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Abstract— Point clouds collected by real-world sensors are al-
ways unaligned and sparse, which makes it hard to reconstruct
the complete shape of object from a single frame of data. In this
work, we manage to provide complete point clouds from sparse
input with pose disturbance by limited translation and rotation.
We also use temporal information to enhance the completion
model, refining the output with a sequence of inputs. With the
help of gated recovery units(GRU) and attention mechanisms as
temporal units, we propose a point cloud completion framework
that accepts a sequence of unaligned and sparse inputs, and
outputs consistent and aligned point clouds. Our network
performs in an online manner and presents a refined point cloud
for each frame, which enables it to be integrated into any SLAM
or reconstruction pipeline. As far as we know, our framework
is the first to utilize temporal information and ensure temporal
consistency with limited transformation. Through experiments
in ShapeNet and KITTI, we prove that our framework is
effective in both synthetic and real-world datasets.

I. INTRODUCTION

The 3D point cloud completion task aims to output the
complete shape of objects from partial 3D inputs, and is of
great significance to many subsequent tasks, such as robot
navigation, AR reconstruction, and pose estimation. Previous
researchers have examined reconstructing a complete object
from single-frame point clouds, and have developed methods
for different input data, such as voxels[1], [2], [3], point
clouds[4], [5] and implicit fields[6], [7]. However, previous
methods have limitations that prevent them from being
widely used in real-world tasks.

One limitation of the existing methods is that they assume
that the input data are aligned to the canonical frame, where
objects all face forward and are centered at the origin of the
coordinates. This assumption is strict and is hard to obey in
self-collected datasets, such as self-driving driving datasets
collected by common lidar sensors. A second limitation is
that researchers assume that partial inputs from a single
frame are sufficient for accurate shape completion. In sim-
ulation datasets, e.g., ShapeNet[8], partial point clouds are
collected by projecting a CAD model into certain angles for
dense depth images[4], which ensures that the partial input
contains enough geometric information of objects. However,
real-world data are often sparse and randomly sampled, and
the point clouds from a single frame may be meaningless.
Last but not least, researchers often do not consider the
consistency between the complete shapes recovered from

1Jieqi and 4Shaojie Shen are with Department of Electronic and
Computer Engineering, the Hong Kong University of Science and Tech-
nology {jshias, eeshaojie}@connect.ust.hk 2Lingyun Xu,
3Peiliang Li and 4Xiaozhi Chen are with Dji Co. {judy.xu,
peiliang.li}@dji.com, cxz.thu@gmail.com. Digital Object
Identifier (DOI): see top of this page.

Fig. 1. Illustration of our temporal completion results. Upper: Completion
results of one randomly selected frame in KITTI test seq. 17. Lower:
Completion results after 10 frames. Bounding boxes are from AB3DMOT.

different partial inputs of the same object, which is fatal to
the scene reconstruction task.

From our point of view, the last two problems come from
the inadequate use of temporal information. In actual scenes,
we can usually get enough frames of data for initialization,
though each frame may have errors and shortcomings. Con-
sidering this, how to use temporal information effectively
is of great significance for real-world tasks. Previously, [9]
employed subsequent frames to train real-world models in
a weakly-supervised manner and has provided promising
result. However, they still focus on single-frame models and
can not utilize multi-frame inputs to enrich the reconstructed
model. In this paper, we want to delve deeper, utilizing
the temporal information of multi-frame point clouds while
tolerating certain disturbance in poses.

To better use the temporal information and handle the
pose disturbance, we propose two main modifications to
existing completion frameworks. 1) Design a backbone
that is capable of dealing with pose disturbance of un-
aligned input data. In most real-world pipelines, automatic
3D detection methods, such as deep learning methods e.g.
PVRCNN[10], are employed to crop out interested objects.
However, even the state-of-the-art(SOTA) detection methods
still suffer from rotation and translation bias, which is
critical for 3D completion tasks. Targeting this problem,
we try to transform the unaligned point cloud to uniform
coordinates while outputting a coarse completion result. 2)
Propose several temporal units to fully fuse partial input
from different frames and output a consistent result. As
mentioned above, the input point clouds collected by real-
world lidar sensors are often sparse and randomly sampled,
which means that point clouds of subsequent frames are
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completely different and have few overlaps. One natural
way to solve this problem is to accumulate points together
after alignment. This idea is employed by [11], where the
authors calculate the quality of incoming point clouds and
overlay them over the first frame. However, experimental
results show this method heavily relies on precision of the
tracking pipeline which leads to considerable cumulative
error. Also, much memory is required to recollect the point
cloud information. To overcome this, we employ the popular
memory gate strategy to memorize the geometric information
and fuse them at the feature level. In order to make better use
of recent data, we further added sliding window to enhance
short-term memory in the refinement stage. We also want
to complete the point clouds in an on-line manner, which
means that we will output a complete result upon the arrival
of each frame, and optimize the output results as the number
of input frames increases.

In this paper, we propose a temporally consistent 3D point
cloud completion model that accepts unaligned point cloud
sequences as inputs. We first employ an encoder-decoder
framework for rough completion and pose recovery. Then
we refine the initial shape with aligned partial point clouds.
Temporal units are combined in both steps to maintain
the consistency of the generated shape between frames. To
demonstrate the effectiveness of our method, we conduct
experiments on both the synthetic ShapeNet datset[8] and
real-world KITTI dataset[12], [13], which proves that our
model is simple but effective. Our key contributions are:

1. Propose a simple but efficient network for the unaligned
point cloud completion task and obtain the SOTA
quantitative results. The pipeline can be integrated to
any detection pipelines without further alignment, for
automatic shape generation.

2. Fully utilize temporal information to provide robust
complete point clouds, with limited memory usage.

3. Develop our framework to accept a arbitrary number
of input frames and operate in an on-line manner. It
processes each frame of a point cloud and provides
a refined result upon arrival. Only a small number of
inputs are needed to present a satisfactory result, which
vastly speeds up the system initialization.

II. RELATED WORK

Though targeting the 3D point cloud completion task,
our method is related to some other 3D vision tasks. In
this section, we give a brief overview of related topics and
differences between our work and previous methods.

A. Structure from Motion and Multi-View Stereo

The traditional structure-from-motion(SFM) task is often
part of the multi-view stereo(MVS) reconstruction in terms
of their pipelines. Both tasks accept an image sequence
as input and try to recover the depth. SFM tasks usually
pay more attention to robust key-points, and utilize feature
matching methods to get 3D landmarks. Such sparse land-
marks can be further used to optimize the pose of sensors in
bundle adjustment[14], [15] and SLAM[16] problems. The

traditional SFM tasks have been further extended to deep-
VO[17], [18], which extracts the poses of sensors from a
sequence of images. Meanwhile, MVS problems go a step
further to recover dense depth. Traditional MVS methods
can be roughly divided into region-growing methods and
depth-fusion methods. The region-growing methods, such
as PMVS[19], rely on the result of robust key-points to
generate patches and later extend to nearby regions. The
depth-fusion methods, such as Kinect Fusion[20], on the
other hand, process each frame as a whole and fuse the
information of different frames at the depth level. This
strategy is inherited by popular deep-learning methods. For
example, MVSNet[21] constructs a dense cost-volume for
the reference image using the features extracted by the
network and calculates the depth of a whole image, and
DeepMVS[22] generates a group of plane-sweep volumes
and predicts the disparity between input images.

Our task is similar to the SFM and MVS problems in that
it also tries to fuse the 3D information of different frames
and provide a refined shape. However, different from these
traditional 3D problems, which take dense 2D images as
input, we utilize sparse 3D point clouds, which brings about
different challenges. Most importantly, it is hard to find key-
points in 3D point clouds and operate 3D registration before
fusion with randomly sampled inputs that may have scarcely
any overlap. We, therefore, can not follow the popular
extract-and-match pipeline that depends on landmarks, and
must find another method for temporal fusion.

B. 3D Shape Completion

The 3D shape completion task is attracting more and
more researchers, who have been making headway on this
problem. The research focuses on different input data types,
such as point clouds[5], [23], [24], voxels[1]–[3], [25], and
SDF[6], [26], [27] , and popular methods follow a standard
encoder-decoder framework to get a rough result, often
adding auxiliary tasks to enhance the shape code genera-
tion process[1], [28]. To refine the generated point clouds,
researchers have made efforts in optimizing the training
methods[29], [30], utilizing more strict loss functions[31],
[32], adding information from another sensor for more
detail[33], and developing better encoder networks[5], [24].
However, most of these methods are built upon the assump-
tion that the input data are well-aligned and each frame
contains enough information for shape reconstruction. While
this assumption can be easily satisfied in synthetic datasets,
it is nearly impossible to meet in real-world problems.

Recognizing the limitations of popular 3D shape com-
pletion methods, [9] utilizes the temporal information of
more frames. However, different from our method, which
enriches the shape information using several frames, the
authors utilize subsequent frames to train the model in a
weakly-supervised manner, taking the distance between the
shape reconstructed from one frame and the input from
another frame as the guidance signal. Yet the idea is inspiring
and proves that, though not as consistent as 2D images,
3D point clouds still maintain consistency between frames.



Fig. 2. Details of our framework. The main modifications are highlighted in different colors. Upper: Alignment and completion. Lower: Shape refinement.

Moreover, [11] integrates the shape completion task into the
3D tracking pipeline, and uses accumulated point clouds as
the constructed shape. Such a fusion strategy is simple but
noisy, leading to cumulative error similar to that in a SLAM
system. The author also points out that memorizing past point
cloud information consumes too many memory resources.
To solve the problem, the author selects to use key frames
instead of memorizing all input data, yet the memory usage
is still troublesome and should be improved.

III. METHOD

Most point cloud completion framework assumes the input
points are collected in a unified reference frame. However,
in actual case, the temporal object point clouds can not be
well aligned due to the pose estimation error. Our method
is designed to take temporal object point clouds as input,
where the point cloud of each frame has a non-trivial rotation
error with less than 20 degree, and translation error with
less than 0.1m with respecting to the reference frame, and
output aligned and completed object point cloud. Following
the existing GCC[32], our network can be divided into
an alignment and completion network, and a refinement
network, and modify each stage by adding temporal units to
memorize the temporal information. Therefore, our network
can be treated as the combination of a per-frame processing
backbone and the inserted temporal units, as illustrated in Fig
2. In this section, we first introduce the per-frame processing
units, and then explain in detail our temporal units and
how they are used to encode the information of subsequent
frames. We denote the input point cloud as P with number of
points N , rotation er, and translation et. We use footmarks
to distinguish between the outputs of different stages of
network. The output point cloud of the alignment network is
denoted as Palign, and the rough completed point cloud of
the stage-1 network is Po. Similar as GCC, the input of the
stage-2 network is a combination of the input point cloud
and the output of the stage-1 network, and we name it Pin.

A. Per-Frame Completion

We also suppose the point clouds are scaled within a ball
with radius = 0.5m, which follows the assumption of PCN[4].
Considering the results from popular detection networks,
such as PointRCNN and PVNet, we assume that the input

point cloud P has a rotation of −20 < er < 20 and a
translation of −0.1m < et < 0.1m. The basic framework of
the stage-1 alignment and completion network is the same
as that of GCC[32]. We extract the general shape features of
the point cloud using a stacked Multilayer Perceptron(MLP)
network and pooling layers of different resolutions. Different
from the original network, we follow PointNet[34] and add
modified T-Net alignment units to the basic encoder.

The first unit is inserted at the beginning of the network.
The original T-Net unit gets a 3 × 3 transformation ma-
trix from a series of convolution-batchnorm-ReLU layers.
However, such a design can not ensure the orthogonality
of the matrix, which means that the rotation matrix may
be meaningless and may even lead to unexpected deforma-
tion. Therefore, we make a slight modification and output
6D rotation and the 3D translation vector T = (x, y, z)
instead, following [9]. After the network, we transform the
3D rotation vector into simple rotation matrix and do the
alignment directly on P to get aligned point clouds Palign,
which are used as the final input of the encoder-decoder
network. The second alignment unit is applied to features
only. After several MLP layers in the ShapeNet encoder, we
take out the intermediate features finter of size N × C and
feed them into another T-Net network. This time we output a
transformation matrix of size C×C, which is later multiplied
to finter. The output of the encoder should be the aligned
point clouds Palign, the translation T , and the shape code S
of dimension 1280. To extract the information from different
resolutions, we apply furthest point sampling to P and obtain
three point clouds of size N, N2 ,

N
4 , which means we will

have three Palign,i;T
i; i = 0, 1, 2, and Si; i = 0, 1, 2. The

shape code will be concatenated for a final Sfinal, and the
channel will then be reduced by simple MLP layers. After
the encoder network, we use the same decoder module as
GCC[32], which takes the shape code as input and outputs
a rough complete point cloud Po. The final output of the
stage-1 network should be Palign,i;Ti; i = 0, 1, 2, and Pr.

As we have mentioned the three alighed point clouds
of the stage-1 network are of different resolutions of size
N, N2 ,

N
4 , and the last two are too sparse and lose much

geometric information. We therefore only feed the one of
size N into the stage-2 network. We then apply fps to P 0

align



and Pr separately, form a new input point cloud Pin of size
Nout with the selected points, and calculate the adjacent
matrix A of Ps2. We also extract points from Palign that
are within a ball centered at each point in Pin and form
a feature falign of size Nout × Cf . This is the same as
the procedure to combine controlling points with points to
be optimized in [32]. These feature will then go through
a graph convolutional network(GCN) for deformation. The
only difference from the original deformation network is that
we let the network regress a deformation between the input
and target, and the final result should be the output of the
GCN plus the input Pin.

B. Temporal Units

We use two kinds of units to fuse the temporal information
between frames. The first is the global fusion operated in the
alignmenet network, and the second is the local fusion in the
refinement stage.

Recall that we output a global shape code S of shape
N × 1 in our encoder of the alignment network. We assume
that the shape code has encoded the shape information of the
input point clouds and, in the ideal case, can directly output
the accurate final shape with the decoding operation. Yet as
we have mentioned, the information of only one frame is
often insufficient to give a complete shape, which inspires
us to fuse the shape information at the shape code level first.
Therefore, we first utilize a GRU module to fuse the shape
and ensure consistency between frames. The GRU memory
unit takes the shape-code Sfinal as input, and outputs the
updates S′ and the hidden state h. S′ should be the last state
of the last layer of h.

The second unit is inserted into the refinement module
before GCN layers. Since we do not have a per-point
correspondence between P t

s and P t+1
s , we can not employ

the GRU for temporal fusion directly on the features falign in
this module. Apart from the long-term memory, we also hope
to focus more on recent information to refine the converged
shape of the first stage in the refinement network. Thus, in
the second memory unit, we only utilize the information of
the most recent frames and fuse them through a Squeeze-and-
Excitation(SE) channel-wise attention module[35]. We set a
sliding window of a small size N and restore the aligned
point clouds in the time window. At time t, we put P t

align

and P t−i
align, i = 1, 2, ..., T together into the network FE for

feature extraction. We also operate the same network again to
extract features from P t−i

align within the same radius of points
in Pin. The two features are then concatenated and passed
through several stacked linear layers to reduce the number
of feature channels and get falign. After that, we insert a SE
block to fuse the temporal information better. Therefore, the
final feature frefine can be formulated as

f talign =MLP [FE(p, P t
align), FE(p, P t−i

align)], p ∈ Pin

f trefine = SE(f talign).
(1)

In our experiment, we select N = 3. This attention
module is, in fact, not a traditional memory unit in deep

learning research. However, together with the sliding window
mechanism, it also works as a temporal fusion strategy that
enables the point clouds to fuse better locally.

C. Loss Function

The training losses can be divided into alignment loss and
completion loss. The former is designed for the point cloud
alignment task in the first stage, and the latter is almost the
same as the losses in GCC[32].

1) Alignment Loss: Recall that we output three aligned
point clouds and translation matrices in the stage-1 network.
During training, we use two different losses for them.

The first is the earth mover distance(EMD) for point
clouds. The EMD loss aims to find a bijection between
the reference point cloud P and the target point cloud Q
that minimizes the average distance between corresponding
points. Considering that there exists randomness during the
fps process, directly calculating the distances between point
clouds may lead to unexpected errors. Therefore, we use
EMD to calculate the distance between Palign and cor-
responding aligned input point clouds Pogt of the same
resolution. We take the same realization as in PCN[4].

Lemd = EMD(P 0
align, P

0
ogt) +

2∑
i=1

λiEMD(P i
align, P

i
ogt).

(2)
The other loss is the Huber loss for translation, where we

add another term to punish the translation error of aligned
point clouds. Here we select the typical smooth-l1(Huber)
loss to reduce the effect of outliers:

LHuber =

3∑
i=0

Huber(norm(T i − Tgt).delta = 2.0) (3)

In the ideal case, P 0
align and P 0

ogt should be exactly the
same, while other pairs may suffer small differences. Thus,
we set the weight of the EMD loss for P 0

align to 3 times
that of other aligned point clouds and expect the network to
focus more on them. The translations should be the same for
all resolutions. Thus we keep their weight the same.

2) Completion Loss: Considering that our aligned point
clouds may still suffer from transformation, we do not take
the matching loss from GCC, but use only two kinds of loss
functions instead. Firstly, we use the Chamfer distance(CD)
loss. The bi-directional CD loss is used to guide the comple-
tion process and to ensure the similarity in shapes between
the output and generated shapes.

eCD(X,Y ) =
1

N0

∑
x∈X

min
y∈Y
||x−y||22+

1

N1

∑
y∈Y

min
x∈X
||y−x||22.

(4)
Here we also calculate the CD loss twice for both the stage-1
output Pr and the final output Pf .

Secondly, we use the scale-dependent Laplacian loss[38].
According to [32], this loss will guide the network to mem-
orize more details and avoid over-smoothing in a backward



TABLE I
COMPARISON IN TERMS OF PER-POINT CHAMFER DISTANCE ×10−4(LOWER IS BETTER) UPPER: AUGMENTED SHAPENET LOWER: PCN TEST

Methods Average Watercraft Plane Cabinet Car Chair Lamp Couch Table

PCN[4] 14.28 13.99 7.41 17.62 11.82 16.34 14.07 17.79 15.17
TopNet[36] 13.88 13.34 7.52 17.57 11.98 16.14 13.37 16.89 14.22

GCC Stage 1[37] 8.05 8.62 3.42 9.58 6.42 8.84 10.55 8.64 8.33
GCC Stage 2 9.19 9.06 4.95 10.79 7.64 9.87 11.41 9.67 9.63

Ours 6.64 7.24 2.61 8.14 5.63 7.11 8.18 7.27 6.90

PCN[4] 12.59 10.96 7.48 15.85 10.65 15.43 12.37 16.02 11.96
TopNet[36] 12.49 10.59 8.04 16.06 10.91 14.85 11.86 16.01 11.61

GCC Stage 1 7.85 7.46 3.88 10.34 6.48 8.43 9.67 9.09 7.43
GCC Stage 2 9.24 8.86 5.57 11.54 7.88 9.50 11.38 10.64 8.52

Ours 6.51 6.26 3.08 9.45 5.91 6.45 7.29 8.02 5.69

manner. It can be formulated as

e =
∑

x∈Pg,y∈A(x)

||x−y||2, LLap = ||
∑
x∈Pg

∑
y∈A(x)

2(x− y)
e||x− y||2

||2.

(5)
3) Overall Loss: The overall loss for one frame is the

weighted sum of the above terms,

L = (αLemd + Lhuber) + β(eCD(Pr, Pgt)

+ eCD(Pf , Pgt)) + γ(LLap).
(6)

During training, we feed three frames to the network
sequentially to train the temporal modules in our framework.
Therefore, we also make modifications to the losses accord-
ingly. The main changes are made to the CD loss. Apart
from the CD loss between current outputs and the ground-
truth point cloud, we calculate the CD loss of subsequent
frames to guide the training of temporal modules.

IV. EXPERIMENTS

A. Training Details

In the training process, we retain 2048 as the size of the
input point cloud for different frames, which is the same as
the setting in PCN[4]. We use two GRU layers to memorize
information in the temporal unit of the alignment network.
In the stage-2 network, we select 256 as the number of
controlling points, which is suggested in [32].

We train our network from the scratch on the ShapeNet
dataset, and apply the best model to experiments on all
datasets. We first train the alignment network with batch
size 32 for 20 epochs(1.5 hours per epoch), and then fix the
parameters to train the refinement network separately with
batch 20 on a single frame(2.5 hours per epoch). To refine the
temporal module, we input three frames to train the whole
pipeline after the training work on a single frame is done
for another 12 epochs(3 hours per epoch). All the training is
finished using the ADAM optimizer and on one GTX 1080
Ti GPU. In the following sections, all tables without specific
explanation are presented with per-point Chamfer Distance
×10−4.

B. Datasets

1) ShapeNet: Following pervious works, we project the
CAD models in the ShapeNet dataset to 2D space for partial

Fig. 3. The single frame completion of the PCN test split. The input point
clouds are augmented with random rotation and translation.

depth images from different angles, and randomly select
2048 points from the dense depth images as the input. The
ground truth data are extracted by uniformly sampling 2048
points on surfaces of the CAD models. There are eight kinds
of objects in the ShapeNet dataset, airplanes, cabinets, cars,
chairs, lamps, sofas, tables and vessels, and we do not tell the
network explicitly what kind of object each input represents.
The train, val and test split are the same for PCN[4].

To generate the pose disturbance that exists in real-
world datasets, we first apply random augmentation to each
input point cloud. We rotate the input point cloud in three
dimensions, with each rotation angle from -20 to 20, and give
the input data a translation from -0.1 to 0.1. We generate
16 depth maps for each CAD model and treat them as a
sequence of data collected from the same object. In the
training phase, we randomly select three frames from the
sequence, apply augmentation to each frame separately, and
feed them to the network. In the testing procedure, we
operate each test 10 times and get an average result to
minimize the bias carried by random augmentation.

We take the CD as the evaluation metric, which is the
same as the metric for SA-Net[37] and GCC[32], and we
select three benchmarks, the most popular coarse completion
method PCN[4] and TopNet[36], and the recent coarse
completion method GCC[32]. Note that there are many
outstanding completion methods that are also open-source,
such as GR-Net[3] and VRE-Net[24]. However, these focus
more on the refinement from 2048 points to 16384-point
dense generation, and is not suitable for our task, which stops
at the coarse stage. We train the network in our generated



TABLE II
TEMPORAL COMPLETION ON AUG. SHAPENET(CD ×10−4).

First Frame Second Third Forth Fifth Sixth Seventh Eignth Ninth Tenth

6.64 5.65 5.47 5.37 5.32 5.30 5.28 5.27 5.27 5.26

dataset with rotation and translation, and use the groundtruth
data as the guiding signal. In the comparison stage, we test
the four models in both our transformed ShapeNet dataset
and the original dataset of PCN.

From Table I, it is clear that our methods perform much
better in the face of unaligned data. From the qualitative
experiments shown in Figure 3, we can see that our model
performs much better, especially when the rotation and
translation are serious. Considering that the GCC[32] stage-
2 network is sensitive to the input data, we also provide the
output of its stage-1 network as a reference.

We also show how our temporal module works both
quantitatively in Table II, and qualitatively in Figure 4 and 1.
We can see that the result converges quickly to a satisfactory
shape within the first three frames, which indicates that our
network can learn complete objects from a small amount
of data and make continuous improvement with follow-up
information. In the qualitative results, we find that while
keeping a consistent shape, the results become better in
detailed regions with more input data.

Fig. 4. The temporal completion result in ShapeNet. Red: Input point
clouds. Black: GT point clouds. Green: Reference single-frame completion
results by TopNet and GCC. Blue: Our temporal completion results. The
completion results are arranged from left to right in chronological order.

We also evaluate the inference time of the network.
For inputs of different batch sizes, the inference time for
processing each object is from 43.5 ms(batch size = 1) to
15.3 ms(batch size = 32). We recommend to use batch size
= 4 or 8, which can process the data of multiple tracklets at
the same time, and ensure that the processing frequency is
about 10Hz per batch(20 ms per object).

2) KITTI: The KITTI dataset[13] is one of the most
popular self-driving datasets, with real-world scenes col-
lected by lidar sensors. However, there are no grounth
truth data for cars or pedestrains in KITTI. In point cloud
completion tasks, researchers usually evaluate three key fac-
tors in KITTI[4]fidelity, minimal matching distance(MMD)
and consistency. The fidelity measures the average distance
between input point clouds and the output, while MMD
measures the minimal matching distance between the output
result and the ground truth models in the training dataset(the
ShapeNet training split). Recalling that we train on the eight

Fig. 5. The temporal completion of image sequences collected from KITTI
test split. Poses are provided by the AB3DMOT benchmark. GCC: GCC
model with a single input frame. GCC*: GCC model with input point clouds
randomly accumulated.

categories in the ShapeNet dataset with random pose dis-
turbance, these two indexes, which are designed for aligned
input data, are meaningless. We, therefore, only measure the
consistency between the output data.

We first utilize the AB3DMOT[39] tracking model to crop
out vehicles and provide an initial 6D pose of the objects.
After that, we input the sequence of data into our model and
test the consistency between output frames by calculating
the CD between two frames. For comparison, we directly
accumulate sequential points of each object with provided
poses and do random sampling to ensure the size of the input
point cloud. We then feed the accumulated point clouds into
benchmark models for comparison. We treat five frames as a
group and evaluate the consistency between the subsequent
frames, obtaining four indexes within a group. In Table III,
we show that, except the first and second frame, our method
keeps the best consistency and shows an explicit downward
trend, which indicates convergence. We also show that,

TABLE III
CONSISTENCY IN KITTI TEST SPLIT(CD ×10−4).

Methods 1-2 2-3 3-4 4-5

PCN 4.85 5.59 4.30 3.65
TopNet 5.09 5.72 4.44 3.74
GCC 5.57 6.17 4.82 4.08
Ours 5.47 4.01 3.35 2.83

qualitatively, our method obtains a better result in the long
run. As is illustrated in Figure 5, the point clouds provided
by our model are sampled uniformly and smoothly, and keep
more details of the input shape. Due to the disturbance of
input information, the long-term model generated by GCC
always tends to a square van, while our model can better
recover different shapes. We also provide the results obtained
with unfused input clouds and denote the different methods
as GCC and GCC*.

V. ABLATION STUDY

Apart from the completion task, we perform extended
experiments to test the functions of different parts of our
network. We also test the quality of the aligned point
clouds in the alignment module and how they perform as
a registration task.



TABLE IV
RESULTS WITH AND WITHOUT REFINEMENT LAYERS. UPPER: AUG. SHAPENET. LOWER: PCN TEST(CD ×10−4).

Methods Average Cabinet Car Chair Lamp Couch Table Watercraft Plane

W/ Refinement 6.64 7.24 2.61 8.14 5.63 7.11 8.18 7.27 6.90
W/O Refinement 7.49 8.42 3.01 8.70 5.89 8.21 10.07 7.86 7.83

W/ Refinement 6.48 6.04 3.11 9.77 5.88 6.36 7.09 7.92 5.66
W/O Refinement 7.31 7.16 3.51 10.16 5.96 7.47 9.07 8.46 6.70

A. Efficiency of Refinement Network

Similar to [32], we validate the efficiency of our stage-
2 refinement network. We first test the per-frame accuracy
of our network with and without the refinement module
in our augmented ShapeNet test set and the original PCN
dataset, and the results are given in Table IV. We then
show how they perform in the temporal completion task in
ShapeNet, with the results shown in Table V. The alignment
module obviously achieves a relatively satifactory result, and
illustrates a trend of convergence. Yet the lower bound of the
alignment module still does not reach the per-frame com-
pletion accuracy of the framework incorporating refinement,
which indicates the importance of the refinement network.

TABLE V
TEMPORAL COMPLETION WITH AND WITHOUT REFINEMENT LAYERS

ON AUG. SHAPENET(CD ×10−4).

Methods First Second Third Forth Fifth

W/ Refinement 6.64 5.69 5.48 5.38 5.33
W/O Refinement 7.49 6.59 6.35 6.25 6.21

B. Efficiency of the Alignment Module

Though we only use a simple T-Net to align the input point
clouds, our alignment module seems to provide a satisfactory
result that can be used for further refinement. We also
evaluate the effect of our alignment network quantitatively
in this section.

The first experiment evaluates the distance between our
aligned point clouds and the ground-truth input. Since we
generate the augmented dataset by applying rotation and
translation on the original dataset, we can easily evaluate
the alignmenet module on both ShapeNet and PCN datasets.
Here, we use both the CD and the EMD between point clouds
for evaluation, and also provide the distance between the
ground-truth and unaligned point clouds as a reference. Since
the alignment module is executed before the temporal fusion
module, we use only a single frame for evaluation. All CDs
are multiplied by 10−4. Results are presented in Table VI.

TABLE VI
POINT ALIGNMENT ACCURACY IN BOTH DATASETS.

Data Type PCN CD PCN EMD ShapeNet CD ShapeNet EMD

Aligned 6.32 8.67 4.45 7.98
Input 86.46 87.03 80.68 81.82

Another experiment is performed to feed the output of our
alignment pont cloud into the benchmark models that are
trained on the aligned ShapeNet dataset, and test the results
on the PCN test split. We show in Table VII that though our

aligned point clouds can not achieve the same performance
as the pre-aligned input point clouds, it outperforms the
unaligned input greatly and gives a satisfactory result.

TABLE VII
COMPLETION ON ALIGNED POINTS IN AUG. PCN TEST(CD ×10−4).

Data Type PCN[4] TopNet[4] GCC

W/O Aug. 10.59 9.49 6.02
W. Aug. 12.59 12.49 7.08

W. Aug. and Orig. Model 39.79 40.37 33.42

C. Effect of Input Number

In our experiments, we train on 2048 points in the aug-
mented ShapeNet dataset and test on the ShapeNet, PCN
and KITTI datasets with different numbers of input point
clouds. Though qualitatively we have seen that with at least
20 points in KITTI we can still obtain a good shape, we
want to know, quantitatively, how the number of input point
clouds will affect the results of our model. Thus, we change
the number of input point clouds and test the completion
both temporally and with a single frame in ShapeNet and
the PCN test dataset.

Our results are listed in Table VIII. We first test the single
frame completion result in the augmented PCN test split.
We randomly sample N points from the original point cloud,
and then stochastically select another 2048 - N points from
the N points to lift the input size to 2048. It can be seen
that the results do not change significantly with up to 512
points. Even if we decrease the number again to 256, we can
still get a satifactory accuracy. Further, we test the temporal
accuracy on augmented ShapeNet with five frames. It can
be seen that especially with a lack of input information,
multi-frame fusion can effectively improve the integrity and
accuracy of the final completion. This proves the rationality
of our method.

TABLE VIII
COMPARISON OF INPUT NUMBER(CD ×10−4).

Input Number Aug. PCN[4] 1 2 3 4 5

2048 6.48 6.64 5.65 5.47 5.37 5.32
1024 6.60 6.91 5.89 5.62 5.49 5.44
512 6.87 7.47 5.24 5.93 5.79 5.71
256 7.65 8.75 7.24 6.77 6.59 6.50

VI. CONCLUSION

In this paper, we propose a point cloud completion method
that tolerates pose disturbance of limited rotation and trans-
lation and employs temporal information for better shape
recovery. The noise-tolerance ability of our pipeline enables
it to be used in real-world cases where input point clouds
may be cropped out by popular detection models that are



not as precise as they are in the CAD datasets. Also, by
utilizing the temporal information of subsequent frames, our
method can output satisfactory results after a short period
of initialization using sparse data, and remain consistent
between frames while improving the completion quality.
Such characteristics make it possible for our model to be
integrated into other real-world tasks, such as tracking, visual
odometry and scene reconstruction, and to operate in an on-
line manner. Experiments on the synthetic ShapeNet and
real-world KITTI dataset show the robustness and scalability
of our method and its practical value.
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