
ART-SLAM: Accurate Real-Time 6DoF LiDAR SLAM

Matteo Frosi1∗, Matteo Matteucci2

Abstract— Real-time six degree-of-freedom pose estimation
with ground vehicles represents a relevant and well studied topic
in robotics, due to its many applications, such as autonomous
driving and 3D mapping. Although some systems exist already,
they are either not accurate or they struggle in real-time setting.
In this paper, we propose a fast, accurate and modular LiDAR
SLAM system for both batch and online estimation. We first
apply downsampling and outlier removal, to filter out noise and
reduce the size of the input point clouds. Filtered clouds are then
used for pose tracking and floor detection, to ground-optimize
the estimated trajectory. The availability of a pre-tracker,
working in parallel with the filtering process, allows to obtain
pre-computed odometries, to be used as aids when performing
tracking. Efficient loop closure and pose optimization, achieved
through a g2o pose graph, are the last steps of the proposed
SLAM pipeline. We compare the performance of our system
with state-of-the-art point cloud based methods, LOAM, LeGO-
LOAM, A-LOAM, LeGO-LOAM-BOR and HDL, and show
that the proposed system achieves equal or better accuracy and
can easily handle even cases without loops. The comparison is
done evaluating the estimated trajectory displacement using the
KITTI and RADIATE datasets.

Keywords: SLAM, point clouds, scan-to-scan matching,
real-time, loop closure

I. INTRODUCTION

Trajectory estimation and map building represent core
aspects of many applications in robotics, such as autonomous
driving. A great amount of simultaneous localization and
mapping (SLAM) systems with 6 degree-of-freedom (6-
DoF) have been proposed in literature in the last decades,
with the goal of estimating accurate trajectories with real-
time performances. These methods can be grouped in two
main categories, vision-based and point cloud-based sys-
tems, depending on the main sensor used (camera or laser
rangefinder, respectively).

Point cloud-based systems, can capture and represent the
environment with a high level of details, due to the density
of the clouds, and they are not afflicted by the issues of
vision-based methods, such as illumination and viewpoint
changes. Moreover, tracking performed with point clouds is
more accurate and stable than its visual counterpart, and it is
generally preferred when data is available. However, achiev-
ing real-time performance, while keeping high accuracy, still
remains an open quest.

*Corresponding author
1Matteo Frosi is a Ph.D. student at the the Dipartimento di Elettron-

ica Informazione e Bioingegneria of Politecnico di Milano, Milan, Italy,
matteo.frosi@polimi.it

2Matteo Matteucci is Associate Professor at the Dipartimento di Elet-
tronica Informazione e Bioingegneria of Politecnico di Milano, Politecnico
di Milano, Italy, matteo.matteucci@polimi.it

Indeed, the most critical aspect which minders real-time
point cloud SLAM is the alignment of LiDAR scans. During
the last decades, many algorithms have been created to find
the relative motion between two point clouds, operation also
known as scan matching. The most used and known method
to perform scan matching is Iterative Closest Point (ICP)
[2] and its many variants. The idea behind these algorithms
is to align two point clouds iteratively, until convergence
or a stopping criterion is satisfied. Although ICP suffers
from high computational cost, Generalized ICP [14] and
more recent parallel versions (e.g. VGICP [10]) are relatively
faster, and can be used as alternatives.

To overcome the computational shortcomings of full point
clouds scan matching, different feature-based approaches
have been proposed. Feature-based matching methods work
similarly to standard scan matching, but require less re-
sources. They can achieve so by extracting 3D features
from the clouds, such as edges, planes or clusters, and
then match them. A low-drift feature-based and real-time
LiDAR odometry and mapping (LOAM) method is proposed
in [17]. LOAM performs 3D point feature to edge, and plane,
scan matching to find correspondences between point clouds.
The performance of LOAM deteriorates when resources are
limited and no loop closure is performed, leading to large
estimation errors on long trajectories, as we show in Section
III. Improving LOAM, the same authors proposed LeGO-
LOAM [15], a lightweight, real-time pose estimation and
mapping system, composed by five modules: segmentation,
feature extraction, LiDAR odometry, LiDAR mapping and
transform integration. Speedup is achieved by filtering the
input point clouds through image-based segmentation, per-
formed on the 2D range projection of each scan. More recent
variants of LeGO-LOAM have been proposed, optimizing it,
namely A-LOAM and LeGO-LOAM-BOR.

Feature-based systems are, in general, less accurate than
methods which perform scan matching on whole clouds.
For this reason, loop closure and trajectory optimization are
mandatory steps in their pipeline. Nevertheless, these tasks
can easily become computationally demanding as the size
of a trajectory increases. To overcome this problem, graph
SLAM systems have been proposed, such as [11] and [12],
where the trajectory of the robot, estimated via scan match-
ing, is modeled as a graph. There are multiple advantage
of this approach, as described by Grisetti et. al. in [6],
such as the ability to introduce relationships between sensor
data and/or observations from the environment, or a great
availability of frameworks for efficient graph optimization,
which translates in the optimization of the corresponding
trajectory.

ar
X

iv
:2

10
9.

05
48

3v
1 

 [
cs

.R
O

] 
 1

2 
Se

p 
20

21



Fig. 1. Architecture of the proposed system.

A recent point cloud-based system which relies on a graph
structure is HDL [9], which consists of four steps. First,
laser scans are pre-processed and filtered to reduce their size.
Then, the filtered clouds are used to simultaneously perform
tracking and to possibly detect the ground plane. Poses
estimated through tracking, and floor coefficients extracted
from the point clouds, are used to build a graph of the
trajectory, i.e., a pose graph , which is later optimized.
The system achieves superior performances, but it is slow,
especially when dealing with large point clouds derived from
outdoor environments.

All the algorithms available in literature, being based on
feature matching or full scan matching, either achieve high
accuracy at the cost of computational time, or sacrifice the
quality of the trajectory to obtain real-time performance.
Moreover, these systems are monolithic and difficult to
modify and adapt, and are usually bound to some existing
framework (e.g., ROS [13]), often hindering portability on
different operative systems (e.g. Windows or macOS).

For these reasons, in this paper we propose a new system,
ART-SLAM, to perform point cloud-based graph SLAM,
inspired by HDL, with multiple contributions. ART-SLAM
is able to achieve real-time performance, retaining high
accuracy, even in scenarios without loops. The proposed
system is also able to efficiently detect and close loops
in the trajectory, using a three-phased algorithm. ART-
SLAM presents a high degree of modularity, due to its
architecture, described in Section II, and can be easily
integrated and improved. Lastly, it is not bound to any
framework, making it portable on different operative systems
and customizable. ART-SLAM is available open source at
https://github.com/MatteoF94/ARTSLAM.

II. ART-SLAM

A. System overview

An overview of the proposed framework is represented
in Fig. 1. The system is composed by multiple distinct
modules, which can be grouped into two main blocks. The
first, mandatory (colored in gray), is the core of ART-SLAM,
and it is formed by all the modules that perform SLAM on

Fig. 2. Inner structure of a single module. Observers capture data, dispatch
queues store it, the core processes it and the notifiers broadcast the results.

the input point clouds (orange, in figure). The other blocks
of the proposed framework are optional, as they can be used
to integrate the main system with data coming from different
sensors or with re-processed inputs.

Given an incoming laser scan, the first step is to process
it, in the pre-filterer, to reduce its size and remove noisy
points. The filtered cloud is then sent simultaneously to two
modules. The most important one, the tracker, estimates the
current displacement of the robot by performing scan-to-
scan matching with previous filtered scans. The other, floor
detector, finds the robot pose w.r.t. the ground, adding height
and rotational consistency to the trajectory. The current pose
estimate is sent, along with its corresponding point cloud, to
the loop detector module, which tries to find loops between
new and previous point clouds, again performing scan-to-
scan matching. Moreover, poses, loops and floor coefficients
(estimated by the floor detector module) are used to build the
pose graph, representing the trajectory of the robot. Lastly,
the pose graph is optimized, to increase the poses accuracy.

IMU and GPS data (pink in Fig. 1) can be integrated in
the pose graph builder module, to increase the accuracy of
the estimated trajectory. Moreover, pre-computed odometry
(e.g., through a different sensor or system) can be fed to
the tracker as initial guess for the scan matching. Lastly,
a pre-tracker module (green in Fig. 1 performs multi-level
scan-to-scan matching, to quickly estimate the motion of the
robot before the tracking step: this estimate is broadcasted
to the tracker, as initial guess of the scan-to-scan matching,
to boost the accuracy and performance of the module.

B. System modularity

Differently to the majority of systems available in lit-
erature, our proposed framework is fully modular and its
components work independently one from another. This is
possible thanks to the register and dispatch technique used
to create the system. The structure of a module is represented
in Fig. 2. It consists of one or multiple observers, one or
multiple dispatch queues, one core, and one or multiple
notifiers. Moreover, ART-SLAM is a zero-copy software,
allowing the elaboration of large amount of data, while
keeping it in memory.

Observers allow a module to capture data as soon as it is
available, independently of the type. As data can arrive at
a different rates than the time required for its processing,
the observers put the received data into one or multiple
dispatch queues, i.e., FIFO structures with the purpose of

https://github.com/MatteoF94/ARTSLAM


avoiding loss of incoming data. The core of the module is
its main characteristic: it elaborates one datum per queue
at time, extracting it from the relative dispatch queue. As
soon as the core finishes its task, it gives the byproducts of
the module to the notifier, which broadcasts them to all the
modules in need. The advantage of using dispatch queues is
the possibility of performing the same core task in parallel,
on multiple threads, if it does not require temporal coherence.

This factory-like structure allows for an high degree of
integration with auxiliary parts, improvements or third party
modules. For example, if one would like to see the trajec-
tory estimated by the tracker using its own implemented
visualizer, it would only need to register the visualizer to
the tracker and transform the broadcasted data in the de-
sired way (data type conversion). Using this implementation
brings multiple advantages over existing frameworks and
middlewares, such as the possibility to execute in parallel
independent core tasks, the portability (since it is embedded
in ART-SLAM) and the high degree of customization.

C. Pre-filterer

The pre-filterer module has the purpose of reducing the
size of the input point cloud and to remove noise and outliers.
Data reduction, or downsampling, is essential because, as
stated in the introduction, scan matching on full point clouds
can become computationally demanding if the size of the
cloud is large enough (more than 20K points already proves
to be a bottleneck on old devices). Downsampling can reduce
point clouds by a factor 5, or even more, if needed, while
retaining the spatial structure and density of the initial scan.

The clouds are then filtered, to remove outliers and noise
points. This operation is more costly w.r.t. the downsampling
task. To improve performances w.r.t. HDL [9], we split the
cloud into four pairs of octants and perform filtering on each
separately, in parallel, obtaining a speedup of about 30%.
After that, all the smaller clouds are combined together to
form a larger, filtered point cloud, ready to be broadcasted
to other modules.

D. Tracker

Short term data association, also known as pose track-
ing, establishes the motion between consecutive poses. The
tracker adopts a keyframe-based approach to estimate the
trajectory of the robot, performing scan-to-scan matching,
using state-of-the-art algorithms (ICP [2], GICP [14], VGICP
[10] and NDT [3]), depending on the user choice and the
environment the robot is navigating.

Keyframes are data structures describing the motion of
robot in selected locations of its trajectory. They are de-
scribed by multiple variables, used to collect data associated
to the pose of the robot.

In ART-SLAM, each keyframe contains a point cloud and
the pose (odometry) estimated by the tracker, data which is
also used for loop closure detection, pose graph construction
and map creation. Other useful information contained in a
keyframe are the timestamp associated to the point cloud,
the estimated accumulated distance from the beginning of

the trajectory and, if available, acceleration and orientation
coming from other sensors, such as IMU.

To reduce the computational resources needed to perform
SLAM, not all the filtered point clouds in input to the tracker
become keyframes. With the exception of the first keyframe,
which corresponds to the first point cloud received by the
system, the other keyframes must satisfy at least one of the
following criteria:

• Be distant from the previous keyframe of a user-defined
translation ∆trans meters

• Be rotated from the previous keyframe of a user-defined
angle ∆orientation radians

• Have a difference in timestamps of a user-defined
interval ∆T seconds

The thresholds ∆trans, ∆orientation and ∆T are depend
on the dataset and the type of trajectory to be estimated, and
should be tuned accordingly to obtain a reasonable number
of keyframes, as too few would decrease the accuracy
of the SLAM system, and too many would decrease its
performances. In indoor scenes, for example, ∆trans could
be set to 0.2 meters, while in large scale urban environments
∆trans > 2 meters.

Given the cloud corresponding to the current keyframe
Kn and the available new filtered point cloud in input ct,
scan-to-scan matching is performed between them, to find
their relative motion. The algorithm requires an initial guess
of the motion, to boost performance and accuracy. There
are two choices for the initial guess: either this is available
through other means (e.g. from odometry estimated using the
pretracker module), or a constant motion model is assumed,
and the previous relative transformation is used (the one
computed between the point cloud of the current keyframe
Kn and the previous filtered point cloud ct−1).

Usually, algorithms for point cloud-based tracking find the
relative motion between consecutive clouds, ct−1 and ct, and
then compose this transformation with the previous ones.
This method may seem more accurate, but it accumulates
error the more distant the clouds are from the current
keyframe. In ART-SLAM, instead, the motion of the robot
is always referred w.r.t. the keyframe closest in time, and
the previous motion is taken into consideration only when
estimating the guess for scan matching, as in the previous
paragraph.

This approach, which is unique to ART-SLAM (HDL
does not have it) also enables the system to skip input
clouds (meaning that no scan matching is performed) if
pre-computed odometry is available. The latter, even if not
completely accurate, allows to immediately check if the
current point cloud is a candidate for the selection of a
new keyframe. If it is not, the tracker does not perform
scan matching, and the relative transformation between the
current keyframe and the pre-computed odometry is saved to
be used as motion guess in the next iteration. Skipping the
scan matching step greatly benefits the performance of the
tracker, as it allows to obtain accurate results in real-time.

Once the tracker has detected a point cloud which satis-
fies the keyframe creation criteria described above, a new



keyframe is built and it is broadcasted to the loop closure
detection and pose-graph builder modules.

E. Pre-tracker

Although temporally the pre-tracker module works in par-
allel with the pre-filterer, to understand its working principle
we described first the pre-filterer and the tracker modules.

Indeed, performing alignment between two full scale
clouds would result in the best transformation estimate, as
all the 3D points are accounted for. However, this approach
is often unsuitable for real-time application, especially on
low-end devices. Scan matching can be aided, as described
in Subsection II-D, with an initial guess, already avail-
able, which can lower the time needed to reach matching
convergence and increase the accuracy of the estimated
transformation between two point clouds.

To compute a viable initial guess to give the tracker, we
created a pre-tracker module, which performs multi-scale
scan matching, working as follows. First, the same point
cloud given in input to the pre-filterer is fed to the pre-
tracker. Here, it is heavily downsampled, reducing it to less
than 10% the number of its initial elements. The reduced
point cloud is then used to perform scan-to-scan matching
with a previously downsampled cloud. This alignment is fast,
due to the reduced size of the point clouds, even if not as
accurate as if it was done with non-downsampled clouds.

If the number of elements of the initial point cloud is rela-
tively large (greater than 60K 3D points), the transformation
obtained through the step above is immediately broadcasted
to the tracker, to be used as initial guess in the current scan
matching. On the other hand, if the starting cloud size is
relatively small, the whole procedure can be repeated with
a different scale. The point cloud is downsampled with a
scale factor lower than the one used in the first phase of the
pre-tracker, to obtain a reduced cloud, with size greater than
the one obtained through the first phase. Again, the obtained
point cloud is used to perform scan-to-scan matching with
a previously downsampled cloud, in order to obtain a fast
result, but more accurate than the transformation obtained in
the first phase. At this point, the relative motion resulting
from the second phase is broadcasted to the tracker, to be
used, as already stated, as initial guess in the current scan
matching.

The adoption of a pre-tracker proves to be beneficial not
only in terms of accuracy, as it gives the tracker an initial
guess close to the true transformation, but also in terms of
performance, as it allows the tracker to skip some frames,
which would not be unused anyway in the SLAM system,
as described in Subsection II-D.

F. Floor detection

To enforce height and orientation consistency in the tra-
jectory, filtered point clouds are processed to find the ground
plane in them. This can be modeled as a four dimensional
vector GP (a, b, c, d) represented by the plane equation a ∗
x + b ∗ y + c ∗ z + d = 0.

Floor detection handles multiple scenarios, such as planar
or planar-like motion (e.g., urban road), rough terrains (e.g.
rocky paths) and environments with ascents and descents.
While HDL [9] deals only with the planar motion, in ART-
SLAM all the scenarios are considered.

In the first case, planar motion, the floor detector module
takes a point cloud and manipulates it in the following way.
As, intuitively, the ground can be found within a small
region of the input scan, the first step performed by the floor
detector is clipping the cloud within an acceptable range of
search. This step greatly reduces the cloud size, boosting
performances when searching for the floor. Then, the clipped
output is filtered to eliminate points whose normal is highly
non-vertical. This is done to avoid possible mistakes due
to planar-like surfaces in the environment, such as walls and
buildings. Lastly, Random Sample Consensus (RANSAC) for
plane detection is done on the filtered laser scan, to detect
and estimate the ground plane coefficients.

When dealing with rough terrains, a floor cannot be found
in the previous way, as no planar structures can be detected
with RANSAC. The input scan is further clipped, this time
not vertically but horizontally: only the 3D points within a
threshold distance from the center of the cloud are kept. This
is done to trim the cloud to be as close as possible to the
robot, to remove outlier objects such as big rocks, logs, or
anything which is not planar-like. The few remaining points
are then used to perform closed form plane fitting with the
least squares method.

Once, and if, the parameters {a, b, c, d} are found, they are
broadcasted, together with the timestamp associated to the
corresponding point cloud, to the pose graph builder module.

The last scenario is trickier to identify just by using a
point cloud, as inclined planes are parallel to the robot
wheels and cannot be distinguished from non-inclined planes
by just using point clouds for detection. The process of
discovery of inclined planes takes place in the pose-graph
builder module. When a set of floor coefficient {a, b, c, d}
is associated to a keyframe, the builder checks if there is a
noticeable change (user-defined) in vertical orientation w.r.t.
the previous keyframe. If affirmative, it means that there has
been a change in slope in the trajectory of the robot, and an
inclined ground plane has been detected.

G. Loop closure

While moving, the robot may return to a place which was
previously visited, forming a loop in its trajectory. Finding
loops adds motion constraints in the estimated robot poses,
correcting drifts and estimation errors. The hard part about
loop closure is not asserting the presence of a loop, which
can be accomplished via simple scan matching, but detecting
when loop closure is even a possibility. To do this we need
to decide when and where to look. In ART-SLAM, detection
is performed in three consecutive steps, to efficiently search
for loops within the collected keyframes.

First, each time a keyframe Kquery is available, it is
compared against all the previous existing keyframes, cre-
ating a query and candidates problem structure. Instead of



performing scan-to-scan matching between all the possible
pairs {Knew,Kcandidate}, an odometry based selection is
performed. If Kquery and Kcandidate are too close in terms
of trajectory, meaning that they have a low accumulated
distance, they cannot be considered candidates, as it is
unlikely that two keyframes, corresponding to point clouds
acquired shortly one from the other, would result in a loop.
Moreover, the loop detector checks if the position, estimated
through tracking, of Kcandidate is in the neighborhood of the
pose corresponding Kquery, within a threshold range, which
accounts for drift errors induced by the tracker module. If
Kquery and Kcandidate satisfy these constraints, meaning
that they are sufficiently close in space and far in time, they
can be considered a loop closure candidate pair, to be fed to
the next phase.

Once all the candidate pairs have been found, they must
be further thinned down, to avoid unnecessary computation
and wasted resources. The approach proposed in [8] converts
point clouds in 2D polar grids, and efficiently compares
them using a KD-tree to select the k most similar ones to
a given point cloud query. The second phase for efficient
loop closure detection in ART-SLAM adopts this method, by
comparing the 2D polar grid of the point cloud associated to
the query keyframe with the 2D polar grids corresponding
to the candidate keyframes. At the end of this step, only k
candidate pairs for loop closure remains, ready to be used in
the next, last step.

The few number of candidates allows for scan-to-scan
matching on each pair of point clouds, to obtain a set of
relative motions. All the transformations are then compared
to find the best one, i.e., the one computed with highest
accuracy, and corresponding to the smallest distance between
all the pairs Kquery and Kcandidate. If a best match is found,
a new loop has been detected, and it is added to the pose
graph as a new constraint.

Differently from HDL [9], where only the first and last
steps are performed, in ART-SLAM, the addition of the
Scan Context method allows for scalable and efficient loop
closure. Indeed, as the length of the trajectory to be es-
timated increases, the number of pairs to be checked for
loop closures also grows in size, because more and more
keyframes are added. However, the first two steps are very
fast operations, with the former consisting mainly in a matrix
multiplication and the latter being proved to be scalable in
[8]. Moreover, the 2D polar grids are pre-computed when
inserting the keyframes in the pose graph, further decreasing
the computation time needed by the loop closure module. At
the end of the second phase, there will always be at most k
candidate pairs, independently from the number of keyframes
to check, making this three-phased approach suitable for
efficient loop closure detection.

H. Pose graph building and optimization

As mentioned in the introduction and in the description
of the system, our framework is a form of graph SLAM
[6]. In graph SLAM, the poses of the robot are modeled
as nodes in a graph, named pose graph, and labeled with

TABLE I
PARAMETERS USED FOR THE EXPERIMENTAL VALIDATION, FOR

REPRODUCIBILITY, AS DESCRIBED IN [1].

Module Parameter name Value

pre-filterer

Downsample method VOXELGRID
Downsample resolution 0.25 [m]
Outlier removal method RADIUS
Radius 0.4 [m]

tracker
∆Trans keyframes 5.0 [m]
∆Angle keyframes 0.25 [rad]
∆Time keyframes 1.0 [sec]

loop detector Loop closure search radius 40.0 [m]
Loop closure min. distance 25.0 [m]

scan matching
Registration method FAST GICP
Max. iterations 64
Transformation epsilon 0.1

their position in the environment. The nodes are connected
with edges representing spatial constraints between poses,
resulting from sensor measurements (e.g. IMU or GPS) or
scene elements, as the floor coefficients in our case.

Each node in the pose graph represents a robot position
and a measurement (the point cloud) acquired at that posi-
tion; moreover, each node is associated to the corresponding
keyframe. An edge between two nodes consists in a probabil-
ity distribution over the relative transformation of the robot
poses corresponding to the nodes. These transformations are
either odometry measurements given by the tracker module,
between sequential positions, or are determined by aligning
the sensor measurements acquired between two keyframes.
Because of the noise corrupting the sensors and the drift
in the robot odometry, the associated edges represent soft
constraints and are not fixed. It is, however, possible to insert
absolute constraints, which cannot be modified in any way.
Examples of these constraints are floor coefficients, GPS or
IMU data, although they can also be set, instead, as non-
absolute constraints, to account for the uncertainty of the
sensors or the measurement. Moreover, edges can be added
when performing loop detection and closure, between non-
consecutive nodes in the graph.

The structure of the pose graph is given to optimization
algorithms to compute the optimal trajectory which satisfies
all the sensors and motion constraints, giving high accuracy
estimates, while elaborating a large number of poses. In our
implementation, we use the g2o optimization framework [7],
as it proves to be fast and accurate over long trajectories.
Moreover g2o allows for the insertion of custom elements
in the pose graph, and as such, it is an optimal solution for
our modular system.

The choice of modeling the trajectory of the robot as a
graph is motivated by multiple reasons. First, the poses can
be easily stored and visualized at any time, including also
the additional information contained in the graph (edges,
special nodes created from data of other sensors or ground).
Furthermore, the ability of the g2o [7] graph optimizer to
calculate the optimal minimum cost function, to satisfy all
the constraints, gives our system a high accuracy and con-



Fig. 3. Comparison between the trajectories estimated by LOAM [17],
LeGO-LOAM [15], A-LOAM, LeGO-LOAM-BOR, HDL [9] and the pro-
posed system, on Sequence 07 of the KITTI odometry dataset [4].

TABLE II
ATE ON SEQUENCE 07 OF KITTI ODOMETRY DATASET [4].

ATE[m] MEAN RMSE STD
LOAM >10 >10 >10

LeGO-LOAM 1.191 1.309 0.546
A-LOAM 2.467 2.741 1.195

LeGO-LOAM-BOR 1.604 1.807 0.832
HDL 0.407 0.439 0.145

ART-SLAM (proposed) 0.405 0.435 0.157

sistency in the estimation technique for solving the SLAM
problem. This is important in the case of autonomous driving,
particularly in dealing with large scale environments. More
details about the advantages of using graphs are in [6].

III. EXPERIMENTAL VALIDATION OF THE SYSTEM

A. Setup

The proposed system is compared with other methods for
point cloud-based SLAM: LOAM [17], LeGO-LOAM [15],
A-LOAM, LeGO-LOAM-BOR and HDL [9], with A-LOAM
and LeGO-LOAM-BOR being two advanced versions of
LeGO-LOAM (code improvement and re-engineering of
LeGO-LOAM). We evaluate these systems in four scenarios:
three coming from the KITTI dataset [4] [5], corresponding
to a short, a medium and a long sequences, respectively, and
one from the RADIATE dataset [16], representing a medium
sequence with no loops.

LOAM, LeGO-LOAM, A-LOAM and LeGO-LOAM-
BOR do not require particular parameter tuning, although
they need a custom implementation of one of their modules,
(point cloud projection), depending on the laser sensor used.
In our tests, we changed such parameters accordingly to
the sensor corresponding to the used datasets, as suggested
by the authors of LeGO-LOAM. On the other hand, HDL
and ART-SLAM share the same configuration parameters,
e.g., keyframe selection thresholds and pre-filtering meth-
ods. Table I shows the most important parameters used in
the experiments, for both HDL and ART-SLAM, to allow
reproducibility. As few systems only work on point clouds,
for fair comparison, we perform SLAM only using point

Fig. 4. Comparison between the trajectories estimated by LOAM [17],
LeGO-LOAM [15], A-LOAM, LeGO-LOAM-BOR, HDL [9] and the pro-
posed system, on city Sequence 05 of the KITTI raw dataset [5].

TABLE III
ATE ON THE SHORT CITY SEQUENCE 05 OF KITTI RAW DATASET [5].

ATE[m] MEAN RMSE STD
LOAM >5 >5 >5

LeGO-LOAM 0.707 0.768 0.300
A-LOAM 0.938 1.044 0.459

LeGO-LOAM-BOR 1.094 1.169 0.409
HDL 0.703 0.798 0.376

ART-SLAM (proposed) 0.703 0.760 0.330

clouds, without exploiting data coming from other sensors,
such as IMU or GPS.

Experiments are tested on a 2012 Dell 64-bit laptop with
Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz x 4 cores,
each with 3072Kb of cache size.

B. Comparison and results

To evaluate the systems we compute the absolute tra-
jectory error (ATE). This metric measures the difference
between points of the true and the estimated trajectory. As
a pre-processing step, we associate the estimated poses with
ground truth poses using the timestamps and point cloud
indices. We also include a visual evaluation of the estimated
trajectory and show the reconstructed 3D map in two out of
the four considered scenarios. Nevertheless, all the systems
run in real-time, meaning that they can process data at its
acquisition rate, with the exception of HDL, which requires
more time when performing both tracking and loop closure
detection (about two to three times the acquisition rate).

Fig. 3 shows the estimated trajectories on Sequence 07 of
the KITTI odometry dataset [4]. All the methods considered
for comparison, with the exception of LOAM, accurately
follow the ground truth trajectory, correctly finding the loop
and optimizing the poses. LOAM, instead, quickly drifts
apart from the true trajectory: this is caused by the fact
that no loop closure is performed, differently from the other
systems. Table II further details the obtained results, as it
represents the mean, root mean squared error (RMSE) and
standard deviation (STD) of the absolute trajectory error, in
meters. The proposed system has highest accuracy, along
with HDL. It should not come as a surprise, since those
methods rely on full point cloud scan-to-scan matching,



Fig. 5. Comparison between the trajectories estimated by LeGO-LOAM
[15], LOAM [17], HDL [9] and the proposed system, on sequence 00 of
the KITTI odometry dataset [4].

TABLE IV
ATE ON SEQUENCE 00 OF KITTI ODOMETRY DATASET [4].

ATE[m] MEAN RMSE STD
LeGO-LOAM 9.537 11.666 6.718

LeGO-LOAM-BOR 6.240 6.613 2.188
HDL 1.078 1.224 0.579

ART-SLAM (proposed) 1.119 1.352 0.539

while the other methods rely on tracking and matching 3D
features extracted from point clouds.

After having dealt with a large sequence with the pres-
ence of loops, we also evaluated the systems on a shorter
sequence. As short datasets do not have a ground truth, we
use, instead, GPS data, provided along with the point clouds.
Fig. 4 shows the estimated trajectories on city Sequence 05 of
the KITTI raw dataset [5]. As before, all the methods except
for LOAM, accurately represent the ground truth, with small
errors in the trajectory. It should not come as a surprise that
the results are more or less the same, as for short trajectories
tracking is performed a limited amount of times, and there is
not enough distance to suffer from accumulated errors. Table
III shows the ATE statistics, in meters. As before, all the
systems, with the exception of LOAM, show good results,
accurately following the GPS signal, here used as ground
truth due to its relatively high accuracy.

In Fig. 5, we show the behavior of ART-SLAM on one
of most complex sequences, i.e, Sequence 00 of the KITTI
odometry dataset. In the comparison, we did not include
LOAM and A-LOAM, which estimated trajectories are far
off the ground truth, and would have cluttered the figure. Fig.
6 and Fig. 7 show the map reconstructed by ART-SLAM and
a detailed area of it, respectively. From Table IV, one can
see the high degree of accuracy achieved by the proposed
system, reaching low translation error almost on par with
HDL.

Lastly, we show a visual evaluation of the accuracy
achieved by ART-SLAM on the City 01 Sequence of the
RADIATE dataset [16]. This sequence is relatively long and
does not contain loop closures, increasing the difficulty of
estimating the robot trajectory. As there is no ground truth,
we perform a visual inspection of the created 3D map, to

Fig. 6. Map corresponding to Sequence 00 of the KITTI odometry dataset
[4], built by the proposed algorithm.

Fig. 7. Detailed area of the map corresponding to Sequence 00 of the
KITTI odometry dataset [4], built by the proposed algorithm.

check for inconsistencies. The map obtained through ART-
SLAM, completely visible in Fig. 8 and detailed in Fig.
9, shows a noticeable coherence with the structure of the
road and the elements within it, once again proving the
accuracy of the proposed system. Moreover, Fig. 10 shows a
comparison of the obtained trajectory with HDL and LeGO-
LOAM-BOR (the other systems could not run the scenario),
proving that ART-SLAM is accurate even when no loop
closure is available.

IV. CONCLUSIONS

We have proposed ART-SLAM, a fast and ground-
optimized LiDAR odometry and mapping method, able
to perform pose estimation of moving robots in complex
environments. ART-SLAM, differently from state-of-the-art
systems, is not bound to any framework, and can be easily
ported on any device. It is also efficiently improvable and
extendable, due the independent nature of its modules, and it
includes many upgrades w.r.t. existing similar systems, such
as pre-tracking, smart loop closure and optimized loop detec-
tion. The proposed method is evaluated on a series of datasets
corresponding to outdoor environments, representing either
short, medium or long sequences. The results show that ART-
SLAM can achieve similar or better accuracy when compared
with the state-of-the-art, with reduced computational cost
w.r.t. high accuracy systems. The proposed system proves
to be as fast as feature-based systems, meaning real-time or
near real-time performance, and accurate as full point clouds
scan matching methods.



Fig. 8. Map corresponding to City Sequence 01 of the RADIATE dataset
[16], built by the proposed algorithm.

Fig. 9. Detailed area of the map corresponding to City Sequence 01 of
the RADIATE dataset [16], built by the proposed algorithm.

REFERENCES

[1] Francesco Amigoni, Monica Reggiani, and Viola Schi-
affonati. “An insightful comparison between exper-
iments in mobile robotics and in science”. In: Au-
tonomous Robots 27.4 (2009), pp. 313–325.

[2] Paul J Besl and Neil D McKay. “Method for reg-
istration of 3-D shapes”. In: Sensor fusion IV: con-
trol paradigms and data structures. Vol. 1611. In-
ternational Society for Optics and Photonics. 1992,
pp. 586–606.

[3] Peter Biber and Wolfgang Straßer. “The normal dis-
tributions transform: A new approach to laser scan
matching”. In: Proceedings 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS 2003)(Cat. No. 03CH37453). Vol. 3. IEEE.
2003, pp. 2743–2748.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun.
“Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite”. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2012.

[5] Andreas Geiger et al. “Vision meets Robotics: The
KITTI Dataset”. In: International Journal of Robotics
Research (IJRR) (2013).

[6] Giorgio Grisetti et al. “A tutorial on graph-based
SLAM”. In: IEEE Intelligent Transportation Systems
Magazine 2.4 (2010), pp. 31–43.

[7] Giorgio Grisetti et al. “g2o: A general framework
for (hyper) graph optimization”. In: Proceedings of
the IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China. 2011, pp. 9–13.

Fig. 10. Comparison between the trajectories estimated by LeGO-LOAM-
BOR, HDL [9] and the proposed system, on City Sequence 01 of the
RADIATE dataset [16].

[8] Giseop Kim and Ayoung Kim. “Scan Context: Ego-
centric Spatial Descriptor for Place Recognition
within 3D Point Cloud Map”. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems. Madrid, Oct. 2018.

[9] Kenji Koide, Jun Miura, and Emanuele Menegatti.
“A portable 3d lidar-based system for long-term and
wide-area people behavior measurement”. In: IEEE
Trans. Hum. Mach. Syst (2018).

[10] Kenji Koide et al. “Voxelized gicp for fast and accurate
3d point cloud registration”. In: EasyChair Preprint
2703 (2020).

[11] Ellon Mendes, Pierrick Koch, and Simon Lacroix.
“ICP-based pose-graph SLAM”. In: 2016 IEEE Inter-
national Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE. 2016, pp. 195–200.

[12] Marek Pierzchała, Philippe Giguère, and Rasmus As-
trup. “Mapping forests using an unmanned ground
vehicle with 3D LiDAR and graph-SLAM”. In: Com-
puters and Electronics in Agriculture 145 (2018),
pp. 217–225.

[13] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: ICRA workshop on open
source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[14] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.
“Generalized-icp.” In: Robotics: science and systems.
Vol. 2. 4. Seattle, WA. 2009, p. 435.

[15] Tixiao Shan and Brendan Englot. “Lego-loam:
Lightweight and ground-optimized lidar odometry and
mapping on variable terrain”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 4758–4765.

[16] Marcel Sheeny et al. “Radiate: A radar dataset
for automotive perception”. In: arXiv preprint
arXiv:2010.09076 3.4 (2020), p. 7.

[17] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry
and Mapping in Real-time.” In: Robotics: Science and
Systems. Vol. 2. 9. 2014.


	I INTRODUCTION
	II ART-SLAM
	II-A System overview
	II-B System modularity
	II-C Pre-filterer
	II-D Tracker
	II-E Pre-tracker
	II-F Floor detection
	II-G Loop closure
	II-H Pose graph building and optimization

	III Experimental validation of the system
	III-A Setup
	III-B Comparison and results

	IV Conclusions

