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Volumetric Instance-Level Semantic Mapping
via Multi-View 2D-to-3D Label Diffusion

Ruben Mascaro, Lucas Teixeira, and Margarita Chli

Abstract—Robots operating in real-world settings often need to
plan interactions with surrounding scene elements and therefore,
it is crucial for them to understand their workspace at the
level of individual objects. In this spirit, this work presents
a novel approach to progressively build instance-level, dense
3D maps from color and depth cues acquired by either a
moving RGB-D sensor or a camera-LiDAR setup, whose pose
is being tracked. The proposed framework processes each in-
put RGB image with a semantic instance segmentation neural
network and uses depth information to extract a set of per-
frame, semantically labeled 3D instance segments, which then
get matched to object instances already identified in previous
views. Following integration of these newly detected instance
segments in a global volumetric map, an efficient label diffusion
scheme that considers multi-view instance predictions together
with the reconstructed scene geometry is used to refine 3D
segmentation boundaries. Experiments on indoor benchmarking
RGB-D sequences show that the proposed system achieves state-
of-the-art performance in terms of 3D segmentation accuracy,
while reducing the computational processing cost required at each
frame. Furthermore, the applicability of the system to challenging
domains outside the traditional office scenes is demonstrated by
testing it on a robotic excavator equipped with a calibrated
camera-LiDAR setup, with the goal of segmenting individual
boulders in a highly cluttered construction scenario.

Index Terms—Object detection, segmentation and categoriza-
tion, RGB-D perception, mapping.

I. INTRODUCTION

OVER the past few years, research in robotics has ex-
perienced a remarkable boost, leading to an increase in

the use of mobile robots for a wide variety of tasks, such
as exploration, data gathering and object manipulation. For
these platforms, accurately estimating the 3D geometry of their
surroundings is key to forming a backbone of spatial awareness
and enabling safe navigation in previously unknown environ-
ments. Performing somewhat more intelligent tasks, however,
often requires a deeper understanding of the workspace in
which they operate. Particularly, in cases where interacting
with certain scene elements is required (e.g. for manipulation),
robotic perception systems must be able to recognize and map
the objects of interest at the level of individual instances,
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Fig. 1. Instance- and semantic-level reconstruction of two scenes from
the SceneNN dataset [7] produced by the proposed incremental mapping
framework. The 3D map describing the scanned scene geometry is augmented
with information about the location, the shape and the semantic category of
individual object instances detected in multiple fused views. Different colors
in the instance maps represent different instances, while the colors associated
to the recognized object categories in the semantic maps are indicated in the
legend. Accompanying video is available at https://youtu.be/unkA3ZSf7wA.

distinguishing them from the background and other entities
being mapped.

With continuous progress in the development of 3D sensing
technologies, such as LiDARs and depth cameras, robots can
nowadays instantaneously acquire precise spatial measure-
ments that, when fused across multiple viewpoints, usually
lead to detailed 3D reconstructed scene models. Applying ob-
ject recognition techniques on raw 3D data alone, however, is
quite challenging, as only partial information about the scene
geometry can be acquired from each view. RGB cameras, on
the other hand, provide color- and texture-rich information
that can be more naturally leveraged by computer vision
algorithms, which recently showed to achieve unprecedented
performance on image-based recognition tasks such as object
detection and semantic instance segmentation [1], [2]. Com-
bining both sensing modalities, mainly by means of RGB-D
cameras so far, a number of works have successfully managed
to densely reconstruct the 3D structure of an observed scene,
while acquiring high-level understanding about the spatial
relationships and layouts of objects in it [3], [4], [5], [6].

Following this line of research, in this work we present
an approach to progressively build volumetric 3D maps dur-
ing online scanning of unknown environments, while simul-
taneously locating and segmenting semantically meaningful
objects in them. Designed for deployment on both RGB-D
and camera-LiDAR sensor setups, the proposed framework
processes each incoming RGB image with a semantic instance
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segmentation neural network and uses the predicted 2D object
masks, together with the depth information provided by the
sensor-suite, to produce a set of per-frame, semantically-
annotated 3D segments. A data association strategy sub-
sequently matches the segments discovered in the current
frame to the previously detected and mapped object instances.
Finally, the newly associated segments get integrated into the
global map volume, where an efficient label diffusion scheme
that leverages both multi-view instance predictions and spatial
context within the reconstructed scene geometry is used to
enhance the resulting 3D segmentation. As shown in Figure
1, the maps produced by the proposed framework describe the
scene geometry with high fidelity and provide awareness of
object instances such as chairs, tables, etc., opening up exciting
prospects for advanced robotic navigation and manipulation
capabilities.

In a nutshell, this work presents the following contributions:
• A map-based data association strategy based on a 3D

Intersection over Union (IoU) score for reliable tracking
of instance-level predictions across multiple frames.

• A novel and efficient map regularization approach based
on label diffusion from multiple views, especially suitable
for online operation.

• A thorough evaluation of the proposed mapping pipeline
on a publicly available dataset featuring RGB-D scans
of real-world indoor scenes, achieving an average 20%
increase in 3D segmentation accuracy when compared to
the state of the art.

• The demonstration of the system using RGB-LiDAR data
streams acquired by a robotic excavator operating in an
outdoor, highly cluttered construction scenario.

II. RELATED WORK

Semantic mapping is commonly referred to as the process
of simultaneously estimating the 3D geometry of a scene and
attaching a semantic label (e.g. object categories) to the entities
being mapped. Methods in this field are typically divided
into dense labeling approaches and object-oriented approaches,
both explained below.

Dense labeling approaches aim at assigning a class label or
a probability distribution of class labels to each point, surfel or
voxel in the reconstructed 3D map. One of the most represen-
tative frameworks following this paradigm is SemanticFusion
[8], which uses a Convolutional Neural Network (CNN) to
infer per-pixel class probability distributions and aggregates
them onto surfel-based 3D reconstructed surfaces using a
Bayesian update scheme. Despite allowing for higher-level
scene understanding, this family of methods lacks the ability to
distinguish individual instances belonging to the same category
and, as a result, information about the number, geometry and
relative placement of individual objects in the scanned scene is
limited. To address this issue, Nakajima et al. [9] propose to
incrementally segment the scene using geometric cues from
depth, while Pham et al. [10] employ a purely semantic
segmentation strategy and then cluster the semantically anno-
tated scene into individual instances. Without instance-level
semantic information, however, geometry-based approaches

tend to over-segment articulated scene elements, thus failing
to model individual object instances accurately. More recent
approaches [11], [12] explore the novel panoptic segmen-
tation paradigm [13] and are able to densely predict class
labels of a background region, while individually segmenting
and recognizing arbitrary foreground objects. Although these
methods achieve unprecedented results in terms of holistic
scene understanding, they tend to be more computationally
intensive and might still be harder to deploy in unconventional
environments, where limited training data is available.

Methods based on the object-oriented approach, on the other
hand, focus on identifying and reconstructing a set of objects
of interest, while typically ignoring the semantics of the rest
of the observed scene. Early works on online object-oriented
mapping [14], [15] leveraged 3D model databases, requiring
the shapes of the objects in the scene to be exactly the same
as the pre-learnt models and therefore being inapplicable to
real environments, where objects with geometric variations are
frequently encountered. More recently, several methods using
CNN-based architectures for detecting objects in RGB images
have been reported. Sünderhauf et al. [16] and Nakajima
et al. [17], for example, combine unsupervised geometric
segmentation schemes with learning-based 2D bounding-box
object detectors to identify and merge geometric 3D segments
being recognized as part of the same instance. Fusion++ [3],
MaskFusion [4] and MID-Fusion [5] leverage Mask R-CNN
[1], which predicts semantically annotated 2D segmentation
masks for the objects recognized in the input images, to
progressively build individual 3D object models. Voxblox++
[6] combines Mask R-CNN with an incremental geometric
scene segmentation approach [18] in order to produce a com-
plete instance-aware semantic mapping framework, aiming to
retrieve the pose and shape of both recognized objects and
newly discovered, previously unobserved object-like instances.
Finally, Wang et al. [19] and Li et al. [20] use the Mask
R-CNN predictions to extract 3D instance segments that are
further refined using geometric segmentation or a Gaussian
Mixture Model (GMM), respectively, before getting integrated
into a global map.

Our instance-level mapping pipeline is inspired by the
family of the most recent RGB-D-based object-oriented ap-
proaches and also takes as input frame-wise 2D instance
segmentation masks predicted with a neural network. However,
instead of performing geometric refinement of the segmen-
tation masks predicted at each frame independently [4], [6],
[19], [20], we take the raw neural network predictions without
further processing and seek to regularize the instance-level
segmentation in the background by leveraging spatial context
within the 3D map. To this end, we extend our previous work
on label diffusion for offline semantic scene segmentation
[21] and reformulate its core graphical model, making it less
memory consuming, more efficient and able to work online as
the map is being built and new objects get detected. Besides
reducing the computational processing required at each input
frame, this design choice allows the system not to depend on
dense depth maps for segmentation enhancement and makes
it suitable for LiDAR input as well, as demonstrated in our
experiments.
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Fig. 2. Overview of the proposed approach to online instance-level mapping. Every input RGB frame is processed by Mask R-CNN [1] to predict 2D
instance-level segmentation masks, which are used to segment the corresponding depth map into semantically-meaningful segments. These are then matched
to previously detected and mapped object instances. Finally, the associated segments are integrated into a volumetric map, where an efficient label diffusion
strategy exploits geometric context to regularize the 3D instance-level segmentation. While Mask R-CNN is used here, the proposed pipeline could work with
any other semantic instance segmentation framework.

III. METHOD

The proposed instance-level semantic mapping pipeline,
which is illustrated in Figure 2, takes as input a sequence of
synchronized RGB image and depth map pairs and progres-
sively builds a volumetric map enriched with instance-level
information inferred from all the fused views (Section III-A).
To this end, each incoming RGB frame is initially processed by
a semantic instance segmentation framework (Section III-B)
and the predicted 2D instance masks are used to extract
semantically labeled 3D segments from the corresponding
depth map (Section III-C). These are then matched to the
object instances predicted in previous frames using a map-
based data association strategy (Section III-D). Finally, the
newly associated segments are integrated into the map volume
(Section III-E), where a label diffusion scheme exploits spatial
context to periodically regularize the resulting 3D instance-
level semantic segmentation (Section III-F).

A. Volumetric Map Representation

Our approach to instance-level semantic mapping builds on
top of the Voxblox TSDF-based volumetric map representation
[22], which we augment with instance-level segmentation
information gathered from multiple views. During the course
of a mapping session, our system maintains a set L of unique
instance labels that is tracked across frames and grows as new
objects get detected. We distinguish between a predefined label
l0 ∈ L, which we associate with the so-called “background”
instance o0, and the remaining ln ∈ L with n > 0, each
of them corresponding to an instance on from the set O of
(partially) reconstructed objects in the map. Each of these
instance labels ln ∈ L is in turn associated with a semantic
class cm ∈ C, with C being the set of object categories that the
system is able to recognize, through a mapping C(ln) = cm.
Instance-level segmentation information is thus stored in the
map by assigning each voxel vi an instance label lj ∈ L,
j ≥ 0, through a mapping L(vi) = lj that determines the
instance oj it belongs to. An object instance on ∈ O is
therefore defined as the set of voxels vi that map to instance
label ln, which at the same time is associated with semantic
class C(ln). Similarly, the background instance o0 is referred
to as the set of map voxels with label l0, for which no semantic
category is available.

B. Frame-wise 2D Semantic Instance Segmentation

The proposed mapping pipeline requires each input RGB
frame to be fed into a neural network capable of detecting,
segmenting and classifying individual objects present in a
given image. In particular, our system assumes each of the K
object instances detected in an input frame to be described
by an index k ∈ {1, 2, . . . ,K}, a 2D binary mask Mk

and a semantic class label ck ∈ C. Although our pipeline
is not necessarily tied to any particular semantic instance
segmentation framework, in the scope of this work we use
Mask R-CNN [1] to process the RGB image stream, as it is
common practice among similar methods [3], [6], [19], [20].

C. Instance-Level Depth Segmentation

For each RGB image, our system also takes as input a
corresponding depth map which can either be provided by
an RGB-D sensor or generated from raw 3D LiDAR data
when using a calibrated camera-LiDAR setup. In the latter
case, LiDAR scans acquired between consecutive input RGB
images are accumulated in the map reference frame using
the known sensor suite’s pose and the resulting 3D point
cloud is projected to the current camera view, providing depth
information for a sparse set of image coordinates.

After a new RGB image has been processed by Mask R-
CNN, the predicted instance segmentation masks Mk are used
to segment the corresponding depth map. The masked image
coordinates for which depth information is available are then
back-projected into the global map frame using the known
camera pose, resulting in a set S of globally referenced 3D
segments sk, each of them being labeled with its predicted
semantic class ck ∈ C. Finally, all vertices in the depth map
for which no object mask is predicted are grouped to form
an additional 3D segment s0 /∈ S , to which we assign a
predefined “background” class label c0 /∈ C.

D. Data Association

The goal of the data association module is to determine
correspondences between instance segments extracted at each
frame and object instances already stored in the global map.
This is a required step as Mask R-CNN does not necessarily
output consistent instance indices k for the same objects across
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multiple frames, thus preventing direct integration of raw
instance labels into the map.

Our approach to instance label tracking across frames is
mostly inspired by [6] in the sense that label association takes
place in 3D, thus removing the need for projecting the global
map onto the current camera frame, as proposed by other
similar works [3], [11], [23]. The novelty introduced by our
method, however, lies in the fact that correspondences between
predicted instance segments sk ∈ S and object instances
on ∈ O are determined according to a pairwise 3D Intersection
over Union score, IoU(sk, on), which we compute as follows:

IoU(sk, on) =
Π(sk, on)

|sk|+Π(s0, on) +
∑

k′ ̸=k Π(sk′ , on)
. (1)

Here, |sk| is the total number of 3D points in segment sk and
Π(sk, on) is defined as the number of 3D points in segment
sk that correspond to a voxel vi which belongs to instance on,
i.e. L(vi) = ln. For each object instance on ∈ Ov , being Ov

the subset of instances present in the current camera view, the
index k̂n of the best fitting segment in S is found as:

k̂n = argmax
k

IoU(sk, on) . (2)

If the IoU score between instance on and its best fitting
segment sk̂n

exceeds a threshold θ, which we empirically set
to 0.4, a correspondence between on and sk̂n

is established
by assigning sk̂n

the instance label ln associated with on,
i.e. L(sk̂n

) = ln. Finally, all segments sk ∈ S for which
no corresponding instance on ∈ Ov was found are assigned
a new instance label lnew. The background segment s0, on
the other hand, is directly assigned the predefined background
instance label l0, as it does not correspond to any instance
prediction.

It is important to point out that the proposed formulation
prevents any predicted instance segment sk ∈ S from being
associated with the background instance o0 in order not to
discard valuable segmentation information from the current
frame. Furthermore, it disallows matching multiple predicted
instance segments sk ∈ S to the same object instance on ∈
Ov , thus making the system able to fix under-segmentation
errors over time [6], [12]. In our case, the utilization of an
IoU score instead of an absolute [6] or a normalized [3],
[23] overlap metric, better helps avoid under-segmentation of
foreground objects and prevents matching spurious detections
to actual instances in the map.

E. Map Integration

After having been assigned a unique instance label, the 3D
segments extracted from the current frame are integrated into
the global volumetric map. In order not to lose segmentation
information gathered from previous views, we opt for storing
at each voxel vi in our TSDF volume all the instance labels
lj ∈ L that have ever been assigned to it, together with
their respective counts Ψvi(lj). This information will then be
used by our map regularization scheme to periodically update
each voxel’s most probable instance label, L(vi). Semantic
information, on the other hand, is encoded alongside the map
by storing the pairwise count between each object instance

label ln ∈ L and each semantic class cm ∈ C, which we
denote as Φ(ln, cm).

This way, when a new segment sk is integrated into the
global map, the corresponding voxels vi update their internal
count associated with the segment’s tracked instance label
given by the mapping L(sk) as follows:

Ψvi(L(sk))← Ψvi(L(sk)) + 1 . (3)

Additionally, if the segment does not correspond to the back-
ground instance, i.e. L(sk) ̸= lo, the pairwise count between
instance label L(sk) and the semantic class ck associated with
sk is also incremented:

Φ(L(sk), ck)← Φ(L(sk), ck) + 1 . (4)

As soon as all segments extracted from the current frame
have been integrated in the map, the semantic class assigned
to each object instance label ln is updated as:

C(ln) = cm̂ , with m̂ = argmax
m

Φ(ln, cm) . (5)

F. Multi-View 2D-to-3D Label Diffusion

Aiming to make the system more robust towards poten-
tially inaccurate frame-wise instance segmentation masks, we
explore the benefits of using a label diffusion scheme that,
besides the multi-view instance label predictions, also uses
spatial context within the map to regularize the final instance
segmentation. To this end, we reformulate our label diffusion
approach for semantic segmentation of 3D point clouds using
multiple views [21] and adapt it to work within an online
instance-level mapping pipeline.

The proposed method relies on an efficient graphical struc-
ture that is used to propagate labels from a set of labeled nodes
to a set of unlabeled nodes according to a series of edges
defined among them. In contrast to our previous work, where
semantically labeled 2D pixels are used as source nodes, here
we define a set U of Nl virtual source nodes, with Nl being
the current number of unique instance labels in the map, such
that each virtual node uq ∈ U , q ∈ {1, 2, . . . , Nl}, maps to
instance label lq−1 ∈ L (note that the background label, l0,
is also considered for label diffusion). The subset V of the
Nv map voxels belonging to the reconstructed surface act as
nodes to which instance labels must be propagated.

To guide the label diffusion process, we first generate edges
between the set U of virtual nodes and the set V of surface
voxels, forming a subgraph GU→V that can be represented by
a Nv ×Nl adjacency matrix of the form:

GU→V
iq = λ ·Ψvi(lq−1) . (6)

It is worth noting that the edge between voxel vi and virtual
node uq is weighted by the number of times instance label
lq−1, i.e. the label associated with uq , has been assigned
to vi. This subgraph, therefore, encodes the instance label
information being propagated from all gathered views to the
3D map, with the hyperparameter λ controlling the influence
that frame-wise instance label predictions have on the final 3D
segmentation.
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We additionally encode relationships among surface voxels
by constructing a nearest neighbor subgraph GV→V that
reflects the underlying map geometry and whose Nv × Nv

adjacency matrix is defined as:

GV→V
ii′ =

{
ω(vi, vi′) if vi′ ∈ KNN(vi)
0 otherwise , (7)

where KNN(vi) denotes the set of vi’s K neighboring surface
voxels and

ω(vi, vi′) = exp

(
−
∥∥xvi − xvi′

∥∥2
2

2σ2
d

−
∥∥nvi − nvi′

∥∥2
2

2σ2
s

)
. (8)

In our formulation, xvi and nvi represent the 3D global
coordinate and the surface normal vector associated with voxel
vi, while σd and σs are bandwidth hyperparameters for the
Gaussian edge potential ω.

This way, the full graph for label diffusion is defined as:

G =

[
GV→V GU→V

0 I

]
, (9)

where I is the Nl × Nl identity matrix. It is worth pointing
out that, compared to our previous approach [21], this novel
formulation allows us to represent the label diffusion graph in
a considerably more compact way.

Lastly, we define a label matrix Z, where each element
Ziq represents the likelihood of node i being assigned instance
label lq−1. In our specific case, Z =

[
ZV I

]T
, with ZV being

a Nv ×Nl matrix that can be arbitrarily initialized and I the
Nl × Nl identity matrix. Label diffusion is then applied by
iteratively performing the following computation:

Z ← P ·Z , with Pij =
Gij∑
k Gik

. (10)

Since the probability transition matrix P is row-normalized
and guarantees the labels of the source nodes to remain
unchanged by the multiplication, the algorithm is proven to
converge according to [24].

In practice, as the 3D map and the set of unique instance
labels L are constantly being updated during a mapping
session, we run label diffusion periodically in a separate
thread. Each time the algorithm is launched, both the label
diffusion graph G and the label matrix Z are updated in order
to incorporate the voxels and persistent instance labels that
have been recently added to the map. Furthermore, to ensure
faster convergence, elements in ZV are initialized to the value
they reached at the end of the previous label diffusion step.
If a virtual node uq is considered for the first time due to
the incorporation of a new instance label lq−1 in the map, all
elements of the newly added column q in ZV are initialized
to 0.

At the end of each run, likelihood values in ZV are used to
update the instance label assigned to each voxel vi according
to:

L(vi) = lĵ , with ĵ =

(
argmax

q
ZV

iq

)
− 1 . (11)

IV. EXPERIMENTS

The performance of the proposed framework is assessed in
terms of the achieved instance-level 3D segmentation accuracy
by running a series of experiments on the benchmarking Sce-
neNN dataset [7], which features RGB-D scans of real indoor
scenes and is commonly used in the literature to evaluate
instance-level mapping approaches comparable to ours [6],
[19], [20]. Furthermore, we demonstrate the applicability of
the proposed system to other challenging domains and sensor
configurations by testing it on sequences containing visual
and LiDAR data acquired by a robotic excavator operating
in highly cluttered construction scenarios.

All the experiments presented in this section are executed
on a Lenovo laptop with an Intel Xeon E-2176M CPU and a
Nvidia Quadro P200 GPU with 4 GB of memory. The mapping
front-end, which comprises the depth segmentation, data asso-
ciation and map integration modules, is implemented in C++
and runs on the CPU, while the label diffusion component is
developed in Python and runs on the GPU. The core map
structure, as well as the mesh extraction and visualization
tools, are adapted from the Voxblox++ [6] implementation1

(note, however, that the two pipelines are completely different
and that these specific components do not have any influence
on the achieved 3D segmentation accuracy). Due to hardware
constraints, frame-wise semantic instance segmentation is pre-
computed using a custom version of the publicly available
Matterport’s Mask R-CNN implementation2 that is wrapped
around a ROS interface in order to emulate real-time operation.
It is worth pointing out, however, that Mask R-CNN is used
in this work to allow for a direct and fair comparison against
previous works [6], [19], [20], and that more lightweight
instance segmentation frameworks, e.g. [2], could also be used
in order to run both instance segmentation and label diffusion
on small GPUs.

A. Evaluation on the SceneNN Dataset

The proposed instance-level mapping approach is evaluated
on 10 indoor sequences from the SceneNN dataset [7] against
three directly comparable frameworks from the state of the
art [6], [19], [20]. In all these sequences, we use a Mask R-
CNN model trained on the Microsoft COCO dataset [25] (like
the aforementioned methods) and set the map voxel size to
2 cm. For label diffusion, the following parameters are used:
K = 24, λ = 10−4, σd = 0.05, and σs = 0.15.

Following the evaluation procedure introduced by [6], we
consider 9 object categories (i.e. bed, chair, sofa, table, books,
refrigerator, television, toilet and bag) from the Microsoft
COCO object classes and, for each scene, compute the per-
class Average Precision (AP) score using an Intersection
over Union (IoU) threshold of 0.5 over the predicted 3D
segmentation masks. For brevity, here we directly report the
mean Average Precision (mAP) obtained at each of the 10
evaluated sequences, which is computed by averaging the per-
class AP scores over the 9 considered categories.

1https://github.com/ethz-asl/voxblox-plusplus
2https://github.com/matterport/Mask RCNN
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Voxblox++ [6] Ours w/o Diffusion Ours

Fig. 3. Instance-level segmentation results obtained on Sequence 011 of the SceneNN dataset [7] with the two evaluated versions of our approach and the
public implementation of Voxblox++ [6]. Compared to Voxblox++, our method is less prone to over-segmentation of single object instances (red circle). In
addition, the ablation study shows that label diffusion helps our method achieve better 3D segmentation boundaries (blue circle). Note that different colors
represent different recognized object instances in the scene.

TABLE I
EVALUATION OF 3D INSTANCE-LEVEL SEGMENTATION ACCURACY ON 10 SEQUENCES OF THE SCENENN DATASET. FOR EACH SCENE, PER-CLASS AP
SCORES ARE EVALUATED USING AN IOU THRESHOLD OF 0.5 AND THEN AVERAGED OVER THE 9 CONSIDERED CLASSES, RESULTING IN THE REPORTED

MAP VALUES. THE PROPOSED APPROACH IMPROVES OVER THE STATE OF THE ART IN 6 OF THE 10 EVALUATED SEQUENCES. IN ADDITION, THE
ABLATION STUDY ON THE LABEL DIFFUSION MODULE DEMONSTRATES THAT IT CONTRIBUTES SIGNIFICANTLY TO INCREASE THE ACHIEVED 3D

SEGMENTATION ACCURACY. BEST RESULTS ON EACH SCENE ARE HIGHLIGHTED IN BOLD, WHILE SECOND BEST SCORES ARE UNDERLINED.

Method 011 016 030 061 078 086 096 206 223 225 Average

Voxblox++ [6] 75.0 33.3 56.1 66.7 45.2 20.0 29.2 79.6 43.8 75.0 52.4
Wang et al. [19] 62.2 43.0 60.7 36.3 49.3 45.8 32.7 46.0 46.6 56.4 47.9

Li et al. [20] 78.6 25.0 58.6 46.6 69.8 47.2 26.7 78.0 45.8 75.0 55.1

Ours w/o Diffusion 66.7 25.0 67.0 50.0 25.0 25.0 37.2 65.3 12.5 100 47.3
Ours 100 75.0 72.5 50.0 50.0 50.0 51.3 74.1 45.8 100 66.8

Besides drawing a comparison against previous methods in
the literature, we also perform an ablation study where we
analyze the influence of the proposed diffusion-based map
regularization scheme on the final 3D segmentation accuracy.
To this end, we disable the label diffusion module and run
a baseline version of our system, which we call “Ours w/o
Diffusion”, where each voxel gets assigned the instance label
with the highest count every time a new set of predicted
instance segments is integrated in the map. Results obtained
in our experiments, together with the performance scores
reported by the three state-of-the-art frameworks mentioned
above, are summarized in Table I.

Firstly, our ablation study demonstrates that the proposed
label diffusion scheme for map regularization triggers a sig-
nificant increase in the achieved 3D segmentation accuracy.
Although, without label diffusion, our approach could theo-
retically reach 100% accuracy if used with ground-truth seg-
mentation masks, the system’s performance drops dramatically
when taking as input predictions from Mask R-CNN. This is
caused by the fact that 2D segmentation masks predicted with
Mask R-CNN tend to be noisy and usually do not respect
object boundaries very well. While 3D fusion of predictions
from multiple views via voting strategies generally helps elim-
inate some inconsistencies, the resulting 3D segmentation still
suffers from objects being partially segmented or background
regions being labeled as parts of an instance, as shown in
Figure 3. By additionally considering geometric context, our
proposed label diffusion scheme effectively corrects for these
mislabelled regions, achieving a considerably more accurate
3D segmentation in most of the evaluated scenes.

Results obtained in our experiments also indicate that the
proposed approach outperforms the state of the art in 6 out
of the 10 evaluated sequences, while achieving the second
best score in other 3 of them. Previous methods we compare
against focus on refining the 2D segmentation masks predicted
by Mask R-CNN before integrating frame-wise instance-level
segmentation information in the 3D map. To this end, they
leverage geometric segmentation methods that tend to respect
scene boundaries well and, therefore, are able to achieve
better performance than our baseline method without label
diffusion, which directly integrates the raw predicted masks
in the map. However, by employing data association strategies
simply based on overlap [6], [20] or proximity [19] and label
fusion methods not taking context into account, these methods
are not very robust towards inconsistent instance predictions
across frames. We observed that this might lead to problems
such as over-segmentation of individual instances, as shown
in Figure 3. Our full system, despite relying on considerably
less accurate segmentation masks being projected into 3D,
ensures that only reasonably consistent instance predictions
get associated and leverages spatial context to progressively
regularize the resulting 3D segmentation, leading to an overall
20% more robust performance.

Analyzing the specific sequences where our method does
not achieve the best accuracy, we noticed that performance
tends to drop when dealing with very cluttered scenes con-
taining partially occluded or small objects (e.g. books). This
is mainly caused by Mask R-CNN often failing to detect these
objects or predicting highly inaccurate segmentation masks. In
these cases, our data association algorithm is sometimes not



MASCARO et al.: VOLUMETRIC INSTANCE-LEVEL SEMANTIC MAPPING VIA MULTI-VIEW 2D-TO-3D LABEL DIFFUSION 7

(b) Example RGB input (top) and 
Mask R-CNN predictions (bottom)

LiDAR

RGB Camera

(a) Camera-LiDAR sensor setup
on the robotic excavator HEAP

Ours w/o Diffusion

Ours

(c) Instance-level 3D reconstructions 

Fig. 4. Evaluation of the proposed system on a dataset collected in a construction site using the calibrated camera-LiDAR setup visible in (a) onboard the
robotic excavator HEAP. In (b), two example input RGB images are shown together with the predictions provided by our custom Mask R-CNN model trained
for the task of boulder detection. Finally, the instance-level 3D reconstructions obtained with the two evaluated versions of our method are visible in (c).
With label diffusion enabled, the proposed system is able to capture 3D boundaries more accurately (blue circle) and eliminate over-segmentation errors (red
circle). Note that different colors represent different instances.

able to find enough consistent matches and label diffusion ends
up assigning the background label to voxels that are actually
part of an object, leading to under-segmentation errors. We
envision that leveraging geometry for frame-wise instance
segmentation and adaptively setting the number of neighbors
in our label diffusion graph could be interesting directions to
further improve the system.

Table II shows the runtimes of the individual modules of the
mapping pipeline averaged over the 10 evaluated sequences.
With our aforementioned hardware settings, the system runs
at approximately 2.3 Hz, restricted by the frame-rate at which
Mask R-CNN can process the 640×480 input images. To
place these numbers in context, we also report the average
timings we measured while running the public implementation
of Voxblox++ on the same 10 sequences. It is worth noting that
both depth segmentation and data association are considerably
faster in our framework. That is because Voxblox++ uses a
geometric approach to segment each depth frame into multiple
convex segments (some of which then get assigned an instance
label) and aims at tracking these across frames. Our approach,
on the contrary, directly extracts segments from depth based on
the raw Mask R-CNN predictions and runs data association at

TABLE II
EXECUTION TIMES OF EACH MODULE IN THE PROPOSED INSTANCE-LEVEL
MAPPING FRAMEWORK, AVERAGED OVER THE EVALUATED 10 SEQUENCES

FROM SCENENN, AND COMPARED WITH MEASURED TIMINGS OF THE
CORRESPONDING COMPONENTS IN VOXBLOX++ [6]. MASK R-CNN AND

LABEL DIFFUSION RUN ON THE GPU, WHILE THE REMAINING STAGES
ARE EXECUTED ON THE CPU. NOTE: ∗LABEL DIFFUSION RUNS ON ITS

OWN THREAD, NOT AFFECTING THE FRAME-RATE AT WHICH THE SYSTEM
CAN OPERATE.

Component Frequency Voxblox++ [6] Ours

Mask R-CNN Every frame 435 435
Depth segmentation Every frame 677 13

Data association Every frame 109 25
Map integration Every frame 234 222
Label diffusion∗ Every 5 sec. - 695

Frame-rate ∼1.4 Hz ∼2.3 Hz

the level of instances, which is generally less expensive as the
number of detected instances in each frame is significantly
lower than the number of geometric segments extracted by
Voxblox++.

B. Evaluation on a LiDAR-based Mapping Application

The proposed approach is further evaluated on real-life
data streams acquired with a robotic excavator operating in
a construction site. The goal here is to demonstrate that the
proposed method is not only restricted to RGB-D sensing
applications, as it does not require dense depth cues to perform
refinement of the 2D instance segmentation masks, in contrast
to previous approaches [4], [6].

The robotic system used to record the evaluation datasets is
the HEAP (Hydraulic Excavator for an Autonomous Purpose),
a highly customized Menzi Muck M545 walking excavator
developed for autonomous applications and advanced teleop-
eration [26]. In particular, we collect the data provided by a
Ximea MC031CG-SY camera placed at the cabin’s base and
a Velodyne Puck LiDAR sensor mounted on the front edge of
the cabin’s roof, as shown in Figure 4(a), capturing a wall-like
structure in the vicinity of the robot. Global cabin localization
is achieved by a Leica iCON iXE3 with two GNSS anten-
nas and a receiver that obtains Real-Time Kinematic (RTK)
corrections for improved accuracy, while machine orientation
is tracked with Inertial Measurement Units (IMUs) installed
both in the cabin and on the chassis.

The target is to reconstruct and segment boulders in highly
cluttered scenarios, which is a key step in order to per-
form advanced manipulation tasks (e.g. grasping from boulder
stockpiles) as well as construction monitoring and planning
[27]. To this end, we use a custom Mask R-CNN model that we
trained for the task of boulder detection on a manually anno-
tated dataset containing 960 images sampled from videos that
were recorded with a handheld RGB camera while walking
around different stockpiles. Since, at large distances, LiDAR
measurements might become too sparse to allow for dense
mapping and image-based instance segmentation networks
might fail to recognize objects, we set a maximum range of
7.5 meters from the camera for mapping.
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As ground truth is not available for these experiments,
qualitative results for the reconstructed object-centric maps
using our system with and without the label diffusion module
are shown in Figure 4. Again, it can be observed that,
with label diffusion, our method is able to capture actual
3D instance boundaries more accurately, while eliminating
some over-segmentation errors. The resulting reconstructions
densely describe the observed surface geometry and provide
information about the shape and the pose of the individual
boulders within the robot’s workspace, which is key for further
interaction planning.

V. CONCLUSION

In this paper, we presented an approach to volumetric
instance-level semantic mapping using color and depth cues
from localized sensors. The method incrementally fuses infor-
mation about individual objects detected in multiple views,
building a global 3D map of the observed scene that is
augmented with the location, shape and semantic category of
those recognized objects. In contrast to previous work relying
on geometrically-refined 2D segmentation masks being pro-
jected to the 3D map, our method introduces an efficient map
regularization strategy based on label diffusion that can handle
less accurate instance predictions as input. This removes any
dependency of the proposed approach on dense depth maps
and enables its application to different sensing modalities
than RGB-D, such as combinations of cameras and LiDARs.
Results obtained by running the framework on a publicly avail-
able RGB-D indoor scene dataset validate the online nature
of the approach and show its ability to achieve state-of-the-
art performance in 3D segmentation accuracy. Furthermore,
we show the applicability of the framework to the novel and
challenging task of reconstructing and segmenting boulders
from visual-LiDAR data in a highly cluttered construction
scenario.

Future research directions involve investigating strategies to
keep the complexity of the map regularization scheme bounded
when dealing with larger scenes. In addition, we plan to
integrate the presented framework on the robotic excavator
HEAP in order to perform complex manipulation tasks in
large-scale construction settings.
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