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Abstract—Grasp synthesis for 3-D deformable objects remains a
little-explored topic, most works aiming to minimize deformations.
However, deformations are not necessarily harmful—humans are,
for example, able to exploit deformations to generate new potential
grasps. How to achieve that on a robot is though an open question.
This letter proposes an approach that uses object stiffness infor-
mation in addition to depth images for synthesizing high-quality
grasps. We achieve this by incorporating object stiffness as an
additional input to a state-of-the-art deep grasp planning network.
We also curate a new synthetic dataset of grasps on objects of
varying stiffness using the Isaac Gym simulator for training the
network. We experimentally validate and compare our proposed
approach against the case where we do not incorporate object
stiffness on a total of 2800 grasps in simulation and 560 grasps
on a real Franka Emika Panda. The experimental results show
significant improvement in grasp success rate using the proposed
approach on a wide range of objects with varying shapes, sizes, and
stiffnesses. Furthermore, we demonstrate that the approach can
generate different grasping strategies for different stiffness values.
Together, the results clearly show the value of incorporating stiff-
ness information when grasping objects of varying stiffness. Code
and video are available at: https://irobotics.aalto.fi/defggcnn/.

Index Terms—Deep Learning in grasping and manipulation,
grasping.

I. INTRODUCTION

IN THE last decade, advancement in robotic grasping has
enabled robots to automatically grasp a never-before-seen

range of objects. However, most of the works on grasp synthesis
still assume specific object properties such as uniform friction
or rigidity. These assumptions do not hold for multi-material [2]
or deformable objects and can lead to unsuccessful grasping in
real-world scenarios.

Grasping non-rigid objects, on the other hand, is difficult
because objects deform under interaction forces meaning that
the 3-D contact locations also depend on the forces exerted on the
object. Furthermore, the effect of the deformation varies across
deformable objects and tasks. Because of these facts, grasps
generated on rigid objects do not necessarily transfer well to
deformable objects, as shown in Fig. 1(a). It is thus essential
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Fig. 1. (a) Some grasps generated on rigid objects did not successfully hold the
object during a dynamic task. (b) The robot executes the same grasp candidate
on two objects with similar shapes but different stiffnesses.

to harness the deformation of objects when grasping. For some
objects, such as grasping a water bottle, it might be important
to minimize the object’s deformation not to dislodge the liquid.
While for other objects, such as the triangular-shaped object
shown in Fig. 1(b), one can take advantage of the deformation
to grasp them successfully.

To date, most of the existing works only focus on minimizing
the object deformation [3]–[7]. Although there exist few works
that take advantage of the deformation [8], [9], they mainly
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Fig. 2. The proposed pipeline where stiffness information (highlighted in red
box) is incorporated.

focus on proposing control strategies given an initial grasp
configuration. Thus, it is still an open question of how object
stiffness affects the choice of grasp configuration and how to
harness object deformation to generate better grasps.

To address the aforementioned open issues, we propose to
incorporate stiffness as an additional input to a state-of-the-art
deep grasp planning pipeline as shown in Fig. 2. Our system
generates a grasp candidate and corresponding grasp quality for
every pixel given an input depth image and a stiffness image. The
model outputs can be reprojected into 3-D space when combined
with depth information, allowing a robot to execute a generated
grasp in the real world.

We qualitatively evaluated the proposed grasp synthesis
method on a Franka Emika Panda robot in simulation and the real
world by comparing it to a method that ignores stiffness. In the
simulator, we evaluated over 2800 grasps on a shake and twist
task, measuring, respectively, the grasp’s robustness to linear
and angular disturbances. In the real world, we measured the
grasp success rate of 560 grasps on 14 objects in three different
scenarios: with stiffness information, assuming all objects are
rigid, and assuming all objects are deformable. In both simula-
tion and the real world, our proposed approach demonstrates an
improvement in grasp success rate. Furthermore, the approach
can generate different grasping strategies for different stiffness
values.

In summary, the main contributions of this letter are:
� The first generative stiffness-aware deep grasping approach

that adapts the grasp location depending on the object’s
stiffness.

� The first stiffness-dependent image-based grasping dataset
consists of labeled top-down grasps on objects with varying
stiffness.

� A thorough empirical evaluation of the proposed method
presenting, both in simulation and on real hardware,

improvements in terms of grasp ranking and grasp success
rate over a method that ignores stiffness.

II. RELATED WORK

To put our work in context, we next review three comple-
mentary viewpoints, grasping of deformable objects, data-driven
grasp synthesis, and simulation of deformable object interac-
tions.

A. Grasping Deformable Objects

Most recent research on deformable object manipulation
has mainly focused on manipulating cloth items [10]–[12],
ropes [13]–[15], and 3-D deformable object [16]. Grasping de-
formable objects remains a sparsely explored research area [17]
with the majority of works focusing on formulating quality
metrics to quantify the goodness of a grasp [3], [4], [18], [19]
or proposing control strategies [6]–[9].

Most approaches for grasping deformable objects aim to min-
imize the deformation. For a particular grasp, the minimization
can be performed on-line by employing a control strategy that
regulates the force at each contact [6], [7]. To plan grasps,
minimum deformation can be achieved by placing fingers at
locations with maximal local stiffness, determined e.g. using
simulation [3]. The deformation can also be integrated as an ad-
ditional component of a wrench-space grasp quality metric [4].

In contrast to minimizing deformation, some works have
proposed to utilize the object deformation, similar to this letter.
Analytical grasp planning approaches following this line of
study include bounded force closure [18] which guarantees force
closure under a bounded external force, and deform closure [19]
which generalizes form closure to deformable objects with fric-
tionless contact. In the on-line case, finger displacements can
be regulated in order to retain force closure, originally proposed
for planar objects [8] and later extended to 3-D [9] by using
Finite Element Method (FEM) to continuously model changes
in shape and contact geometry during object lifting.

Although [8], [9] utilized object deformations for stable grasp-
ing, they focus on regulating either force or displacement of the
fingers given an initial grasp configuration. This is in contrast to
our work which focuses on the choice of the grasp configuration
by taking advantage of the object deformation.

B. Data-Driven Grasp Synthesis

Rapid advances in deep learning research recently have
changed the paradigm of robotic grasping from analytical meth-
ods to data-driven ones. The main reason for this paradigm
shift is that data-driven methods have been proved to be able
to generate grasps that typically achieve a high grasp success
rate on a wide range of objects in just a matter of seconds,
much faster compared to analytical methods [20]–[27]. For
example, Mahler et al. [21] used a dataset consisting of mil-
lions of synthetic antipodal top-grasp to train a Grasp Quality
Convolutional Neural Network (GQ-CNN) model that computes
the probability of success of grasps from depth images. The
GQ-CNN was further improved through the use of on-policy



3040 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

data and a fully-convolutional network (FCN) structure called
FC-GQ-CNN [23]. The FCN structure has recently been found
to perform well in grasp synthesis [22], [23], [28]–[30], having
the ability to generate dense, pixel-wise predictions for an input
image efficiently.

Although the aforementioned works achieve impressive re-
sults on rigid objects, none of them explicitly investigate the us-
ability on deformable objects especially 3-D deformable objects.
In this work, we tackle this problem by incorporating object
deformation into a state-of-the-art deep data-driven grasping
planning pipeline.

C. Soft-Body Simulation

Data-driven grasping requires training data, which in this
work we generate in simulation. Simulating dynamics of de-
formable objects relies heavily on their geometric representa-
tions, for instance, particle representation is a good choice for
simulating the dynamics of fluids. Yin et al. [31] presents three
primary deformable object modelling approaches, Mass-Spring
System (MSS), Position-based Dynamics (PBD), and FEM, and
their limitations. In this work, we decided to use FEM because
it is often used to model 3-D objects such as food [32] and
tissues [33] and, compared to other modeling approaches, offers
a more physically accurate representation of a deformable object
in a continuous domain at the expense of computational cost.

Some robotic simulators that support FEM are PyBullet [34],
SOFA [35], and NVIDIA’s recent version of the Isaac Gym
simulator [36], which supports soft body simulation through the
NVIDIA Flex backend. Among the aforementioned simulators,
Isaac Gym is chosen as it combines the advantages of the other
two. Similar to SOFA, Isaac Gym includes a co-rotational linear
model for precision modeling and simulating the object defor-
mation under interaction. Like PyBullet, Isaac Gym provides
capabilities to integrate robot-related functions, making it easier
to build robotic applications. Huang et al. [17] also provides
a grasping framework in Isaac Gym named DefGraspSim to
automatically perform and evaluate grasp tests on an arbitrary
target object. We use this framework in our work to generate
training data and to test grasps.

III. PROBLEM FORMULATION

This work addresses the problem of generating antipodal
grasps on unknown objects with different stiffnesses lying on a
supporting surface. The goal is to calculate a grasp for each pixel
in the depth image while taking into account object stiffness.
More formally, we train a model M that takes as input a
depth image Id and a stiffness image Is, and produces a grasp
map G that incorporates grasp quality and grasp parameters
(orientation, gripper width) for grasps centered at each pixel
in the input.

M : (Id, Is) �→ G.

To achieve this goal, we propose to use the Deep Neural
Network (DNN) in Fig. 2 to map from depth and stiffness images
to grasps G in the image, which we can easily transform to the
real world using known coordinate transforms.

IV. METHOD

A. Network

Our solution is based on the Generative Grasping Convolu-
tional Neural Network 2 (GG-CNN2) a fully-convolutional net-
work proposed by Morrision et al. [30]. The detail architecture
of the network is presented in [30]. This network is orders of
magnitude smaller than other recent grasping networks, making
it faster to train and evaluate, while still achieving state-of-the-art
results in rigid object grasping. However, as shown in Fig. 2,
we modify GG-CNN2 to take an additional stiffness image as
input, enabling it to learn different grasps based on the object’s
stiffness. Specifically, we modify the GG-CNN2 convolution
module to accommodate the extra input. We call this new net-
work Deformation GG-CNN (Def-GG-CNN).

Similar to the GG-CNN2 network architecture, Def-GG-CNN
also uses dilated convolutional layers to improve the perfor-
mance in semantic segmentation. To enable Def-GG-CNN to
learn stiffness-dependent grasping strategies, it has, alongside
the depth image, an additional stiffness image input. The stiff-
ness image represents Young’s modulus of the object at each
pixel. The output of the network is the grasp map G that
represents a grasp quality, and gripper parameters (orientation,
gripper width) for each pixel of the depth image. The proposed
network is trained with supervised learning on a synthetic dataset
with the L2 loss funtion L(G,Mθ(Id, Is)). The synthetic train-
ing dataset further explaned in Section V.

B. Grasp Map Representation

Each pixel in the grasp map G represents a top-down grasp,
which is defined by the grasp center position, orientation, and
width. We use the same representation of G as defined in [22].
As shown in Fig. 2, the grasp map G consist of three images:
grasp quality Q, orientation φ, and gripper width W.

Q denotes the quality of a grasp centered at each pixel. The
quality of a grasp is a scalar value between [0, 1], where the
higher the value, the better the grasp. φ is the orientation image,
representing the pixel-wise orientation of a grasp around the
image normal. Because an antipodal grasp is symmetric beyond
180 degrees, we limit the orientation between [−π/2, π/2] radi-
ans. Finally, W is the width image that describes the pixel-wise
gripper width from [0, 150] pixels. We transform the pixel-
dependent gripper width to real-world units using the measured
depth and the camera parameters.

V. DATASET

To train Def-GG-CNN, we need a dataset consisting of depth,
stiffness, quality, orientation, and width images. To date, there
exists no such dataset, and, thus, we opted to curate our own
synthetic dataset.

The pipeline of generating training data is visualized in Fig. 3.
We first convert the triangular mesh of an object into tetrahedral
mesh using fTetWild [37] and feed that tetrahedral mesh to the
Isaac Gym simulator to enable its soft bodies simulation feature.
The stiffness of an object can then be varied by adjusting the
material parameters, i.e., Young’s modulus and Poisson’s Ratio.
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Fig. 3. The training data generation pipeline.

Then using the object triangular mesh, we sample grasp can-
didates which are later evaluated with Isaac Gym using proper
quality metrics. Based on the performance of the grasps, we then
label the grasps, convert them to the desired representation, and
store them in the training dataset.

Depth and stiffness input: We captured depth images of
target objects with a virtual camera set to view the scene from
top-down. To model variable object stiffness, four values of
Young’s modulus from 2 · 104 to 2 · 109 were used. The Young’s
modulus is normalized to [0, 1] range and the corresponding
stiffness value is assigned to every pixel in the stiffness image
that the object occupies. To simplify the problem, we decided
to keep the Poisson’ ratio fixed at 0.3 as suggested in [17]. The
dimension of the two images is 300× 300.

Grasp candidates: Grasps are sampled with an antipodal
grasp sampler to obtain approximately 200 grasp candidates for
each target object. All grasps that collide with the mesh are
filtered out, resulting in a final set of 25 to 40 collision-free
grasps for each object.

Quality metrics: None of the standard grasp quality metrics,
such as the Ferrari & Canny L1 metric [38], are directly appli-
cable for both rigid and deformable objects. As a quality metric,
we use a shake task which measures how easily an object is
displaced in hand under linear accelerations. A higher metric
means a better grasp as it indicates that a grasp can withstand
higher accelerations. We use this metric to label a grasp as a
positive or negative grasp by checking if the linear acceleration
it can withstand is above or below a threshold. Specifically,
after successfully lifting the object for each grasp candidate, we
linearly increase the acceleration of the grasp along 16 directions
until the gripper loses contact with the objects or reaches the
upper acceleration limit, which is set to 50 m/s2. Then we
compute the average acceleration over all directions, and if this
value is higher than the threshold of 25 m/s2, we label the grasp
candidate as a positive grasp.

Ground-truth grasp map: To further simplify the data gen-
eration, we only use positively labeled grasps as ground-truth
grasps to train the network. To generate the ground-truth grasps,
we first transform all grasps to the image space. To do so, we
represent the grasps as rectangles in the image as displayed in
Fig. 4. Four parameters define the rectangles: grasp center, grasp

Fig. 4. A grasp is represented as a rectangle in 2D image plane.

Fig. 5. The seven common objects used in the experiment. All objects are
single-material except for object 7, where the stiffness of its red part can vary.

orientation, grasp width, and finger height. Finally, we use the
rectangles as image masks to generate ground-truth grasp maps
G. Specifically, all pixels of the quality images Q, angle images
φ, and width images W within the rectangle are set to the values
given from the shake task. In contrast, all pixels outside the
rectangle are set to invalid.

Training dataset: As a training dataset, we generate and label
grasps on 30 objects. The objects include 13 primitive objects
provided in Isaac Gym, 5 objects from the YCB dataset [39],
and 12 objects with adversarial geometry from the EGAD!
dataset [40]. Because we set the stiffness for each object to four
different values, the training set contains, in total, 120 objects.
We use the Franka Emika Panda gripper model to execute grasps
on objects in the simulator. To counteract the small size of the
training set, we further augment the dataset with random crops,
zooms, and rotations to create a set of 5400 depth and stiffness
images with 27000 corresponding labeled grasp maps.

VI. EXPERIMENTS AND RESULTS

The experiments address the following three questions:
� Can Def-GG-CNN synthesize high-quality grasps for de-

formable objects and would they succeed in simulation?
� Is Def-GG-CNN robust against errors in stiffness input?
� Can Def-GG-CNN, trained purely on synthetic data, gen-

erate successful grasps in the real world?
� How does the stiffness information affect the grasp config-

uration?

A. Grasping in Simulation

We investigated the quality of synthesized grasps in the Isaac
Gym simulation using the mentioned DefGraspSim framework
on two sets of objects: 7 common objects shown in Fig. 5, and 28
adversarial objects from the recent EGAD! test dataset [40]. For
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TABLE I
AVERAGE GRASP SUCCESS RATE (%) ON DIFFERENT STIFFNESSES FOR TWO DIFFERENT TASKS. THE HIGHER THE BETTER.

each object and stiffness, we evaluated the five grasps with the
highest quality on a shake task and twist task. While the shake
task measures how easily an object slips out of the gripper under
linear accelerations, the twist task measures that under angular
accelerations. A grasp is successful if the object is in the gripper
during the whole procedure, the grasp can withstand the linear
acceleration limit of 25 m/s2, and the angular acceleration limit
of 500 rad/s2. By doing this, we can quantify how the generated
grasps behave under different disturbances.

To demonstrate the importance and the effect of stiffness in-
put, we compared the stiffness-aware grasps against a GG-CNN2
baseline that only used depth images as input and no stiffness
information. The baseline was also optimized on our synthetic
dataset, but instead of having a varying Young’s modulus we
only used labeled grasps in the case of Young’s modulus of
2 · 109 as ground truths. In total, we evaluated 1400 grasps per
method.

Table I shows the simulation result on both test sets. We can
see that the proposed approach that takes stiffness input into
account achieves a higher grasp success rate across all object sets
and disturbances. Interestingly, the network generated grasps
that performed well on the twist task task despite being only
trained on the quality metric from the shake task. The reason why
the network was only trained on the quality metric of the shake
task other than both shake task and twist task stems from the fact
that the computation cost during data generation is extremely
expensive.

Focusing on the shake task results, the average grasp success
rate using our approach over all stiffnesses compared to the
baseline is 35% higher on the Common objects and 11% higher
on EGAD! objects. Moreover, the performance of the baseline
approach deteriorates significantly when moving from a high to
a low value of Young’s modulus. For instance, on the Common
test set, the relative performance drop for the baseline approach
when changing the Young’s modulus from 2 · 106 to 2 · 105 is
10%, and from 2 · 106 to 2 · 104 the drop is 26%. This decline
is much higher compared to the 0% and 13% drop using our
approach. Similar performance differences are also observed for
the EGAD! test set. The primary reason the baseline approach
witnesses a higher performance drop is because it generates
the same grasps for a target object regardless of its stiffness.
Although the generated grasps often picked the objects success-
fully, they usually slip away from the gripper during the shake or
twist task. In contrast, the network that took the stiffness input
into account learned to avoid areas with a high probability of

Fig. 6. Grasp success versus error in stiffness information. Grasp success
deteriorates smoothly when the stiffness information is imprecise.

slippage, resulting in a higher grasp success rate. In addition, it is
noteworthy that there is also some deterioration with the highest
stiffness (2 · 109) for both approaches. The primary reason is that
some objects in both test set have very complex shape which are
extremely hard to grasp when they are rigid. This observation
strengthen the idea of taking advantage of object deformation to
successfully grasp complex-shaped objects.

We also evaluated the models on the multi-material object
7 shown in Fig. 5, where the stiffness of the red part could
differ from the blue part. The result showed that if we assumed
object 7 is entirely rigid, the method could not generate any good
grasps on it. However, if we assumed the red part was softer than
the blue part, we could generate successful grasps that usually
aimed for the softer area of the object. This simple example
demonstrates the benefit of planning stiffness-aware grasps on
irregular-shaped multi-material objects.

B. Sensitivity Analysis

To examine the robustness of the results of our approach in
the presence of uncertainty, we conducted a sensitivity analysis
where we introduce uncertainty to the input stiffness images by
varying the stiffness parameter, i.e., Young’s modulus across an
error range of [−60%, +60%]. We then evaluated the generated
grasps on the Common test set under the shake task.

Fig. 6 shows the result of the sensitivity analysis. We can see
that the grasp success rate decreases consistently with increasing
error, but that small errors in the range of 5–15% have only
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Fig. 7. The 14 individually numbered objects used in the real experiment. The
objects represent a high variation in size, shape, and stiffness.

limited negative effect on the performance. This experiment in-
dicates that our method is robust against some errors in expected
stiffness, which suggests potential for real-world application
even when stiffness is not precisely known.

C. Grasp Transfer to Physical Robot

To investigate how well the synthesized grasps perform in
real world, we evaluated the grasp success rate on a Franka
Emika Panda equipped with a parallel-jaw gripper. This allows
us to study if grasps generated with the approach trained only on
synthetic data transfer to real objects. 14 objects to grasp (Fig. 7)
were chosen as they represent a high variation in size, shape, and
stiffness.

We used an Intel RealSense D435 camera mounted to the
robot’s wrist to capture the RGB-D image. In addition to depth
image, we also need to provide a stiffness image of the object. To
do this, we segmented the object from the scene by subtracting
the background and the table from the image and then assigning
the same stiffness value to each pixel that the object occupied. We
manually set the magnitude of stiffness for each object according
to its perceived stiffness. The best grasp pose is computed using
the proposed method. If there exist multiple best grasps, i.e.,
multiple pixels that have the same value of the maximum quality,
the first occurrence pixel is chosen as the best grasp.

The robot executed the best grasp by moving to a pre-grasp
position approximately 25 mm above the grasp. Then, the robot
moves linearly downwards until reaching the grasp pose or
contact with the table is detected. From there, the robot closes
its gripper, lifts the object, performs a predefined trajectory, and
finally places an object at the goal position. A grasp is successful
if the robot can pick the object and move it without dropping it.
Otherwise, it is unsuccessful.

To single out the effect stiffness input has on grasp per-
formance for each object, we ran the experiments with three
different cases where we: provide the correct objects stiffness,
assume all objects are rigid, assume all objects are soft. Specif-
ically, in the case of providing the correct objects stiffness, we
manually set the magnitude of stiffness for each object according
to its perceived stiffness. In other cases, we assume all objects
are rigid or soft by setting the Young’s modulus of objects to
2 · 109 and 2 · 104, respectively. In addition, we also ran the

experiments with the pre-trained model GG-CNN2 on this test
set. For each object and stiffness, we randomly placed it ten
times and evaluated the best grasp candidate. In total, this setup
amounts to 560 grasps on 14 objects.

The experimental results are presented in Fig. 8. The results
demonstrate that with the correct stiffness information, the grasp
success rate of the proposed approach is 17% higher than if we
either assume all objects are rigid or deformable. Def-GG-CNN
also achieves a 10% higher grasp success rate than the baseline
GG-CNN2. Together, these results indicates that grasps gener-
ated on rigid objects do not necessarily transfer successfully to
deformable objects and vice versa.

For instance, if we assumed the deformable objects, such as
objects 8, 9, 11, and 14, were rigid, many generated grasps
were on specific parts of them, such as the arms or legs of the
toy or wheel of the car. These grasps usually picked the object
successfully but then, due to the deformation, dropped it when
the robot started to accelerate. The same experiment on objects 6,
7 showed that grasps generated on the top or bottom of the object
usually failed due to the elasticity of the object. If we assumed
rigid objects, such as 1, 3, 4, 5, were soft, the network generated
pinch grasps that failed due to collisions with the object. Some
successful grasps are shown in Fig. 9 and some failed grasps are
shown in Fig. 1(b).

An interesting observation was that given the correct stiffness
information, the method generated different grasping strategies
depending on the stiffness of the object, as shown in Fig. 10.
Specifically, in the case of the soft sponge shown in Fig. 10
a, the proposed method predicted that the grasp quality is high
across the whole object due to its deformation that enables pinch
grasps. While in the case of the hard sponge shown in Fig. 10
b, the high-quality grasp tends to be generated at the center of
the object, and the grasp width is as big as the object in order to
successfully cage the object.

D. Discussion

All experimental results show the benefit of generating
stiffness-aware grasps. By comparing the proposed approach
to the case where the stiffness information is ignored, we see
that the proposed approach achieves higher grasp success rates.
The primary reason for the difference in performance is that the
object stiffness facilitates learning where to generate grasps that
minimize the slippage caused by the deformation. If the object’s
stiffness was ignored, the network generated the same grasps
regardless of the object stiffness. Together, these result backs
the claim made in [9] that grasps do not transfer well between
rigid and deformable objects. Therefore, incorporating object
stiffness in robotic grasping pipelines is beneficial when dealing
with a wide range of unknown objects.

It is especially noteworthy that although Def-GG-CNN is
trained purely on synthetic data it generalized well to real world
scenes without any fine-tuning. We hypothesize that this level of
generalization is due to the effect of data augmentation, where
we apply random rotations, zooms and crops of the training
dataset images to achieve camera viewpoint and size invariance.

Another interesting observation is that our approach generated
grasps in different area on the object depending on its stiffness.
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Fig. 8. Grasp success rate per object in three cases produced by our method. The last column shows the average success rate for all cases of our method and
GG-CNN2.

Fig. 9. Some successful grasps on the real robot.

Fig. 10. Stiffness input image, along with grasp quality map and best synthe-
sized grasp candidate indicated by two white fingers. For stiffness input image,
the darker the color the stiffer the object is. For the grasp quality map, red
indicates higher quality, and the green point denotes the best grasp.

This behavior is shown on object 6 in Fig. 10. Specifically, the
sponge with a low Young’s modulus admits pinching behavior
where the grasp press on the object and pinch, while the hard
sponge only admits caging grasps. Our hypotheses regarding
this may result from the fact that for soft objects the system
provide good grasps across the objects to areas on those objects

that were not included in the training data. Similar behaviors
were also reported in [41] where data was collected from 14
robots over the course of two months. However, it is noteworthy
that our approach learned to produce the same behavior on a
completely synthetic dataset with orders of magnitude less data.
Furthermore, our proposed approach provides more meaningful
insights regarding the relationship between object deformation
and grasps.

VII. CONCLUSION AND FUTURE WORK

Grasping deformable objects has not received as much atten-
tion as rigid object grasping due to complexity in the modeling
and simulating the dynamic behavior of such objects. However,
with the rapid development of physics-based simulators that
support soft bodies, it is now possible to reliably simulate
deformable objects. To leverage the capability of such simulators
and to challenge the rigidity assumption that has dominated
robotic grasping, we presented an approach to synthesize grasps
on objects with varying stiffness by a deep neural network
trained on purely synthetic data. The key idea in this work
was to integrate the object stiffness property into the grasp
planning pipeline to study the relationship between the object
deformation and the generated grasps. To train the proposed net-
work, we curated our own training dataset using the Isaac Gym
simulator. We experimentally demonstrated the performance
of the generated grasps in simulation and the real-world on a
wide range of objects with varying sizes, shapes, and stiffness.
The results show a clear improvement in grasp success rate
when taking stiffness property into account. Furthermore, the
proposed approach shows the ability to generate different grasp
strategies depending on object stiffness. The generalizability to
objects with non-uniform stiffness remains open although the
method should be able to account for all variability captured in
the training data.

The idea of exploiting deformations for grasping opens many
interesting avenues. One of the limitation of our proposed
method is that it employs FEM simulations for which the
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computational cost makes our grasp evaluation procedure a
central bottleneck. Investigating the possibility to devise an-
alytical quality measures that would exploit the deformations
is an important future work to tackle the mentioned problem.
Another interesting future work would be to include more critical
grasp parameters for deformable objects, which are currently not
considered in this letter, such as grasp height, or closing width/
closing force into the proposed method or to expand the proposed
method to incorporate more generic 6 DOF grasps.
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