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Abstract— Data-driven approaches and human inspiration
are fundamental to endow robotic manipulators with advanced
autonomous grasping capabilities. However, to capitalize upon
these two pillars, several aspects need to be considered, which
include the number of human examples used for training; the
need for having in advance all the required information for
classification (hardly feasible in unstructured environments);
the trade-off between the task performance and the processing
cost. In this paper, we propose a RGB-based pipeline that can
identify the object to be grasped and guide the actual execution
of the grasping primitive selected through a combination of
Convolutional and Gated Graph Neural Networks. We consider
a set of human-inspired grasp strategies, which are afforded by
the geometrical properties of the objects and identified from a
human grasping taxonomy, and propose to learn new grasping
skills with only a few examples. We test our framework with a
manipulator endowed with an under-actuated soft robotic hand.
Even though we use only 2D information to reduce the footprint
of the network, we achieve 90% of successful identifications of
the most appropriate human-inspired grasping strategy over
ten different classes, of which three were few-shot learned,
outperforming an ideal model trained with all the classes, in
sample-scarce conditions.

I. INTRODUCTION

Endowing robotic systems with advanced grasping and
manipulation capabilities still represents one of the grand
challenges for the robotics community. Indeed, the functional
pipeline for autonomous robotic grasping and manipulation
[1] involves several elements, such as the object [2], the
environment [3], the gripper [4], [5], and the task [6], which
should be all considered while designing new mechanics,
sensing and perceptual components, as well as planning and
control strategies. An inspiration to successfully tackle these
issues could arise from the human example. Indeed, human
manipulation represents the golden standard, still unmatched,
for robotic end effectors, in a world where objects are
designed to be used by human hands [7]. Human inspiration
has hence driven the development of mechanical systems that
offer natural compliance, and deform with the environment
to augment their grasping capabilities, like humans actually
do [5], [3]. Furthermore, human inspiration can also provide
informed guidelines for the planning phase, e.g. relying on the
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Fig. 1. General pipeline implemented in this work. From an input image,
we first predict the best grasp from the taxonomy to lift the object, while
integrating information from a knowledge graph. Then, given the images
and the predicted grasps, a strategy to grasp the object is executed.

usage of learning methodologies [8] that can be used to deal
with the difficulties in generating accurate models of the hand-
object interaction, and adapt robot perception and control
of unfamiliar objects [9]. Data-driven methods for robotic
grasp generation are typically based on Neural Networks
[10], [11], [12], [8] but usually suffer of some limitations,
which are e.g. related to the quality and dimensionality
of the data used for training [13], to the increase of the
computational cost that grows with the complexity of the task
and to the dimensionality of sensory information. It is also
worth mentioning that most of the approaches proposed so
far heavily rely on three-dimensional information (RGB-D,
point clouds, etc.) [14], [15], [11], [2], which dramatically
increases the complexity of the neural architecture w.r.t. 2D
models, with negative impact on the deployment feasibility
at the edge.

In addition, all the approaches proposed so far typically
assume a pre-defined scenario. Yet, having robots in our lives
requires them to interact with unstructured environments,
where they may be not aware, at training time, of all the
objects classes that are available in a realistic setting, for
example because they are rare, or simply too costly. In this
case, at the deployment time, the robot is made aware of
a limited number of classes only, while other classes may
appear only afterwards. To manage this issue, a simple yet
trivial solution is to re-train from scratch the model when new
data are provided, which is time consuming, inefficient and,
potentially, even of negative impact for the knowledge learned
beforehand. Alternatively, novel classes could be learned
incrementally, preserving the knowledge already stored, and
eventually using a small number of new examples. This
setting, typically named few-shot learning, is a relatively new
research field in Deep Learning (DL) [16], [17], [18], which
provides a solution to the problem of supervised training
sample size, one of the major limitations of modern DL
models (see [19]). Indeed, especially in robotics - as for the



task of grasping and manipulation - it is not uncommon the
case that large datasets are not available, because of time
and/or safety limitations [13] or because of the increasing
deployment of robotic technologies in unstructured and
unpredictable environments, which makes the creation of
comprehensive datasets challenging. One solution to this
problem is to collect data for a reduced number of classes
(ideally the ones that are easier to experience), and then
extend to others with few-shots. In addition, we rely on the
fact that the generalization capabilities of the model to novel
classes could be further enhanced by providing information
associated to the relationship between the different grasp
strategies (i.e. a similarity index between two leaves of a
grasping taxonomy).

Therefore, in this paper we propose a contribution in
this direction by developing a novel method for 2D vision
driven grasping of common objects, which enables few-shot
learning of novel grasp strategies. The usage of RGB-based
information (as in [20], [21]) allows to reduce the cost of
the sensing hardware and the network footprint. As briefly
introduced before, this approach substantially differs from
the literature, which usually heavily rely on 3D information
[2], [14], [15], [11], [10], and represents - to the best of
Authors’ knowledge - the first example in literature of few-
shot learning of human-inspired grasping strategies relying on
2D data only, opening interesting perspectives for the actual
usage of these approaches directly at the edge.

More specifically, given a 2D image of a generic object,
we aim at identifying the most appropriate human-inspired
grasping strategy (see Fig. 1) through a combination of a
Convolutional Neural Network (CNN), required to extract the
features of the object, and a Gated Graph Neural Network
(GGNN), which processes the information on the relationship
between different grasping strategies. The neural architecture
provides as output a semantic description of the grasping
approach extracted from a human-inspired taxonomy [22].
The same image is then fed to a computer vision pipeline
which, depending on the grasp predicted by our neural
network, identifies a proper robotic implementation. We
consider a set of human-inspired grasp strategies, which are
afforded by the geometrical properties of the objects and
identified from a human grasping taxonomy, and propose
to learn new grasping skills with only a few examples. We
extensively test our framework with a manipulator endowed
with an under-actuated soft robotic hand (Fig. 2). Even though
we use only 2D information to reduce the complexity of the
network, we achieve 90% of successful identifications of
the most appropriate human-inspired grasping strategy over
ten different classes, of which three were few-shot learned,
outperforming an ideal model trained with all the classes.

II. METHODS

Humans are capable of a great variety of grasping and
manipulation strategies, which are typically described by
taxonomies of grasp [22] and manipulation [23]. Each leaf of
the taxonomy represents a specific geometric configuration
of the hand, driven by the shape of the object and by the
envisioned task. In addition, the variety of human behavior
is further expanded considering the approaching strategy that
precedes the execution of the grasp itself which - for some

Fig. 2. Experimental Platform. A Franka Emika Panda is endowed with a
soft end-effector and a webcam which looks at the area delimited by the
black circle. Red, Blue and Yellow arrows stand for global X, Y and Z axes.

grasps typologies - could be more than one. For example,
one could reach to grasp a bottle using a “large diameter”
strategy (using the taxonomy proposed in [22]) with the palm
facing downward if the bottle is lying down on the table,
and with the palm in a vertical plane if the bottle is standing
up. To replicate human strategies, it is possible to solve a
classification problem over the leaves of a grasp taxonomy
and associate to a given object the most appropriate human-
inspired grasp that it would afford [7], assuming that these
would result in a likely stabler grasp. However - considering
the case in which robots are asked to work in unknown and
unstructured environments - it may also occur that certain
classes of objects are not available at training time [24] or they
are available only with few samples. This typically results in
unbalanced datasets, where some classes are sampled with
an higher frequency. Training a deep neural architecture to
perform classification over unbalanced classes is a difficult
problem because it tends to introduce biases in the inference,
resulting in poor predictive performance, especially for the
minority classes [25]. Our solution to this problem is to
implement a few-shot learning approach where we exploit
the most represented Kp,. classes to train the model, and then
extend the knowledge to the remaining Kj,,,.; classes relying
on few examples. More specifically, our implementation
moves from the architecture presented in [17] and is composed
by two sub-models: a Convolutional Neural Network, which
acts as feature extractor, and a Neural Network capable
of processing graph data [26], specifically a Knowledge
Graph Transfer Module (KGTM). To test our framework,
we considered the Cornell Grasping dataset [11], which we
manually labeled to associate each object with the most
appropriate grasp strategy of the Feix et al. taxonomy [22].
To label the whole dataset we used ten leaves of the taxonomy,
resulting in K = 10 classes. Because of the unbalanced
distribution of grasps types in the Cornell Grasping dataset,
we selected the three less-represented classes and used them
as K,over, While the remaining formed the Kj,,, classes.

As a real test-bench, we considered a robotic platform
composed by a Franka Emika Panda robot (https://www.



franka.de/), endowed with a Pisa/IIT Softhand as End-
Effector [5]. At the basis of the hand, we mounted a Logitech
C922 Pro RGB camera, in an Eye-in-Hand configuration.
During the experiments, the object was placed on a white
background in front of the robot, so that the setting reproduces
the one employed to collect the dataset used for the training of
the network (see Fig. 2). The image also shows the coordinate
frame referred to as “world frame” and the area where the
object should be placed for the robot to be able to grasp it
in the current configuration ( radius ~ 15[cm]). Of note, this
limit is manually imposed to avoid miss-classifications caused
by image distortion, which may occur at the borders of the
camera field of view (horizontal FOV = 70°, vertical FOV
~ 43° in our case), but the working area can be arbitrarily
expanded by changing the pose of the robot endpoint.

A. High Level Architecture

As briefly introduced in the previous section, our com-
putational framework is composed by a Feature Extractor
(FE) and a Knowledge Graph Transfer Module (KGTM). The
interconnection between these is depicted in Fig. 3. More
specifically, the input image is elaborated through the FE,
a CNN that provides as output a vector of features which
summarizes the information included in the image. Then, a
Knowledge Graph is provided as input to the KGTM. The
output of the KGTM is a vector of class embeddings that
can be used to classify the image by finding the class with
the lowest distance from the FE output in the embeddings
space. The following sections will provide additional details
on the implementation of each sub-element.

B. Feature Extractor

We used as a Feature Extractor the first 16 blocks of a
pre-trained EfficientNet-BO ([27]). The network was then
fine-tuned for the intended task. To do this, we added at the
end of the network a fully connected layer, which acts as a
classifier, and further trained the Feature Extractor over the
Kpase classes. Then, the classifier output is given as input
to a softmax layer to extract the confidence level of the
prediction. Of note, the classification layer (fully connected)
is needed for this phase only, and it is removed when the
Feature Extractor is used in conjunction with the KGTM in
the complete architecture, since its role is played in this case
by the output of the KGTM.

C. Knowledge Graph

The Knowledge Graph given as input to the Knowledge
Graph Transfer Module (see next subsection) provides a
certain degree of a-priori knowledge on the relationship
between different classes, defined in terms of kinematic
distance. To quantify the distance between classes, we

used the the HUST dataset (available at https://www.

handcorpus.org/?p=1596 - last access Nov 15, 2021),
a collection of kinematic recordings from subjects while
performing the 33 grasps of the Feix taxonomy, and calculated
the distance in the velocity domain between the kinematic
synergies [28] associated to different leaves of the grasp
taxonomy. We chose to use the velocity of the hand joints
rather than joint angular values to increase the amount of
information provided to the network. Indeed, we expected that

Fig. 3. General architecture of the KGTN, with its three main elements:
the KGTM (Below), the Feature Extractor (Above), the Similarity metric
employed to merge the two submodules (Right).

relations associated to static hand shape are already mostly
embedded in the information provided by the input image,
while the analysis of joint angular velocities can inform on
the dynamic evolution of the grasp. More specifically, this
was achieved through the following steps:

1) We perform discrete differentiation of joint angles (16
Degrees of Freedom) to obtain joint velocities;

2) On these data, we apply PCA and extract the Principal
Components (PCs) of the dataset;

3) We then extract the mean from all the entries of the
dataset associated to each class, and project it in the
subspace defined by the first six PCs, resulting in a
PCs-based encodings of the average hand configuration
(in velocity domain) associated to a given class. Of note,
we used six components because these were sufficient
to explain over the 86% of the total dataset variability;

4) We define a set of nodes V = {v;]i € [1,K]}. Each node
represents one of the K classes and is associated to a
label corresponding to the specific vector of activation
of the synergies (extracted in the previous point);

5) The links between nodes E = {(v;,v;)|i # j}, instead,
define a complete undirected graph, where each edge
is associated to a 6-dimensional label a¥; = [v% — v’; |
containing the absolute value of the difference of
activation of the main synergies. In other terms, the
larger is the distance in the PCs-domain between two
different grasp types, the larger is the weight of the
corresponding edge;

6) Finally, the node labels are reinitialized: the nodes
corresponding the first Kp,, grasps are reassigned
with a label equal to the corresponding row in the
classifier trained when training the feature extractor.
The remaining Kj,,,; nodes are initialized randomly.

The output of this process is an undirected graph that
encodes the information on the similarity between different
grasp strategies in synergy space.

D. Knowledge Graph Transfer Module

The Knowledge Graph Transfer Module, in our implemen-
tation, is a Gated Graph Neural Network (GGNN), which
takes as input a Knowledge Graph and outputs an array of
class embeddings in the features domain (shared with the
FE module). Of note, since the input knowledge graph is
undirected, it is possible to identify cycles that prevent the



update of weights in one single parallelized calculation [29].
To overcome this issue, a common approach is to assume
an iterative scheme, in which the state /"' of node v at
iteration ¢+ 1 is updated using the states of the neighbors
computed at the previous iteration 7. Such an iterative scheme
can be intended as a process that incrementally refines the
representation of nodes.

In our implementation we have that for each time step
t <T, where T is a hyperparameter of the module, and for
each node of the graph, the GGNN updates the state of the
node v with the following law:

W = O (), W ({ausle € N ), M

where Al is the node v state at time step ¢, N, is its
neighborhood and a,, is the edge label associated to the
edge between nodes u and v. The graph is assumed to be
undirected and node states are initialized as h) = v, where
v refers to both the node v and the label associated to the
node.

The update law ¢ follows the dynamics of a Gated
Recurrent Unit (GRU) [30], i.e.

=9 (h,,AL) = GRU((hy,AY)), 2
where
Ai; = lP({hL7altv|u € Nv}) = Z h;EGauv 3)
uen,

and the GRU update law is implemented as in the following:

z, = 6(W,A, +U.H,)
r=oc(W,A,+U,R,)
= tanh(WAL + U (F, © 1))
W = (1=2) O, + 7 O K,

In Eq. 4, tanh,o stand for the hyperbolic tangent and
the sigmoid function respectively, and ® represents the
Hadamard product (i.e. an element-wise product). The term
T is a hyperparameter (fixed to 7 = 3 in our implementation),
while W, W, W, U,U,,U,,Eg are trainable parameters. The
output nodes are then evaluated as function of 7 and 79, i.e.
vO = f(hI h?) = h!, and are used to classify the feature
vectors extracted by the FE (see previous section). The
particular selection of the metric depends on the task, in our
implementation, given the output nodes V = [v¢,v9, ... vQ]T
and the feature vector vy, we defined p = o(Vx vf), where
p is the vector of the probabilities assigned to each of the
{Kpase UKyover } and o is the softmax activation function. The
operator * stands for the dot product between vectors. In other
words, given a new object, for which we identify the feature
vector vy with the FE, we calculate the Euclidean distance
between vy and all the class embeddings V associated to
{Kpase UKnover }, and select the closest one (which is the one
with the highest dot product) as the output of the classification.

E. Ideal Model

To provide a ground truth for comparison, a standard CNN
model was trained in an ideal setting in which the complete
dataset is provided at training time, and the model is trained
on all the classes together. Of note, this represents per-se the
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best choice, since in this way the model can converge to the
optimal weights distribution for the given task. To produce
a fair comparison, we manually tuned the hyperparameters
of the Ideal Model for the same amount of time of our
architecture, resulting in a model analogous to the one used
for our Feature Extractor module, further extended with a
fully connected layer, followed by a softmax, with K = Kp,s. +
Kover Output classes.

F. Implementation of robotic grasping primitives

To increase the robustness of the inference, we mounted
the camera directly at the end-effector level, and performed
three different shots of the same object, taken from different
perspectives (one frontal w.r.t. the manipulator, and two with a
rotation around the vertical axis of approximately 35 degrees).
The three views are taken with a camera-object distance of
approximately 60[cm] and an inclination of the camera of 50°
w.r.t. the horizontal plane. This comes with several advantages,
since it partially compensates for uncertainties in calibration,
it provides a simple way to estimate the pose of the object
(described in the next section) and, most importantly, it can
be used to improve the results of the network by ensembling.
The pictures provided by the three views are used to perform
inference, and the best grasp candidate is selected as the one
with the highest average probability across the Network’s
prediction on the three views (averaging also ensures that the
ensemble of the three predicted probability distributions is
again a probability distribution, maintaining the normalization
property). Then, the three images and the predicted grasp are
used to plan a strategy for object grasping.

G. Object Segmentation and Localization

To identify the pose of the object to be grasped, we
implemented a pose estimation procedure leveraging on the
images taken from the three points of view. More specifically,
we defined two subsequent procedures to identify the pose
of the object, depending on the output of our classifier. For
object associated to grasping primitives that could be executed
only with a vertical approach (top-down) we identify only the
centroid of the object. In case of grasp strategies that could
be executed with different orientations of the hand (namely
large diameter, parallel extension, small diameter and medium
wrap), the estimation of object centroid is complemented with
an estimation of its orientation. As a first step, from RGB
images we performed background subtraction via OpenCV
[31]. The image is converted to the HSV color space and
then to a one-channel image by selecting the channel with
the highest Standard Deviation. Median filtering and Canny
algorithm [32] were applied to find the borders of the object
and then closing operation compensates for errors in borders
detection. A Suzuki algorithm [33] was then used to find the
borders of the connected components. Subsequently, Flood
filling is applied from the borders of the image. Among the
remaining connected components, we identified the object
by selecting the one closest to the center of the image apart
from the largest one (which is assumed to be the background).
Once the target object is extracted from the background, we
perform Principal Component Analysis to extract the first
principal component, which is used to identify the object



Fig. 4.

Implementation of the segmentation pipeline: starting from the captured image (leftmost picture), the object is gradually extracted from the

background by sequentially applying: HSV conversion, conversion to grayscale by selecting one channel, Median filtering and Canny algorithm, Closing
operation, Suzuki algorithm and Flood filling. Finally, in the last image (rightmost), the object has been extracted from the background by selecting the
connected component closest to the center of the scene and a PCA algorithm has been applied to find the main direction of the pixels distribution. The first

Principal Component is visualized as a white line.

Fig. 5.

A) Picture of a bottle standing up and resulting first PCs extracted from the three views. The angle between the direction of the PC and the

vertical line is always below a threshold ¢*; B) Picture of a bottle laying down on a table, and resulting first PCs extracted from the three views. The angle
between the direction of the PC and the vertical line exceeds a threshold a* for at least one of the three views.

orientation. The results of the whole segmentation procedure,
plus the PCA output, are shown in Figure 4.

Given the segmented images, the lowest pixel on the
vertical axis assigned to the object cluster (p = [px, py, 1]7)
is assumed to be on the table. The table height zr is assumed
to be known, so are the intrinsic camera matrix K and the
camera-world transformation matrix 7;. The height of the
table can be considered as a constraint to find the 3D position
of the point (p* = [x,y,z,1]7) using a pinhole model of the

camera: |
=T {"Kl ”} )

and setting py = z7 we can find k, which is the z coordinate of
the point in camera frame. By repeating the whole procedure
for the three views, it is possible to identify three 3D points,
which are then averaged to estimate the center of the object
face adjacent to the table ppage.

Then, only for the cases in which our neural architecture
predicts a grasping strategy that could be executed with
different orientation of the hand (i.e. for large diameter,
parallel extension, small diameter and medium wrap only),
the first PC of the three views is analyzed to estimate whether
the object should be approached from above or from its side.
More specifically, when an object is standing up on the table,
requiring an approach from the side, the direction of the
first PC extracted is similar between the three pictures and
approximately vertical (see Fig. 5-A). Conversely, for objects
laying down, at least one of the three pictures will yield
a first PC direction significantly different than the vertical
line (see Fig. 5-B). By manually setting a threshold on the
angle between the vertical direction and the PCs direction

we are able to discriminate between the two conditions
(named o* in Fig. 5). In our case, the angular threshold was
manually tuned equal to o* = 30°. This procedure provides
an estimation of the object 3D pose, and of its distribution (i.e.
if the object is tall or short). At this point, we can plan and
execute a consequent grasping primitive. More specifically,
the actual execution is realized by the ROS package Movelt!
that implements trajectory planning with a Rapidly-exploring
Random Tree (RRT) algorithm and executes the path with a
joint velocity controller. The trajectory is executed in open
loop, and end-effector force estimates are fed back to the
controller to identify when the robot is touching the object
(i.e. when the norm of the external force estimated by the
robot exceeds a manually tuned threshold of 20 N) triggering
the stop of the motion execution.

H. Grasp primitives

Since the end-effector we used (The Pisa/ITT SoftHand [5])
is capable of one single closure, the 10 classes defined above
collapsed, for the grasp implementation phase, in four major
grasping strategies, namely Vertical Approach (such as the one
in Fig. 1), Power Horizontal Approach, Precision Horizontal
Approach, and Sliding Grasp. Of these, the sliding grasp was
not feasible because of limitations of the operative space of
the robot. The Vertical Approach consists of grasps performed
when an object requires a lateral grasp (vertical objects for
which the classifier predicted one between large diameter,
parallel extension, small diameter and medium wrap). For
all the other cases, we implemented an horizontal grasping
strategy, i.e. with the palm facing down. In those cases, for
precision grasp strategies (i.e. tripod and palmar pinch) we



implemented a Precision Horizontal Approach, in which we
command the center of the tripod grasp (thumb, index and
middle fingers) to reach the centroid of the object plus a
vertical offset of 3[cm] before hand closure. Conversely, for
power grasp strategies we implemented a Power Horizontal
Approach, in which we command the base of the index finger
kinematic chain to reach the centroid of the object plus a
vertical offset of 3[cm| before closure (we defined precision
and power grasps as in [8]). It is worth remarking that this is
not to be considered as a limitation of this work, but rather as a
point of strength. Indeed, since in many cases there is a certain
degree of ambiguity in the selection of the proper grasping
approach (i.e. the same object may be grasped with different
strategies) we can exploit the compliance embedded in the
hand design and merge similar strategies (e.g. Large Diameter
and Small Diameter) in the same grasping approach. At the
same time, our neural architecture is still able to discriminate
between all the classes. Therefore, in case of more dexterous
hands, one could just expand the pool of grasping primitive
available, while preserving our implementation.

III. VALIDATION AND RESULTS

First, the network was trained and tested on a
dataset built starting from the well known Cornell
Grasp Dataset (available at https://www.kaggle.com/
oneoneliu/cornell-grasp - last access Nov 15, 2021)
and relabeling 642 images with the grasps from [22] that a

human expert assigned with the highest probability of success.

Then, both the network and the end-to-end framework were
tested in a real setting as in Fig. 2.

A. Model training and validation

The dataset we used was first divided with a 70/30 stratified
split between training set and test set. Then, 5 random
stratified splits 60/40 with replacement were obtained from
the training set, so as to obtain 5 different training/validation
couples. These were used to perform cross-validation and
select the best hyperparameters for model training. After
cross-validation, the Feature Extractor and the Ideal Model
were trained with the same parameters for 40 epochs with
a SGD optimization algorithm. The tuned hyperparameters
are learning rate and momentum. The same procedure was
performed, using weights from the feature extractor pretrained
on the 7 classes in Kpg, to tune the hyperparameters and
train the KGTM. Both the Ideal Model and the Feature
Extractor are trained using a Stochastic Gradient Descent
(SGD) optimization algorithm and using Focal Loss, a cost
function introduced in [34] to overcome the problem of class
imbalance. Focal Loss is characterized by a hyperparameter
Y which, in our case, was set as Y = 1. The KGTM is trained
with Focal Loss on all the classes with a 1:1 sampling ratio
among the classes. As the dataset was very small in size, data
augmentation was performed at training time with a random
crop operator.

B. Dataset

Since we needed an application specific dataset, which
was not available in literature, part of the images in the
Cornell Grasp Dataset were relabeled in a way that was
suitable for this problem. More specifically, from the original

dataset we selected 642 images and assigned, to each of
them, one of the classes of the Feix et al. taxonomy. All the
entries of the dataset were covered by 10 different classes,
namely Large Diameter, Parallel Extension, Small Diameter,
Tripod, Medium Wrap, Palmar Pinch, Power Disk, Power
Sphere, Sphere 4-finger and Extension. This resulted in a
highly imbalanced dataset, in which 7 grasps were assigned
to at least 40 images, while the remaining three (i.e. Power
Sphere, Sphere 4-finger and Extension) were assigned to less
than 15 samples. For this reason, we selected the seven most
represented classes to define the Kj,, classes on which to
train the FE, and the remaining three were used as the K,y
subset of grasps on which to retrain the network through the
KGTM.

C. Few-shot learning

After training the Ideal Model on all the classes and the
KGTN on new classes starting with the weights trained on
7 classes, the models achieved an overall test accuracy of
73% and 75% respectively. The confusion matrices for the
two models are shown in Figure 6. The rows correspond to
the true labels, while columns to the predicted labels. The
sub-figure A refers to values normalized w.r.t. true labels (i.e.
it provides information on recall), while sub-figure B reports
values normalized w.r.t. the predicted label (i.e. it provides
information on precision). The grasps in K,,,; correspond
to the last 3 rows/columns.

D. Ablation

We also verified how a structural change in the knowledge
graph encoding affects the model accuracy by testing different
number of iterations 7 to update the nodes and by changing
the definition of the knowledge graph. We observed that,
while as expected with 7 = 1 (meaning that the status of the
graph is updated in one single iteration) the training does
not converge, performance increases with more iterations
(75% for T =3, 74% for T =5). It is also worth noticing
a small degradation of the accuracy while increasing 7,
which is related to the fact that each iteration updates the
label of each node (i.e. the class embedding) depending
on the neighborhood. While on one side this is the key
mechanism that facilitates the generalization to novel classes,
it also changes the class embeddings learned on the K
classes, therefore still potentially forgetting a small amount of
previous knowledge (albeit much less than the ideal model we
used for comparison and other conventional CNN models as
demonstrated in [17]). Therefore, it is important to carefully
tune T as a trade-off between the two effects. Considering
the type of information encoded in the knowledge graph, we
tested an alternative approach in which the edges of the graph
represent a distance in the synergistic space calculated over the
joint angular values instead of velocities (hereinafter KGTM-
Angle and KGTM-Velocity respectively). We observed that for
KGTM-Angle the training still does not converge for T =1,
while performance is pretty similar for 7 = 3. However, for
higher values of T we noticed that KGTM-Angle shows
a larger drop in performances (72% instead of 74% of
the velocity case). This suggests that the velocity encoding
in the knowledge graph is more robust to forgetting than
position encoding. Interestingly, we also observed differences



Fig. 6. Confusion matrices of both the KGTN (Above) and the Ideal Model
(Below), normalized over true labels (sub-figure A, rows sum to 1) and
predicted labels ( sub-figure B, columns sum to 1). For each cell (t, p), the
lighter is the color, the higher is the number of images with label t classified
with the label p.

in performance for specific classes. Indeed, KGTM-Velocity
tends to be overall more accurate, while the KGTM-Angle
provides higher accuracy only for small diameter, tripod e
power sphere cases. One could speculate that this is likely
caused by the fact that the objects shapes associated to those

grasps tend to be significantly different from the other classes.
In other words, there is a more strict relationship between the
shape and the corresponding grasp than in the other classes. In
this case, having a larger “static” information provided by the
position encoding in the knowledge graph represents a point
of strength. However, this is not true for all the other classes,
in which the “dynamic” information provided by the velocity
encoding in KGTM-Velocity yields better results. Another
interesting result is that when the model predicts a wrong
grasp, there is a tendency of the KGTM-Angle to assign more
often a Power Disk graph w.r.t. the KGTM-Velocity. This
could indicate a more evident bias of KGTM-Angle in that
direction with respect to KGTM-Velocity.

E. Grasping execution

The end-to-end model was then tested to assess its
capability to grasp objects in a real setting. To do this,
we applied our methods to a set of 20 different objects
extracted from the YCB objects set and never used to train
the architecture, which were presented to the camera three
times in different configurations (see companion video here:
https://youtu.be/Tv1l_5ni27j_Q). We recorded the
grasps predicted by the Network to validate its performance
in a real world setting. With the aim of testing the gener-
alization and few-shot learning capabilities of the network,
we evaluated the top-3 accuracy, reducing the bias of the
evaluation procedure towards the more represented grasps
[17]. With this, we assume that, if the network is able to
recognize that the correct grasp is one of the most probable,
it has also encoded the information about the image-grasp
relation. The top-3 accuracy of the Network on the objects
on which it was tested was 90%. Then, the success rate in
grasping (calculated as an average across trials and objects)
was 62%. However, there were two objects (the cup and the
green bottle), that turned out to be too big to be grasped
by one single hand and on which the success rate was 0%.
Removing these two objects from the set, the success rate
was 69%.The only grasp of K., that was tested in the real
setting is the Power Sphere, on which the top-3 accuracy was
89% and so was the success rate in grasping.

IV. DISCUSSIONS AND CONCLUSIONS

The accuracy of the KGTN proved to be higher than the
one of the Ideal Model. In addition, by looking at the class-
specific results normalized over the true labels (6-A), we
can observe that the Ideal Model is more often incorrect
at classifying images from the classes in K,,,.;. Indeed, we
can observe that the KGTN outperforms the Ideal Model
on the new classes on which we tested few-shot learning.
This is interesting because the K,,,.; classes are the ones
less represented in the dataset, and, albeit using Focal Loss
for training, the Ideal Model is not able to properly classify
them. Our approach, instead, demonstrated the capability to
overcome the issue related to class imbalance. Most of the
confusion of the KGTN is between Power Disk/Extension and
Medium Wrap/Sphere 4-finger, which were actually assigned
to very similar objects and could often be interchangeable
for how the dataset was labeled. This highlights how the
Knowledge Graph was successfully used to embed human
knowledge about the image-grasp relation.



In addition, beyond the evident capabilities of KGTN to
retain information related to previous training, it is also
possible to verify that embedding new information about
relationships also improves its performance on previously
learned tasks, since KGTN tends to perform better on
the Kpu classes as well. This, on one side, highlights
how the knowledge graph transfer approach was capable
to successfully embed information from human knowledge
and facilitate the task of few-shot learning of novel grasp
strategies. On the other side, it also demonstrates that previous
knowledge improves the classification capabilities even in
cases of all data available at training time. For what concerns
the actual execution of grasping, it is worth mentioning
that the whole approach is independent from the hardware
used for the implementation. Because of this, the believe
that the achieved accuracy of 69% could be improved by
modifying the pipeline in various points. In this sense,
we shall mention the effects of using an underactuated
hand. While the hand partially compensated for planning
uncertainties in some cases, thus helping to successfully grasp
the object, in other cases underactuation reduced the freedom
to synthesize specific grasps of the taxonomy and therefore
the grasps lacked the necessary stability and precision. To
overcome these issues, we will test our framework with a more
dexterous hand, targeting the synthesis of more articulated
grasp primitives. Our future effort will be also devoted to
extend of our pipeline including a model of object detection
before our model. We expect that this would easily expand our
method to multi-object scenarios, since the object detection
architecture could identify a bounding box enclosing each
object on the scene, on which our model is capable to classify
the proper grasping strategy.
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