical issues for calculating the geometric policy.

3) End-effector Space Attraction: Using m, m ∈ R+

to denote maximum and minimum isotropic masses, re-
spectively, the Finsler energy is designed as Le =
‖ẋ‖2

(
1
2 (m−m)(tanh(−α‖xd − x‖) + 1) +m

)
, where α ∈

R+ controls the sharpness of the hyperbolic tangent function,
and x,xd ∈ R3 are the position and target position of the
end-effector, respectively. The potential is defined as ψ(x) =
k log (cosh(α(xd − x))), where k, α ∈ R+ are gains that
control scaling and sharpness, respectively. We deploy both the
potential and a geometric variant π = −‖ẋ‖2∂xψ(x). Each are
individually tuned, with the geometric variant being generally
more active and the potential there to ensure convergence in
alignment with our theory. Applying this design to two axes
at the end-effector can also realize orientation control as in
[21].

B. Wall Barrier Approach

To assess how well the policies can reach 3D end-effector
position targets in the presence of boundary constraints, we
incrementally advance the end-effector target every five sec-
onds towards a wall boundary and monitor convergence (see
Fig. 2). Ideally, a policy should accurately converge to the
target while respecting the boundary constraint, but in practice
boundary potentials can prevent that. In this experiment, we

Fig. 3. Robot executing reach to target (orange spheres) through a series of
obstacle rings (blue) of increasingly smaller diameter with a geometric fabric
(top row) and RMP (bottom row). Green spheres approximate robot geometry
for collision avoidance.

see geometric fabrics converge more accurately in general to
these targets than the RMP policy. Both policies exhibit sub-
millimeter convergence error when the target is 10 cm or more
from the wall, but convergence incrementally degrades as the
target approaches the wall due to conflicting potentials. RMPs
already start at degrading at ∼9 cm while geometric fabrics
begin degrading only at ∼6 cm since much of the boundary
policy is encoded in a geometric policy. Moreover, geometric
fabrics on average approach the wall about 50% closer than
the RMP. Fig. 2 depicts this difference in convergence near
the wall.

C. Ring Constricted Navigation

To assess convergence to end-effector targets in the presence
of increasingly constricted passages, we create a sequence of
rings with incrementally smaller radii that the end-effector
must pass through to reach its target. The ring radius starts
at 17 cm and decreases to 13 cm. The rings are constructed
from small spheres (each with radius 2.5 cm) as shown in
Fig. 3. Distance spaces are pair-wise between robot spheres
and obstacle spheres. As shown, the navigation from a geo-
metric fabric allows the robot to successfully pass through all
rings and reach its target. In contrast, the RMP cannot pass
through the last two rings of the smallest diameter. Again, this
difference arises with primarily encoding avoidance into the
fabric’s geometry alongside a diminished repulsive potential
function.

D. Dynamic Obstacle Reaching

By nature, both the geometric fabric policy and RMP
are reactive. To assess the quality of reactivity, we create a
reaching task with both static and dynamic obstacles. The goal
is for the policies to reach 19 randomly generated end-effector
targets (with one target issued every 5 seconds) while avoiding
collision with both static and dynamic obstacles (see Fig. 4).
The policies are only aware of the object positions while
objects achieve speeds of up to 0.39 m/s. With the geometric
fabric policy, the robot reached 16 targets whereas the robot
with the RMP reached 11 targets. Moreover, the geometric
fabric policy yielded a 0.4% collision rate in contrast to
the RMP’s 8.18%, where collision rate is the percentage of
time steps in collision. Since the geometric fabric obstacle
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Fig. 4. Robot reaching end-effector targets while avoiding dynamic objects.

avoidance component is predominantly geometric in nature, it
can simultaneously be highly influential while not preventing
optimization of the end-effector potential, resulting in higher
target acquisition rates. The forcing component of the geo-
metric fabric policy aggressively engages only when the robot
is close to collision. Altogether, this allows strong obstacle
avoidance behavior both close to and far from objects in a
way that minimally impedes target acquisition. In contrast, the
RMP had to strike a balance between forcing repulsion without
impairing the ability to acquire end-effector targets too much.
This compromise resulted in diminished performance.

VIII. CONCLUSION

Geometric fabrics naturally generalize classical mechanical
systems to form a new physics of behavior. These systems
provide important design expressivity while maintaining the
theoretical properties that make classical systems powerful
in control. Many existing techniques in the literature can
naturally leverage fabrics (e.g., reinforcement learning as in
[22], imitation learning, planning), and it is a point of future
work to explore many of these areas. Our theoretical and
experimental analyses already demonstrate their utility but we
believe the bulk of their application has yet to come.
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APPENDIX A
PRELIMINARIES

A. Derivations on manifolds

Nonlinear geometry is most commonly developed in the
mathematics literature in terms of smooth manifolds, and
often in an abstract coordinate-free notation which can be
challenging for practitioners. Even tensor notation can be
a barrier to entry for readers unfamiliar with the algebra.
To make our presentation more accessible, we will stick to
coordinate descriptions and simpler vector notations from
advanced calculus (see Appendix A-C) similar to many books
on classical mechanics aimed at an engineering audience.

Manifolds will be formally defined in the traditional way
(see [23] for a complete introduction), but for our purposes,
we will consider them simply as d-dimensional spaces Q with
elements identified with q ∈ Rd in d generalized coordinates,
and when we say q ∈ Q we mean q is the coordinate
representation of the manifold point described in our chosen
coordinates. Often we implicitly assume a system evolves over
time t in a trajectory q(t) with velocity q̇ = dq

dt , and say that
coordinate velocity vector q̇ is an element of the tangent space
TxQ, which can be thought of as the space of all velocity
vectors that can be generated in that way. When discussing
general tangent space vectors (elements of the tangent space
without reference to a specific trajectory), we often use the
notation v ∈ TqQ.

B. A note on covariance and transform trees

Geometric consistency across changes of coordinates on
a manifold is an important concept since many manifolds
cannot be described globally by a single set of coordinates.
Algorithms and systems should not change their fundamental
behavior on the manifold based on the coordinate system
they’re described in. When an algorithm or system has such a
coordinate independence, it’s called covariant.

It is well known that the Euler-Lagrange equation is co-
variant to changes of coordinate [5], so anything derived here
from the Euler-Lagrange equation is automatically covariant.
For everything else, such as HD2 geometries and bending
terms, we are not rigorous with developing specific intrin-
sically covariant subclasses. Such covariant subclasses exist
and can be derived, but the mathematics behind that can
be complicated and unnecessarily restrictive. In practice, we
instead use transform trees to derive covariant systems.

A transform tree is simply a tree whose nodes are different
spaces and whose edges are the maps linking those spaces.
For instance, the simplest tree is a single branch φ : Q → X
mapping generalized coordinates Q ⊂ Rd to a single space
X ⊂ Rn. In fact, all trees can be expressed in this form since

paths from the root to any given node are unique and the
maps encountered along that path can be combined into a
single composed map. The single branch tree is constructed
by stacking all nodes into a single space and defining a map
by stacking these unique path-composed maps into a single
map. In practice, more expressive tree structures are important
for computational performance, but conceptually it suffices to
think of simply a single link φ as described here. (Note that
n ≥ d when the tree is well-formed so that policies on the
nodes can fully constrain the space.)

Equation 14 shows that the pullback operation defined on a
transform tree is compatible with the pullback implicit in the
covariant Euler-Lagrange equation. This is because pullback is
compatible with the definition of covariance. Calculationally,
we prove that a system is covariant if, under a change of
coordinates, the resulting system is simply scaled by the
Jacobian (transpose) of the change of coordinates map. For
instance, if φ denotes a change of coordinates (i.e. when n = d
and φ is smooth and invertible making it what is known
as a diffeomorphism), a term h(x, ẋ, ẍ) is covariance if its
expression in Q amounts to h̃(q, q̇, q̈) = JTh(x, ẋ, ẍ) where
J = ∂φ is the Jacobian of φ and J̇ is its time derivative (and
x = φ(q), ẋ = Jq̇, ẍ = Jq̈+J̇q̇). The utility of this definition
of covariance is that if h̃(q, q̇, q̈) = 0 then in Q we get the
same

h̃(q, q̇, q̈) = 0 (19)

⇒ JTh(x, ẋ, ẍ) = 0

⇒ h(x, ẋ, ẍ) = 0

since J is invertible when φ is a change of coordinates. In other
words, covariant equations hold in all coordinate systems.

Now, looking at Equation 12 and its derivation leading to
Equation 11, we see that when φ is a change of coordinates, the
system transforms covariantly by definition. Specifically, when
the term is h(x, ẋ, ẍ) = M(x, ẋ)ẍ + f(x, ẋ), the pullback
operation computes (JTMJ

)
q̈ +

(
f + MJ̇q̇

)
= JT

(
Mẍ +

f
)

= J h(x, ẋ, ẍ) (we’re just reversing the argument used to
derive it). Therefore, if we have any arbitrary transform tree
φ : Q → X (viewed as a single branch) and we want to
change the coordinates using ζ : Q̃ → Q, we can simply
build a transform tree linking these transforms

Q̃ ζ−→ Q φ−→ X (20)

and use standard pullback operations to get covariance auto-
matically. For instance, if Q is the generalized coordinates of
the robot, we can define a transform tree with Q at the root
and a collection of task spaces extending from it such as the
end-effector space, body points, distances to obstacles, etc.
Then, if we change to a different coordinate representation
of the generalized coordinates we simply express that as part
of the transform tree and the fundamental behavior of our
system does not change because of the natural covariance of
the transform tree itself. An important example is when the
generalized coordinates includes a free flying SE3 base such
as in a drone with an SO3 rotation component. SO3 cannot
be globally expressed in a single coordinate system, so we
inevitably need to change coordinates at times. (We can also

https://arxiv.org/abs/2010.14750
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change representations, between Euler angles, quaternions,
axis-angle and matrix representations, as long as the transform
is represented as part of the tree.) Covariance ensures that
the system behavior remains consistent under these represen-
tational transformations.

Another way to understand the transform tree is that it
represents an optimization problem. Pullback can equivalently
be viewed as the solution to a least squares optimization
problem

min
q̈

1

2
‖ẍd − ẍ‖2M (21)

s.t. ẍ = Jq̈ + J̇q̇,

analogous to the least squares formulation of classical mechan-
ics under Gauss’s Principle of Least Constraint [24]. Because
it’s an optimality principle, the fundamental minimum does
not change under changes of coordinates.

C. Multivariate calculus notation

We avoid tensor notation here whenever possible in favor
of the more compact and familiar matrix-vector notation of
advanced calculus.

We assume each partial derivative generates a new index
ranging over the partials. The partial ∂xf(x) of a function
f : Rn → R is treated as a column vector. And if g :
Rn → Rm is a map, g(x) itself is treated as a column
vector and ∂xg(x) ∈ Rm×n denotes a matrix with partials
ranging over the columns. When there are multiple partials as
in ∂xyh(x,y), we apply the partials in the order listed. In this
case, we apply x first to create a column vector ∂xh(x,y) then
apply y to create a matrix ∂y

(
∂xh

)
. When more partials are

involved, the resulting object becomes a higher-order tensor,
but we use the convention that multiplication on the right by
a matrix or vector contracts the indices in the reverse order
they were generated. For instance, if b(x,y, z) is a function,
∂xyzb is a three index tensor, but ∂xyzbv will unambiguously
contract along the z partial first leaving a matrix whose rows
align with the partials along x and whose columns align with
the partials along y. Specifically, ∂xyzbv =

∑
k

∂
∂zk

(
∂xyb

)
vk.

This convention is applied recursively when more than three
variables are involved.

APPENDIX B
ADDITIONAL COMMENTS ON RELATED WORK

A. Generalization of Dynamic Movement Primitive (DMP)
principles

In the Related Work section (see Section II), we discussed
how Dynamic Movement Primitives (DMPs) are perturbations
from a stable second-order differential equation and, in prin-
ciple, can easily be generalized to leverage stable differential
equations beyond simple linear equations. We describe that
connection in more detail here. Studying these generalized
perturbed systems is an area of future work, but we note here
that geometric fabrics are not inherently competitive with the
principles of DMPs, but rather complimentary.

A DMP is a nonlinear force perturbation away from an
intrinsically stable linear second-order differential equation

[10]. When the force perturbation vanishes over time the
system dynamics is asymptotically governed by the linear
differential equation and therefore becomes a point attractor;
likewise, when the nonlinear force is periodic the system
converges to a stable limit cycle. In all cases, the key innova-
tion is perturbing a stable differential equation using either
a vanishing or cyclic perturbation so that stability of the
combined system is governed by the stability of the underlying
differential equation.

These ideas can easily be generalized to geometric mechan-
ics noting that inherently stable classical mechanical systems
can be used as a drop-in replacement for the linear second-
order differential equation to inherit stability. Since geometric
fabrics are a generalization of those classical mechanical
systems, the same applies for fabrics. Geometric fabrics can
act as a stable underlying nonlinear second-order differential
equation that we can perturb away from using a trained pertur-
bation component generalizing the techniques studies in DMPs
while gaining more expressive underlying system behaviors
from this broader class of geometric fabric equations.

B. Geometric Dynamical Systems vs Finsler Systems

Geometric Dynamical Systems (GDSs) were introduced in
[8] as a stable class of RMPs for stable system design. But
we now understand GDSs are more elegantly and concretely
expressed as Finsler systems characterized in Subsection III-A.
Moreover, such systems are inherently covariant since they de-
rive from the Euler-Lagrange equations. This section presents
that connection in detail.

We start by reviewing Geometric Dynamical Systems (GDS)
and express them in a (tensor notion) form that makes it easier
to see the relationship to Lagrangian and Finsler systems. Let
G(q, q̇) be a velocity dependent metric tensor and define an
energy function as K(q, q̇) = 1

2 q̇TG(q, q̇)q̇. Following the
notation of [8], we denote the columns of G by gi so that
G = [g1, · · · ,gd]. An unforced GDS is defined as

M(q, q̇)q̈ + ξ(q, q̇) = 0.

where M = G + Ξ has additional mass defined by Ξ =
1
2

∑
i q̇
i∂q̇gi (here q̇i denotes the ith component of q̇) and

ξ = G̊q̇ − 1
2∂q
(
q̇TGq̇

)
using G̊ = [h1, · · · ,hd] with hi =(

∂qgi
)
q̇. When G is independent of q̇, these equations of

motion reduce to the classical equations since M → G and
G̊→ Ġ.

GDS systems conserve total energy E = K + ψ(q) when
forced by a potential function ψ(q) and are shown to optimize
ψ when energy is bled off using a damping term −B(q, q̇)q̇
for positive definite B similar to the setting outlined in
Theorem IV.4.

Using tensor notation with the Einstein summation conven-
tion, this system can be expressed Mklq̈

l+ξkij q̇
iq̇j = 0 where

Mkl = Gkl + Ξkl with

Ξkl =
1

2

∂Gik
∂q̇l

q̇i (22)

ξkij =
1

2

(
∂Gkj
∂qi

+
∂Gik
∂qj

− ∂Gij
∂qk

)
, (23)
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where ξkij are the standard Christoffel symbols of the first
kind [25]. The only augmentation to the classical system is
the term Ξ which vanishes when G is independent of velocity.

A GDS by itself is not covariant to change of coordinates
[12], but can be made covariant with the use of transform
trees (see structured GDS in [8] and the discussion above
in Appendix A-B). However, the next theorem shows that
Lagrangian systems, and specifically Finsler systems derived
from energies of the form Le(q, q̇) = 1

2 q̇TG(q, q̇)q̇, make
a qualitatively similar, but inherently covariant, alternative to
GDS systems.

Theorem B.1. Let L = 1
2Gij q̇

iq̇j be a Finsler energy with
Gij(q, q̇) a function of both position and velocity. Then the
Finsler system’s equations of motion (defined by the Euler-
Lagrange equation) can be expressed

Mklq̈
l + Υkij q̇

iq̇j = 0, (24)

where Mkl = Gkl + Ξkl with velocity curvature mass

Ξkl =
∂Glj
∂q̇k

q̇j +
∂Gkj
∂q̇l

q̇j +
1

2

∂2Gij
∂q̇l∂q̇k

q̇iq̇j , (25)

and velocity-augmented Christoffel symbols (of the first kind)
given by

Υkij =
1

2

(
∂Gkj
∂qi

+
∂Gik
∂qj

− ∂Gij
∂qk

+
∂2Gij
∂ql∂q̇k

q̇l
)
. (26)

Proof. This proof amounts primarily to calculation and gath-
ering together the terms appropriately to construct Mkl and
Υkij .

The Lagrangian is L = 1
2Gij q̇

iq̇j and the Euler-Lagrange
equation defines d

dt
∂L
∂q̇k
− ∂L

∂qk
= 0. That gives

d

dt

[
∂

∂q̇k

(
1

2
Gij q̇

iq̇j
)]

︸ ︷︷ ︸
term1

−1

2

∂Gij
∂qk

q̇j q̇i = 0.

Term 1 becomes
d

dt

[
∂

∂q̇k

(
1

2
Gij q̇

iq̇j
)]

=
d

dt

[
1

2

∂Gij
∂q̇k

q̇iq̇j +Gkj q̇
j

]
=

1

2

(
∂2Gij
∂ql∂q̇k

q̇l +
∂2Gij
∂q̇l∂q̇k

q̈l
)
q̇iq̇j +

1

2

∂Gij
∂q̇k

q̈iq̇j

+
1

2

∂Gij
∂q̇k

q̇iq̈j +

(
∂Gkj
∂ql

q̇l +
∂Gkj
∂q̇l

q̈l
)
q̇j +Gkj q̈

j .

Putting this together with the other terms and grouping them
as needed, we get

d

dt

∂L
∂q̇k
− ∂L
∂qk

=

(
Gkl +

1

2

[
∂Glj
∂q̇k

q̇j +
∂Gil
∂q̇k

q̇i
]

+
∂Gkj
∂q̇l

q̇j

+
1

2

∂2Gij
∂q̇lq̇k

q̇iq̇j

)
q̈l

+

(
1

2

∂2Gij
∂ql∂q̇k

q̇l +
∂Gkj
∂qi

− 1

2

∂Gij
∂qk

)
q̇iq̇j .

Since Gij is symmetric, we have ∂Glj
∂q̇k

q̇j = ∂Gil
∂q̇k

q̇i, and

∂Gkj
∂qi

q̇iq̇j =
1

2

∂Gkj
∂qi

q̇iq̇j +
1

2

∂Gjk
∂qi

q̇iq̇j

=
1

2

(
∂Gkj
∂qi

+
∂Gik
∂qj

)
q̇iq̇j ,

so we can rewrite the above expression in its final form

d

dt

∂L
∂q̇k
− ∂L
∂qk

=

(
Gkl +

∂Glj
∂q̇k

q̇j +
∂Gkj
∂q̇l

q̇j +
1

2

∂2Gij
∂q̇lq̇k

q̇iq̇j
)
q̈l

+
1

2

(
∂2Gij
∂ql∂q̇k

q̇l +
∂Gkj
∂qi

+
∂Gik
∂qj

− ∂Gij
∂qk

)
q̇iq̇j

=
(
Gkl + Ξkl

)
q̈l + Υkij q̇

iq̇j ,

with Ξkl and Υkij as given in the above theorem.

Comparing the terms of Theorem B.1 to Equations 22
and 23 we see that Finsler systems of this form contains
additional terms deriving from the velocity dependence in
both the added mass and the augmented Christoffel symbols.
Since these equations are derived using the Euler-Lagrange
equation, they’re known to be covariant to reparameterization;
the added terms are critical for that covariance property to
hold. Moreover, the class of all Finsler systems is a superset
of these GDS-like Finsler systems, so Finsler systems broadly
have many advantages over GDSs.

Both GDSs and Finsler systems, however, generalize met-
rics to be velocity dependent but remain subject to the other
limitations outlined in Subsection III-B. Namely, their metrics
and associated policies remain coupled. In practice, in the
earlier results of [8], high gains on forcing potentials and
damping terms were used in order to leverage the systems
for metric design while also reject the resulting irrelevant
geometric terms that resulted. Geometric fabrics added a
new dimension of flexibility by introducing bending terms to
circumvent these issues.

APPENDIX C
ADDITIONAL LEMMAS

This Lemma gives the time derivative of a Lagrangian’s
energy (the Hamiltonian), which is a common calculation
needed for multiple proofs below.

Lemma C.1. Let L(q, q̇) be any Lagrangian with Hamilto-
nian (energy) HL = ∂q̇LT q̇− L. The energy time derivative
is

ḢL = q̇T
(
Mq̈ + ξ

)
, (27)

where M and ξ come from the Lagrangian’s equations of
motion M(q, q̇)q̈ + ξ(q, q̇) = 0.

Proof. The calculation is a straightforward time derivative of



VAN WYK et al.: GEOMETRIC FABRICS 13

the Hamiltonian:

ḢL =
d

dt

[
∂q̇LT q̇− L

]
=
(
∂2q̇q̇L q̈ + ∂q̇qL q̇

)T
q̇ + ∂q̇LT q̈

−
(
∂q̇LT q̈ + ∂qLT q̇

)
= q̇T

(
∂2q̇q̇L q̈ + ∂q̇qL q̇− ∂qL

)
= q̇T

(
Mq̈ + ξ

)
.

where M = ∂2q̇q̇L and ξ = ∂q̇qL q̇− ∂qL.

The following lemma collects some results around common
matrices and operators that arise when analyzing energy con-
servation.

Lemma C.2. Let M be a symmetric positive definite matrix
and define p = Mẋ. Then

Rp = M−1 − ẋ ẋT

ẋTMẋ
(28)

has null space spanned by p and

Rẋ = M− p pT

pTM−1p
(29)

has null space spanned by ẋ. These matrices are related by
Rẋ = MRpM and the matrix M−1Rẋ = RpM = Pe is a
projection operator of the form

Pe = M
1
2

[
I− v̂v̂T

]
M− 1

2 (30)

where v = M
1
2 ẋ and v̂ = v

‖v‖ is the normalized vector.
Moreover, ẋTPe = 0.

Proof. Right multiplication of Rp by p gives:

Rpp =

(
M−1 − ẋ ẋT

ẋTMẋ

)
Mẋ

= ẋ− ẋ

(
ẋTMẋ

ẋTMẋ

)
= 0,

so p lies in the null space. Moreover, the null space is no
larger since each matrix is formed by subtracting off a rank 1
term from a full rank matrix.

The relation between Rp and Rẋ can be shown alge-
braically

MRpM = M

(
M−1 − ẋ ẋT

ẋTMẋ

)
M

= M− Mẋ ẋTM

ẋTMẋ

= M− p pT

pTM−1p
= Rẋ.

Since M has full rank, Rẋ has the same rank as Rp and its
null space must be spanned by ẋ since Rẋẋ = MRpMẋ =
MRpp = 0.

With a slight algebraic manipulation, we get

MRp = M

(
M−1 − ẋ ẋT

ẋTMẋ

)

= M
1
2

(
I− M

1
2 ẋ ẋTM

1
2

ẋTM
1
2 M

1
2 ẋ

)
M− 1

2

= M
1
2

(
I− vvT

vTv

)
M− 1

2

= Pe

since v vT

vTv
= v̂v̂T . Moreover,

PePe = M
1
2

(
I− v̂v̂T

)
M− 1

2

·M 1
2

(
I− v̂v̂T

)
M− 1

2

= M
1
2

(
I− v̂v̂T

) (
I− v̂v̂T

)
M− 1

2

= M
1
2

(
I− v̂v̂T

)
M− 1

2 = Pe,

since P⊥ = I − v̂v̂T is an orthogonal projection operator.
Therefore, P2

e = Pe showing that it is a projection operator
as well.

Finally, we have

ẋTPe = ẋTMRp = ẋTM

(
M−1 − ẋ ẋT

ẋTMẋ

)

=

[
ẋT −

(
ẋTMẋ

ẋTMẋ

)
ẋT

]
= 0.

APPENDIX D
PROOFS OF LEMMAS AND THEOREMS IN THE PAPER

A. Lemma IV.1 on energy conservation and dissipation

Proof of Lemma IV.1 on energy conservation and dissipation
of Finsler systems with zero-work modification terms. See
Subsection IV-A for the full statement.

Proof. This energy is conserved if its time derivative is zero.
Substituting q̈ = −M−1(ξ+ ff +∂ψ+Bq̇

)
into Equation 27

of Appendix Lemma C.1 using Lagrangian L(q, q̇) = Le−ψ
gives

ḢLe = q̇T
(
M
(
−M−1(ξ + ff + ∂ψ + Bq̇)

)
+ ξ + ∂ψ

)
= q̇T

(
− (ξ + ∂ψ) + (ξ + ∂ψ)− (ff + Bq̇)

)
= −q̇T ff − q̇TBq̇.

Therefore, energy reduces at a rate −q̇TBq̇ (and is conserved
when B = 0) if and only if ff is zero-work with q̇T ff = 0
everywhere.

Finally, when ff is geometric Mq̈+ξ+ff = 0 is geometric
since M is HD0 and ξ is HD2. Moreover, since Le is lower
bounded by 0, H = Le +ψ is lower bounded when ψ is.

B. Lemma IV.3 on constrained fabrics

Proof of Lemma IV.3 in Subsection IV-B showing that
constrained fabrics are also fabrics.
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Proof. The formula derives from the standard algebra of
constrained systems used in classical mechanics [1], which
we derive here for completeness. The Principle of Virtual
Work tells us the constraint force takes the form fc = JTλ
for unknown Lagrange multipliers λ. (Since J’s rows are
orthogonal to the constraint’s tangent space, fc defined this
way is always zero work for any valid velocity consistent
with the constraints.) The constraint C(q) = 0 induces two
additional constraints by its time derivatives Ċ = Jq̇ = 0 and
C̈ = Jq̈ + J̇q̇ = 0. The constraint and its first derivative are
satisfied by assumption, so it’s the third that enters into the
system:

Mq̈ + f + JTλ = 0

Jq̈ + J̇q̇ = 0,

where we’ve captured all force terms in f = ξ+ff +∂ψ+Bq̇.
Multiplying the first equation by JM−1 and subtracting the
second, we can solve for λ:

λ = (JM−1JT )−1
[
− JM−1f + J̇q̇

]
.

These Lagrange multipliers define the constraint forces; plug-
ging them back into the first equation and collecting terms
gives:

Mq̈ + P//f + P⊥MJ̇q̇ = 0.

This result gives Equation 5 once f is split apart. Additionally,
adding and subtracting ξ gives

Mq̈ + ξ − ξ + P//
(
ξ + ff

)
+ P⊥MJ̇q̇

= Mq̈ + ξ + P⊥
(
MJ̇q̇− ξ

)
+ P//ff ,

which derives the expression for f̃f = P⊥
(
MJ̇q̇− ξ

)
+ P//ff

Observing that M is HD0 (see discussion in Section III-A),
we see that both P// and P⊥ are HD0 (i.e. they do not depend
on ‖q̇‖). Since ff is HD2 by definition, its projection is as
well. Moreover, ξ is known to be HD2 and using tensor
notation, we see J̇q̇ = ∂2C

∂qi∂qj q̇
iq̇j is HD2, which means

means both MJ̇q̇ − ξ and its projection are HD2 as well.
Together these results show that f̃f is HD2, and since we know
it derives from the original bending term by adding a zero-
work constraint force, f̃f must be zero work as well and is
hence a bending term. This proves that (Le, f̃f ) is a geometric
fabric.

C. Theorem IV.4 on Geometric Fabric Stability

Proof of theorem in Subsection IV-C characterizing the sta-
bility of geometric fabrics and convergence to KKT solutions
of the constrained potential.

Proof. By Lemma IV.1, the forced system will reduce total en-
ergy H(q, q̇) = Le(q, q̇)+ψ(q), at a rate Ḣ ≤ −q̇TB(q, q̇)q̇
(the inequality is due to the impact model). Since Le ≥ 0 and
ψ(q) is lower bounded,H is lower bounded and it must be that
Ḣ → 0. Therefore, q̇TB(q, q̇)q̇ → 0 which implies q̇ → 0
since B is positive definite. Since velocity approaches zero we
must also have q̈→ 0. At convergence, a subset of inequality
constraints will be active resulting in an equality constraint for

those dimensions which we denote g̃ = 0. Combining those
active inequality constraints with the equality constraints c
into C = [c; g̃] with Jacobian J = ∂qC, the constrained the
equations of motion at convergence can be expressed

Mq̈ + ξ + ff + JTλ = −∂qψ −Bq̇. (31)

Since q̈→ 0 we have Mq̈→ 0 (M is HD0) and since q̇→ 0
we have ξ+ ff → 0 (both ξ and ff are HD2). That leaves just
JTλ on the left hand side. On the right hand side we have
Bq̇→ 0 since B is bounded, so the system approaches

JTλ = −∂qψ. (32)

Therefore, it approaches a KKT solution since the system evo-
lution constraints are everywhere satisfied and contact models
require λ satisfy the required complimentarity conditions.

D. Theorem IV.5 on Energized Fabrics

Proof of Theorem IV.5 in Subsection IV-D showing how to
energize arbitrary HD2 geometries and proving the resulting
system is a geometric fabric.

Proof. We derive these results using notation h = −π(q, q̇)
so that the HD2 geometry can be expressed q̈ + h(q, q̇) = 0.
Using Mq̈+ξ = 0 to denote the unforced equations of motion,
Equation 27 of Appendix Lemma C.1 gives the time derivative
of the energy Ḣe = q̇T

(
Mq̈ + ξ

)
. Substituting a system of

the form q̈ = −h(q, q̇)−αHe q̇, setting it to zero, and solving
for αHe gives

Ḣe = q̇T
[
M
(
− h− αHe q̇

)
+ ξ
]

= 0

⇒ −q̇TMh− αHe q̇
TMq̇ + q̇T ξ = 0

⇒ αHe = − q̇TMh− q̇T ξ

q̇TMq̇

= −(q̇TMq̇)−1q̇T
[
Mh− ξ

]
.

This result gives the formula for Equation 7. Substituting this
solution for αHe back in gives

q̈ = −h +

(
q̇T

q̇TMq̇

[
Mh− ξ

])
q̇

= −h +

[
q̇ q̇T

q̇TMq̇

] (
Mh− ξ

)
.

Algebraically, it helps to introduce h = M−1[ff + ξ
]

to first
express the result as a difference away from ξ; in the end we
will convert back to h. Doing so and moving all the terms to
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the left hand side of the equation gives

q̈ + h−

[
q̇ q̇T

q̇TMq̇

] (
Mh− ξ

)
= 0

⇒ q̈ + M−1[ff + ξ
]

−

[
q̇ q̇T

q̇TMq̇

](
MM−1[ff + ξ

]
− ξ
)

= 0

⇒Mq̈ + ff + ξ

−M

[
q̇ q̇T

q̇TMq̇

](
ff +

(
ξ − ξ

))
= 0

⇒Mq̈ + ξ + M

[
M−1 − q̇ q̇T

q̇TMq̇

]
ff = 0

⇒Mq̈ + ξ + MRp

(
Mh− ξ

)
= 0,

where Rp = M−1 − q̇ q̇T

q̇TMq̇
matching Equation 28 of

Lemma C.2, and we substitute ff = Mh − ξ back in. By
Lemma C.2 MRp = Pe, so we get Equation 8. Moreover,
again by Lemma C.2, q̇TPe = 0, so q̇T ff = −q̇TPe

[
Mπ +

ξ
]

= 0 showing that the new term is a zero work modification.
Finally, both h and ξ are HD2 by definition, and since Pe and
M are HD0, the modifying term is HD2 making it a bending
term. Therefore, the energized system is a bent Finsler system
and hence a geometric fabric.

E. Theorem IV.6 on Fabrics in Generalized Coordinates

Proof of Theorem IV.6 showing how to express in gen-
eralized coordinates energized systems that are subsequently
constrained. See Subsection IV-E.

Proof. We will show the equivalence by calculation. Let
h(x, ẋ) = −π(x, ẋ) so that the geometry’s equation becomes
ẍ + h(x, ẋ) = 0. Multiplying through by M gives its metric-
weighted (force) form Mẍ + f = 0 where f = Mh. Using
Equation 7 of Theorem IV.5, this system’s energization with
respect to energy Le with equations of motion Mẍ + ξ = 0
can be expressed Mẍ + ξh = 0 where

ξh = ξ + M

[
M−1 − ẋẋT

ẋTMẋ

] (
f − ξ

)
. (33)

Let J = ∂qφ. The pullback of the energized geometry
generator is

JTM
(
Jq̈ + J̇q̇

)
+ JT ξh = 0

⇒
(
JTMJ

)
q̈ + JT

(
ξh + MJ̇q̇

)
= 0

⇒
(
JTMJ

)
q̈ + JT ξ

+ JTM

[
M−1 − ẋẋT

ẋTMẋ

] (
f − ξ

)
+ JTMJ̇q̇ = 0

⇒ M̃q̈ + ξ̃ + JTM

[
M−1 − ẋẋT

ẋTMẋ

] (
f − ξ

)
, (34)

where M̃ = JTMJ and ξ̃ = JT
(
ξ+MJ̇q̇

)
form the standard

pullback of (M, ξ).

Now we show that pulling back the geometry first then
energizing it in q results in a system matching Equation 34.
We can calculate the geometry pullback with respect to the
energy metric M by pulling back the metric weighted force
form of the geometry Mẍ + f = 0, where again f = Mh.
The pullback is

JTM
(
Jq̈ + J̇q̇

)
+ JT f = 0

⇒
(
JTMJ

)
q̈ + JT

(
f + MJ̇q̇

)
⇔ M̃q̈ + f̃ = 0 (35)

where M̃ = JTMJ as before and f̃ = JT
(
f + MJ̇q̇

)
.

Let L̃e = Le
(
φ(q),Jq̇

)
be the pullback of the energy func-

tion Le. We know that the Euler-Lagrange equation commutes
with the pullback, so applying the Euler-Lagrange equation
to this pullback energy L̃e is equivalent to pulling back the
Euler-Lagrange equation of Le. This means we can calculate
the Euler-Lagrange equation of Le as(

JTMJ
)
q̈ + JT

(
ξ + MJ̇q̇

)
= 0 (36)

⇔ M̃q̈ + ξ̃ = 0, (37)

with M̃ = JTMJ and ξ̃ = JT
(
ξ+MJ̇q̇

)
(both as previously

defined). Therefore, energizing 35 with L̃e gives

M̃q̈ + ξ̃ + M̃

[
M̃−1 − q̇q̇T

q̇TM̃q̇

] (
f̃ − ξ̃

)
= 0

⇒ M̃q̈ + ξ̃

+
(
JTMJ

) [
M̃−1 − q̇q̇T

q̇TJTMJq̇

]
·(

JT
(
f + MJ̇q̇

)
− JT

(
ξ + MJ̇q̇

))
= 0

⇒ M̃q̈ + ξ̃

+
(
JTM

)
J

[(
JTMJ

)−1 − q̇q̇T

ẋTMẋ

]
JT
(
f − ξ

)
= 0

⇒ M̃q̈ + ξ̃ (38)

+ JTM

[
J
(
JTMJ

)−1
JT − ẋẋT

ẋTMẋ

] (
f − ξ

)
= 0.

Since φ is full rank JTMJ is invertible, so

JTMJ
(
JTMJ

)−1
JT = JT = JTM

(
M−1),

which means we can rewrite Equation 38 as

M̃q̈ + ξ̃ + JTM

[
M−1 − ẋẋT

ẋTMẋ

] (
f − ξ

)
= 0. (39)

This final expression in Equation 39 matches the expression
for the energized geometry pullback in Equation 34.

APPENDIX E
DETAILS ON DESIGNING WITH FABRICS

A. Derivations of Fabric Component Algebra

A fabric component was defined in Subsection ?? as a
Finsler energy paired with a force term {Le, f}. We often
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refer to this pair as a Finsler energy paired with a HD2
geometry π(x, ẋ) knowing that the actual component would
be f = −Mπ where M is the mass from the energy’s
equations of motion Mẍ + ξ = 0. Since the energization
formulas in Theorem IV.5 are functions of the Finsler energy
Le only through its equations of motion parameterized by
(M, ξ), we can think of the fabric component as effectively
a triple (M, ξ, f) representing the energy equations alongside
an additional forcing term, which itself can be viewed as two
pairs

(
(M, ξ), (M, f)

)
. The algebra defined in Subsection ??

is equivalent to the reduction of sums and pullback to the
sums and pullback of these individual pairs. For concreteness,
and in alignment with the terminology of [20], we call these
pairs specs, short for spectral semi-sprays, which is descriptive
of the differential equation they represent emphasizing the
spectral role of the metric M.

The one operation on these specs not discussed in Subsec-
tion ?? is summation and the linearity of summation. This
property can be easily seen by

α(M1, f1) + β(M2, f2)

⇔ α
(
M1ẍ + f1

)
+ β

(
M2ẍ + f2

)
= 0

⇒
(
αM1 + βM2

)
ẍ +

(
αf1 + βf2

)
= 0

⇔
((
αM1 + βM2

)
,
(
αf1 + βf2

))
.

As mentioned in the discussion leading up to Equation 14,
the pullback of energy equations is equivalent to applying
the Euler-Lagrange equation on the pullback energy. Since
application of the Euler-Lagrange equation is linear in the
sense EL

[
αL1 + βL2

]
= αEL

[
L1

]
+ β EL

[
L2

]
, if we

treat any two energies that differ by only a constant as
equivalent, the mapping defined by the EL[·] operator defines
an isomorphism between energies and the subspace of specs
defined by those energies. That means, algebraically, we can
treat the two representations as equivalent.

That algebra of specs derives the summation operation
on fabric components. For the pullback operation, we can
simply note that by Equation 14, the first (energy) spec of
the component has a pullback matching the application of the
Euler-Lagrange equation applied to the pullback energy, so
the pullback of the energy captures that part. It additionally
captures the pullback of the mass matrix of the second spec, so
we need only additionally account for how that second spec’s
force term pulls back. Looking at the definition of component
pullback in Equation 12 we see that that’s exactly what the
force term pullback expression computes.

Finally, we note that while the definition of fabric compo-
nents and its associated algebra as presented in Subsection ??
is compact and gives insight into what fabric components are
and how they interact, it may be more efficient in practice
to represent them in compact spec form explicitly as triples
(M, ξ, f) in code. That said, leveraging automatic differen-
tiation frameworks such as those used in [22] may lead to
alternative efficient representations.

We note that some fabric components may represent po-
tential terms with dampers as their f term. These components
intermix with the other fabric components using the same alge-

bra since a component is defined independent of f semantics.

B. Formulas for speed control

This section gives explicit formulas for calculating the
damping β(q, q̇) described in Subsection V-A for regulating
a specific measure of speed.

Once a geometry is energized by a Finsler energy Le, its
speed profile is defined by what is necessary to conserve Le.
In practice, we usually want to regulate a different measure of
energy (speed), an execution energy Lex

e , such as Euclidean
energy in either C-space or end-effector space (or, more
commonly, some combination of both). Denoting the fabric
by (Le,−Mπ − ξ) which defines nominal fabric equations

Mq̈ + ξ + ff

= Mq̈ + ξ −Mπ − ξ

= M(q̈− π) = 0

so that the resolved behavior matches the geometric policy
q̈ = π, we can regulate the speed by adjusting αreg in a
forced and damped equation of the form

q̈ = −M−1∂qψ(q) + π(q, q̇) + αregq̇. (40)

As long as αreg < αLe , where αLe is the energization
coefficient (Equation 7 of Theorem IV.5), the system will
remain stable per Theorem IV.4 since αreg always act as a
nonzero damper with respect to the energized system. Note
that αLe need not always be smaller than 0, so we have the
flexibility with αreg to both remove and add energy as needed
(although, we don’t necessarily have to use that flexibility;
the method outlined below restricts it to being positive to aid
intuition). Below we calculate explicit formulas for αreg to
regulate a given measure of speed (energy).

Let Lex
e be an execution energy, which may differ from

the fabric’s energy Le, and let α0
ex and αψex be the en-

ergization coefficients, respectively, for energizeLex
e

[
π
]

and
energizeLex

e

[
−M−1∂qψ + π

]
. The coefficient α0

ex ensures
that system

q̈ = π(q, q̇) + α0
exq̇ (41)

conserves Lex
e and the coefficient αψex ensures that the forced

system5

q̈ = −M−1∂qψ + π(q, q̇) + αψexq̇ (42)

conserves Lex
e . Likewise, let αLe denote the energy coeffi-

cient of the actual system energy energizeLe
[
π
]

(designed to
conserve Le).

The forced and damped energized system

q̈ = −M−1∂qψ + π(q, q̇) + αLe q̇− β̃q̇, (43)

5As noted above, the energization coefficient calculation in Theorem IV.5
does not require that the underlying differential equation being energized be
a geometry (in this case it’s a geometry forced by a potential). It simply
states that if the underlying differential equation is indeed a geometry, then
the resulting energized equation is a geometric fabric. Here we’re just using
the result to calculate a reference coefficient.
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would be stable for β̃ > 0. Adding and subtracting α0
ex gives

q̈ = −M−1∂qψ + π(q, q̇) +
(
αLe + α0

ex − α0
ex

)
q̇− β̃q̇

= −M−1∂qψ + π(q, q̇) + α0
exq̇− βq̇

= −M−1∂qψ + energizeLex

[
π(q, q̇)

]
− βq̇,

where β = β̃ + α0
ex − αLe . The constraint β̃ > 0 written this

way manifests as β > α0
ex − αLe .

This calculation suggests we can regulate speed by choosing
αreg in Equation 40 as

αreg = αηex − βreg(q, q̇) + αboost (44)

where αηex = ηα0
ex + (1− η)αψex for η ∈ [0, 1] and αboost ≤ 0

as long as βreg > α0
ex − αLe . The term αboost can be

used temporarily in the beginning to boost the system up to
speed. Since it is transient, we drop αboost momentarily for
simplicity, but return to it at the end of the section to describe
a good boosting policy. In our experiments, we use that term
only for the cubby navigation problem in order to reduce
the strength of the potential function near the beginnings of
motions to get a clear signal on what the geometry itself is
encoding.

Under this choice of αreg given in Equation 44, using
v// =

(
αψex − α0

ex

)
q̇ to denote the component of −M−1∂qψ

additionally removed by including it within the energization
operation (and dropping αboost), we can express the system
as

q̈ = ηv//+ energizeLex
e

[
−M−1∂qψ + π

]
− βreg(q, q̇)q̇,

using a similar analysis to the above. Intuitively, the energized
system will conserve execution energy, ηv// can inject energy
into the system to speed it up (by an amount parameterized by
η ∈ [0, 1]), and βreg can bleed off energy. Note that the lower
bound on the damper isn’t strictly zero βreg > α0

ex − αLe , so
there may be both cases where that term is allowed to inject
extra energy and when that term is forced to be strictly a
margin above zero for stability.

In practice, we enforce that βreg is strictly positive by
choosing βreg = sβ(q)B + B + max{0, αηex − αLe} > 0
with both B and B positive. This gives us a more intuitive
interface to speed control with η adjusting energy in and
βreg adjusting energy out. In this form, B acts as a constant
baseline damping coefficient, and sβ(q)B provides additional
damping near the convergence point with B > 0 and sβ(q)
acting as a switch transitioning from 0 to 1 as the system
approaches the target. max{0, αηex−αLe} ensures the stability
bound αreg = βreg ≥ αex − αLe is satisfied with the baseline
coefficients making it a strict inequality.

Specifically, in our experiments we use

sβ(q) =
1

2

(
tanh

(
− αβ(‖q‖ − r)

)
+ 1
)

(45)

where αβ ∈ R+ is a gain defining the switching rate, and
r ∈ R+ is the radius where the switch is half-way engaged.
Denoting the desired execution energy as Lex,d

e , we use the
following policy for η

η =
1

2

(
tanh

(
− αη(Lex

e − Lex,d
e )− αshift

)
+ 1
)

(46)

where αη, αshift ∈ R+ adjust the rate and offset, respectively,
of the switch as an affine function of the speed (execution
energy) error.

When used, αboost acts to explicitly inject energy along
the direction of motion to quickly boost the system up to
speed. When q̇ = 0, this term has no effect, so the initial
direction of motion is chosen by the potential ∂qψ. Once
q̇ 6= 0, αboost quickly accelerates the system to the desired
speed. When π is a geometry, quickly reaching a high speed
means that the influence of the non-geometric potential is
diminished, promoting path consistency. We reduce αboost to
zero permanently once the system is close to convergence so
it does not affect convergence stability.

In these cases, αboost is modeled as αboost = k η
(
1 −

sβ(q)
)

1
‖q̇‖+ε , where k ∈ R+ is a gain that directly sets the

desired level of acceleration, η (from above) sets αboost =
0 when the desired speed is achieved, and 1 − sβ(q) sets
αboost = 0 when the system is within the region of higher
damping. The normalization by ‖q̇‖+ ε ensures that αboost is
directly applied along ˆ̇q with a very small positive value for ε
to ensure numerical stability. This overall design injects more
energy into the system when −αboost < αηex − αLe . Since
this injection occurs for finite time, the total system energy is
still bounded. The additional switches ensure that the system
is still subject to positive damping, guaranteeing convergence.

C. Designing fabric components
This section reviews a number of techniques for designing

HD2 functions and maps for the design of Finsler energies
and HD2 geometries referenced in Subsection V-B on tools
for fabric design.

The design of fabric components largely involves the con-
struction of a geometric policy expressing a desired component
behavior and a Finsler energy whose metric will act as that
policy’s priority metric. Both of these parts are defined by
HD2 terms, so the question of design largely reduces to the
question of how to design HD2 functions and maps.

As a reminder, a Homogeneous of Degree k (HDk) function
is a function f(x) for which f(αx) = αkf(x). In our case,
our functions are typically HD0 through HD2, specifically in
velocity. For instance, if π(x, ẋ) is a geometric policy, the
geometric modifier means it is HD2 in velocity, so π(x, αẋ) =
α2π(x, ẋ), and usually we assuming this holds just for α ≥ 0.
It places no restrictions on how the function should scale with
x.

Often we design HD2 terms by multiplying an HD0 term
by an HD2 scaling factor. That HD0 term might be entirely
independent of velocity, or it may be dependent on the
direction of the velocity, but not its norm (speed). Note that
in the 1D case, the velocity direction is a switch, the sign
of the scalar one-dimensional velocity, switching from 1 to
-1 as velocity passes from positive to negative. This discrete
switch is valid with our theory (systems have to come to a
rest (zero velocity) before experiencing the switch) and is
used commonly in our designs, especially for one-dimensional
barrier geometries and energies.

In higher dimensions, switches depending on the norm of
a velocity may not result in positive definite mass matrices.
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The presentation in [7] allows that case by relaxing the third
requirement of Definition III.1 to require only invertibility,
which is internally consistent with the geometric theory. But
here, as a generalization of classical mechanics, we want mass
matrices to remain positive definite, so building such switching
terms in 1D spaces (where is naturally positive definite) and
pulling them back to higher-dimensional spaces becomes an
important technique for Finsler energy design.

A common pattern is to start with a scalar function ψ(x)
(often similar in structure and form to standard potential
functions), and either use it directly as a position only base
function, or compute a base policy as π0(x) = −∂xψ. In this
discussion we will use the base policy as an example and
construct a geometric policy. This base policy is HD0 simply
because it doesn’t depend on velocity at all. It’s often useful
to depend on velocity direction ̂̇x = ẋ/‖ẋ‖, though. Sincê̇x is already independent of speed s = ‖ẋ‖, any function of
velocity direction is automatically HD0 as well. That gives
πσ0 (x, ẋ) = σ(̂̇x)π0(x) as a new HD0 base. Finally, any
Finsler energy Le(x, ẋ) = 1

2L
2
g(x, ẋ) is HD2 by definition,

so scaling πσ0 by Le gives us an HD2 geometry

π(x, ẋ) = Le(x, ẋ)πσ0 (x, ẋ). (47)

For instance, we might choose

ψ(x) =
1

2
‖x0 − x‖2 (48)

as a quadratic attractor to a target x0. The negative gradient
of the potential defines π0(x) = −∂ψ = x0 − x. Then with a
slight abuse of notation, we might switch on the velocity di-
rection using a scalar σ of the form σ(s) = 1/(1+exp(−βs))
for β ∈ R+ with s = vT ̂̇x for some constant vector v. The
resulting HD0 policy becomes

πσ0 (x, ẋ) = σ(vT ̂̇x)π0(x) (49)

=
x0 − x

1 + exp
(
− βvT ̂̇x) .

Finally, we can choose to scale that using a Euclidean Finsler
energy Le = 1

2‖ẋ‖
2 to get a final geometry of the form

π(x, ẋ) =
1
2‖ẋ‖

2
(
x0 − x

)
1 + exp

(
− βvT ̂̇x) (50)

Note that another way to design an HD2 geometry is by
designing a Finsler geometry derived from a Finsler energy.
We can use one Finsler energy to derive the geometry, and a
second Finsler energy to define the priority metric. Energiza-
tion would then bend the geometry associated with the second
(priority) energy to align with the first energy’s geometry.

A common pattern for designing Finsler energies is to
start with a Riemannian (kinetic) energy in 1D of the form
K(x, ẋ) = 1

2g(x)ẋ2 where g(x) is everywhere positive and
dependent on position only. We then scale it by a scaling
function that depends on velocity directionality. Since we are
in 1D, that normalized velocity becomes a switch on the sign
of the velocity, so we can design this scaling function in two

parts

σ(ẋ) =

{
σ−(ẋ) for ẋ ≤ 0
σ+(ẋ) for ẋ > 0

. (51)

The energy then becomes Le(x, ẋ) = 1
2 g̃(x, ẋ)ẋ2 where

g̃(x, ẋ) = σ(ẋ)g(x), which is effectively two different metrics
depending on directionality of the velocity.

Note that in the 1D case, the derived m(x, ẋ) = ∂2ẋẋg̃ must
have the property that

Le(x, ẋ) =
1

2
g̃(x, ẋ)ẋ2 =

1

2
m(x, ẋ)ẋ2, (52)

which is only true globally when m = g̃. This in general is
not necessarily true in higher dimensions.

Finally, we describe a common pattern in designing po-
tential functions. Potential functions define forces that push
against the fabric system’s mass. The mass defines the fabric
priority; the stronger the mass the higher the priority the fabric
takes. Thought another way, these masses define the fabric
system’s inertia; a given force has less effect pushing a sizable
mass (high priority) than pushing a small mass (low priority).
It is often important that a potential function adjust effectively
to the fabric’s priority. However, it can be challenging to
design potential forces directly to scale in an intuitive way.

For that reason, it’s often easier to design a potential
function by designing its gradient in terms of a priority metric
of its own and a desired acceleration. Specifically, if ψ̃(x) is
a function (similar to the potential function in form) defining
an acceleration policy π(x) = −∂ψ̃, and if M is its associated
priority, the resulting potential function ψ(x) would be one for
which −∂ψ = −M ∂ψ̃ (force equals mass times acceleration)
if such a potential function exists. Given an expression for a
vector field, it’s easy to check whether it is a gradient of a
potential by taking its Jacobian and verifying the Jacobian is
symmetric (it’s a well-known result in multivariate calculus
that a vector field is the gradient of a potential if and only if
its Jacobian is everywhere symmetric).

One-dimensional vector fields are always symmetric so
we can always design one-dimensional potentials using an
acceleration policy and an associated priority mass. For higher-
dimensional potentials, one can use the results discussed in
[8] (Appendix D.4) that show that if the acceleration policy
is radially symmetric and the metric is compatibly symmetric
along the same radial lines, the resulting vector field defined
by scaling the acceleration policy by the metric has symmetric
Jacobian and is therefore the gradient of some potential.

When designing potential functions in this way, it is nec-
essary only to show that the potential exists. Knowing that,
we can implement the system using only its gradient given
by the metric-scaled acceleration policy. The resulting system
then fits the theory and we have convergence and stability
guarantees.

APPENDIX F
ADDITIONAL EXPERIMENTS: EQUALITY CONSTRAINTS

This supplementary experiment is a specific realization of
constrained fabrics. In principle, constrained fabrics can be
realized in many different ways, e.g., by explicitly calculating
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the constraint Lagrange multiplier and adding the resulting
constraint force to the unconstrained fabric as discussed in Ap-
pendix D-B. This method would additionally need to employ
Baumgarte stabilization [26] to combat numerical drift. Other
approaches may be taken as well such as solving a nonlinear
program subject to a discretized momentum-impulse form
of the fabric and additional equality constraints as done by
Stewart and Trinkle [27]. There are also many other different
discretization and nonlinear program schemes that could be
created to solve constrained fabrics. In this particular case, we
create the following discretization,

q = qk (53)

q̇ =
qk+1 − qk−1

2∆t
(54)

q̈ =
qk+1 − 2qk + qk−1

∆t2
(55)

where k indicates the discrete time index and qk−1 and qk
are known. We then minimize the following cost function,

L(q, q̇) =
1

2
(q̈d − q̈)TM(q, q̇)(q̈d − q̈) +

1

2
λC(qk+1)2

(56)

where q̈d is the desired unconstrained acceleration of the
fabric calculated as q̈d = −M(q, q̇)−1f(q, q̇), C(qk+1) is
a scalar constraint function of interest, and λ is a weight.
The first term solves for system acceleration that naturally
follows the fabric while the second term is a penalty on the
constraint, where λ can be set to a large value to enforce
the constraint. Altogether, this formulation implicitly solves
for a new acceleration that adds a constraint force on the
unconstrained fabric theoretically realizing (5).

We implemented the above for the geometric fabric de-
signed in Section VII subject to the constraint that the end-
effector must lie on a plane. We repeatedly solved the program
with ∆t = 0.04s and a Gauss-Newton optimizer with four
iterations per time step to forward integrate the system. The
result is shown in Fig. 5. The robot can maintain the constraint
at the micrometer level and the end-effector can settle to within
1 mm of the closest point on the plane to the target.

APPENDIX G
END-EFFECTOR POSE CONTROL

There are many different ways geometric fabrics can be used
to control a robot, including end-effector pose control. This is
a straight-forward extension to design outlined in Section VII
that attracted a point on the end-effector towards a target point.
In this case, we calculate three additional task spaces that map
to each axis of a orthonormal coordinate system placed at the
end-effector. In each of these axis spaces, we place the very
same attractor components discussed in Section VII-A3. With
this extension to the original fabric, we can exhibit full pose
control over the end-effector.

Fig. 5. Constrained geometric fabric moving the robot end-effector to orange
target points while the end-effector is constrained to the blue plane.

APPENDIX H
ADDITIONAL EXPERIMENTS: CUBBY NAVIGATION

HEURISTICS

An important use of geometric fabrics is to heuristically bias
the system without affecting convergence to local minima of
the potential. This feature is especially useful for designing
global navigation heuristics. A geometric fabric system as
described in Subsection VII is subject to local minima since
the target attractor is greedy. In many environments, though,
simple heuristics can coarsely shape the behavior en route so
that these local avoidance behaviors are sufficient for global
navigation as well (similar to the heuristics described in [21]
Section V-D).

Section XI of [28] describes such an experimental setup
in detail. In those experiments, geometric fabrics are used to
navigate between a wall of cubbies and a set of floor boxes
in a standard pick and place industrial setting. The heuristic
geometries encoded simple geometric fields that push the
system away from the interior of any cubby and box except for
the one it wanted to enter into. The final system successfully
navigated between any pair of cubby and surrounding boxes
even with perturbations to the environment.

The simplicity and success of these heuristic terms suggest
that learning such heuristics conditioned on environmental
features over the top of an existing obstacle navigation fabric
system would be straightforward, especially given automatic
differentiation tools such as [22] and leveraging imitation
learning methods such as [29]. Fabrics constitute a compact
encoding of behavioral components that span multiple tasks
which could make it a powerful medium for learning of
strongly generalizing policies. It is an area of future work to
explore these learning applications in detail, especially in the
context of meta learning shared nominal fabric layers.
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