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Hierarchical Point Cloud Encoding and Decoding
with Lightweight Self-Attention based Model

En Yen Puang1, Hao Zhang2, Hongyuan Zhu1 Member, IEEE, and Wei Jing1,3

Abstract—In this paper we present SA-CNN, a hierarchical
and lightweight self-attention based encoding and decoding
architecture for representation learning of point cloud data. The
proposed SA-CNN introduces convolution and transposed con-
volution stacks to capture and generate contextual information
among unordered 3D points. Following conventional hierarchical
pipeline, the encoding process extracts feature in local-to-global
manner, while the decoding process generates feature and point
cloud in coarse-to-fine, multi-resolution stages. We demonstrate
that SA-CNN is capable of a wide range of applications, namely
classification, part segmentation, reconstruction, shape retrieval,
and unsupervised classification. While achieving the state-of-the-
art or comparable performance in the benchmarks, SA-CNN
maintains its model complexity several order of magnitude lower
than the others. In term of qualitative results, we visualize the
multi-stage point cloud reconstructions and latent walks on rigid
objects as well as deformable non-rigid human and robot models.

Index Terms—Visual Learning, Deep Learning for Visual
Perception, Recognition

I. INTRODUCTION

W ITH recent advancement on 3D sensory devices and
the surging needs on 3D perception in applications

such as the robotics and autonomous vehicles [1], understand-
ing point cloud data from 3D sensors becomes increasingly
important. Unlike 2D pixel-based images, 3D point cloud data
is unordered and unstructured. Moreover, point clouds are
usually in large scale and thus effective representation learning
is often desirable for many downstream tasks [2].

Many deep learning based approaches [3] have been applied
to 3D point cloud perception. Early work rely on handcrafted
3D features which require intensive feature engineering and
are difficult to generalize. Then methods like [4], [5] convert
3D point cloud into voxel representation and extend 2D
convolution to 3D, but bear high computational cost and low
voxel resolution. Some work [6], [7] explore multi-view pro-
jection methods that apply 2D CNN to extract the view-wise
features circumvent the heavy computational complexity, but
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Fig. 1. SA-CNN is a lightweight self-attention based architecture capable for
point cloud analysis tasks such as classification, segmentation and reconstruc-
tion by auto-encoding.

usually requires heuristics in choosing informative viewpoints.
Later, [8], [9] propose an efficient and effective end-to-end
architecture that directly learns the representations from the
unstructured point cloud data.

In term of dimensionality reduction, auto-encoder or
encoder-decoder architecture has been widely adopted in
compressing and/or distilling input into lower dimensional
representation in multiple domains. In the context of point
cloud, earlier methods [8], [10], [2] use mostly MLP in
feature extraction and generation. Hierarchical pipeline was
later introduced [9], [11], [12] to encode/extract feature in
local-to-global manner, and to decode/generate point cloud in
coarse-to-fine, multi-resolution stages.

To this end, we propose to apply a lightweight hierarchical
self-attention mechanism [13], [9] to handle the unstructured,
interrelated contextual information of point cloud data. Self-
attention models have been widely adopted in natural language
processing, vision and point cloud [14], [15] due to their
efficiency in handling dependencies in sequential/unordered
data. Leveraging on the efficiency and simplicity of the self-
attention mechanism, we propose a lightweight point cloud
convolution and transposed convolution operator for hierar-
chical feature extraction and generation on point cloud data.
We demonstrate that our models are capable for a wide range
of applications and achieve the state-of-the-art or comparable
performance while keeping the model complexity low. Hence,
the main contributions of this work are summarized as follows:
• we propose a hierarchical network architecture named

SA-CNN for point cloud encoding and decoding using
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an lightweight self-attention based model;
• we demonstrate the applications of SA-CNN in classifi-

cation, part segmentation, reconstruction, shape retrieval
and unsupervised classification;

• we show that SA-CNN achieves the state-of-the-art or
comparable performances in multiple benchmarks while
keeping the model complexity orders of magnitude lower.

II. RELATED WORK

A. Point-based Methods for Point Cloud Analysis

Point-based methods became popular due to its efficiency,
flexibility and scalability. Different network architectures e.g.,
Multi-Layer Perceptron (MLP), point convolution, graph-
based, and attention-based network could be used to deal
with the point-wise feature extraction. [8], [9] propose Point-
Net(++) as pioneer work for point-based methods on 3D
point cloud data, which directly learn feature representation
from the point cloud data. Convolution-based methods have
also been applied to point cloud data [16], [17] by directly
performing convolution-like operation on 3D points. More
recently, graph-based neural networks [18], [19] and attention-
based methods [20], [21], [22] also demonstrate good perfor-
mance for point cloud feature learning. However, these related
works only learn features in encoding manner. Our work is
a point-based method that uses self-attention mechanism to
build hierarchical encoding and decoding models for efficient
representation learning of point cloud.

B. Self-Attention Mechanism

Self-attention mechanism has become an integral part of
various neural network-based models for handling the se-
quence inputs, allowing modeling of dependencies without
regard to their distance in the sequences. Specifically, the
Transformers [13] have revolutionized natural language pro-
cessing tasks due to their tremendous ability on representation
learning. Recently, there are several work [14], [15] adopt
the attention mechanism to address the 3D point cloud prob-
lems. [23], [24], [25] proposed additional mechanism together
with self-attention to improve point sampling and feature
aggregation. These self-attention based methods have achieved
promising performance on various point cloud tasks, but their
models are still less efficient with a large amount of parameters
and high complexity. Our methods adopt the same self-
attention mechanism in the design of a lightweight architecture
to achieve the state-of-the-art or comparable performance with
orders of magnitude lesser model parameter and computational
complexity.

C. Point Cloud Auto-Encoding

Point cloud generation are generally divided into 2 cato-
gories: Generative Adversarial Network (GAN) based and
non-GAN based methods. GAN-based generative model [2],
[26], [12], [27] sample point cloud based on the data distri-
bution learned during training. These methods often output
realistic point cloud with great details, but generally require
more complex training procedures.

Non-GAN based methods are mostly in encoder-decoder,
unsupervised architecture [28]. To improve reconstruction per-
formance, [29] requires the point cloud to be a 1D ordered
list structure. [11], [10] parameterize the decoder with 2D
grid patches as part of the latent representation, while [27]
parameterizes point cloud with spectral frequencies. Our auto-
encoder is a non-GAN, self-supervised based architecture that
reconstructs input point cloud based only on a latent vector
and without any other parameterization.

III. PRELIMINARY

A. Self-Attention Layer
The self-attention layer A(·) we adopt is a scaled dot-

product attention mechanism [13] A : Q,K, V → RN×d′

which takes as input Query Q ∈ RN×d, Key K ∈ RN ′×d and
Value V ∈ RN ′×d′

, and aggregates information from V for
each token in Q based on the alignment with K:

A(Q,K, V ) = σ

(
QKᵀ

√
d

)
V (1)

where σ is a softmax operator. Multi-head attention simply
concatenates the output of multiple self-attention layer. The
output is of RN×hd′

where h is the number of head.
Point cloud data is here defined as an unordered set of N

points P =
{
pi

}N
i=1

∣∣p ∈ R3 in 3D Euclidean space without
additional features. When applied on point cloud processing,
self-attention layer acts analogously to a convolution kernel.
Query points are analogous to the kernel’s center. Whereas the
neighbouring points, in which the Key and Value are derived
from, are analogous to the rest of the kernel inputs. Multi-
head attention is then analogous to a convolution filter. Self-
attention model is well suited in handling point cloud [14],
[15], [30], [31] because:
• Self-attention is invariant to input permutation and hence

able to handle input point cloud data in the form of
unordered set.

• Instead of one-to-many relationship rendered by convo-
lution kernel, self-attention improves points interactions
by having many-to-many relationship in the input set in
an efficient manner.

• With adequate normalization in the input set, self-
attention is robust under rigid transformation such as
translation and rotation.

B. Processing Pipeline
Unlike CNN’s grid structure, point cloud requires several

pre-processing layers in a hierarchical pipeline [9]:
• Sampling. Given a set of points, a subset is selected and

formed into an unstructured probing grid.
• Grouping. Given a set of points and its probing grid,

the nearest neighbours are gathered into local neighbour-
hoods for each probing points.

• Normalizing. Given a set of local neighbourhoods, points
are normalized by subtracting its probing point and
scaling by a constant.

• Interpolating. Given neighbourhoods from 2 adjacent
levels, features are propagated from the smaller neigh-
bourhood with distance based interpolation.
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Fig. 2. The design of SAConv and SAConvT stacks. The former aggregates
features from a set, while the latter expands a feature into a set.

IV. MODEL ARCHITECTURE

The proposed SA-CNN consists of 2 basic operators for
processing data in the form of unordered set. We will first
discuss these operators, then we describe how to build with
these operators for different applications.

A. SA-CNN Modules

SAConv is a set convolution stack that aggregates features
SAConv : Rn×dl → Rdl+1 from an unordered set of size n
and outputs a single feature vector. For a self-attention layer
to work analogous to a convolution kernel on point cloud,
Sampling-Grouping-Normalizing (SGN) pre-processing layer
is deployed to form the input X ∈ R(k+1)×d where d is the
feature dimension and k is the number of nearest neighbour
of a probing point. Query, Key and Value in Eq 1 are from

Q = XWq (2a)
K = XWk (2b)
V = XWv (2c)

the linear layers where Wq,k ∈ Rd×dq and Wv ∈ Rd×d′
are

the weights. The output of the multi-head attention then goes
through a sequence of common layers as depicted in Fig. 2
(left). A pooling layer is placed at the end as the symmetric
function that aggregates the final features in the set.

SAConvT is a transposed convolution stack proposed to
generate an unordered set SAConvT : Rdl → Rn×dl+1 based
on a single input feature vector X . It consists of a random
sampling layer that draw N ∈ Rn×d′

samples from unit
Gaussian distribution and

X ′ = MLP
(

concatd
(
X , XWr ∗ N

))
(3)

where Wr ∈ Rd×d′
is the weight of the linear layer before

the broadcasted element-wise multiplication ∗ with N , and
concatd is concatenation along feature dimension. Multi-head
attention takes it as input A(X ′) and then followed by a
sequence of common layers as depicted in Fig 2 (right).

Positional Encoding were proposed [13] to provide sequen-
tial information for each tokens. Although unordered, points in
point cloud are well represented in euclidean space. Therefore,

SGN

SAConv

SAConv

SGN

GN

SAConv

MLP

softmax

SGN

SAConv

SAConv

SGN

SGN

SAConv

SAConv

ISGN

ISGN

SAConv

SAConv

ISGN

softmax

MLP

SAConvconcat

SAConvconcat

......

...

Classification Segmentation

Fig. 3. The architectures of classification and segmentation networks. Both
networks use SAConv paired with pre-processing layers [9] (I/SG/N) in each
hierarchical levels.

we use the 3D xyz coordinate of point as its positional
encoding. Combining Normalizing pre-processing layer, the
positional encoding is its normalized coordinate with respect
to the probing point of the neighbourhood. In the hierarchical
pipeline, dl = 3 + dl−1 given d0 = 0 indicates the input
dimension of level l. Concretely, in each hierarchical levels
the input to SAConv is the concatenation of the normalized
3D coordinate and the features computed from the previous
level given the input dimension is 3.

B. Applications of SA-CNN

1) Classification and Part Segmentation: We apply SA-
CNN modules as a drop-in replacement to solve the point
cloud classification and part segmentation tasks using the
hierarchical feature extraction pipeline [9] as depicted in Fig
3. Classification network is composed of several levels, each
consists of a SGN-SAConv pair. Each level abstracts a subset
of probing points, while the last level groups (GN, without
sampling) all the remaining for the final classification output.
The part segmentation network adopts U-Net [32] structure
with skip connections. ISGN combines interpolating layer
with SGN and is used to propagate features to the next level.

2) Auto-encoding: We apply SA-CNN modules to solve
the point cloud reconstruction task with a hierarchical auto-
encoder architecture depicted in Fig 4. Similar to the pipeline
of the classification task, the encoder f : P 7→ z takes in as
input a set of points P ∈ RN×3 and processes it with several
SGN-SAConv pairs. A MLP then turns the features into a
latent representation vector z ∈ RL where L� N .

The hierarchical decoder g : z 7→
{
P̄l

}H
l=1

takes as input
the latent vector, and expands it through H levels of SG-
SAConvT pairs. Each hierarchical level expands every points
in the level and produces a set of output points P̄ given
|P̄a| < |P̄b| if a < b and |P̄H | = N .
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Fig. 4. The architecture of auto-encoder network uses SAConvT for expanding
latent representation z into points. Each level in the decoder outputs a
set/subset of points and contributes to the final chamfer distance.

The multi-head attention in the SAConvT stack of the
decoder takes as input a point feature Xl as well as the feature
of its nearest neighbours in the previous level P̄l−1. After Eq
3 the Query, Key and Value:

Q = X ′lWq (4a)

K = concatn
(
X ′lWk, Xl−1Wk′

)
(4b)

V = concatn
(
X ′lWv, Xl−1Wv′

)
(4c)

where Wq,k,v,k′,v′ are the weights of the linear layers, and
concatn is concatenation along token dimension. A MLP then
turns the features of the level into points in euclidean space by
scaling and translating it to the input point’s coordinate frame.
Fig 5 depicts the decoding process.

The objective of the auto-encoder is to reconstruct the input
point cloud by minimizing chamfer distance [2]

chamfer(P1,P2) =
1

|P1|
∑
p∈P1

min
q∈P2

‖p− q‖22+

1

|P2|
∑
q∈P2

min
p∈P1

‖p− q‖22
(5)

between the input points P and the output point P̄l

Lrcs =

H∑
l=1

αl chamfer(P, P̄l) (6)

in each levels where αl ∝ |P̄l| and αH = 1. Hence, the
reconstruction loss Lrcs is the weighted summation of the
chamfer distances from all levels. This improves gradient
propagation during the training of the auto-encoder.

3) Data Retrieval: For the data retrieval task, [33] proposed
to use the outputs of the penultimate fully-connected layer in
the classification network as low dimensional representation
of the input point cloud. In contrast, latent representation of
point cloud trained with an auto-encoder can be used for
the data retrieval task. Given an object point cloud, its latent
representation should be closer to those from the same class
in term of cosine distance. We proposed to use this latent
representation for the point cloud shape retrieval task. To

Sampling - Grouping

S
A
C
on
vT

M
LP

transform

Fig. 5. Points decoding process by SAConvT not only involves ni random
samples but also k neighbours in the preceding level. This added extra key
and value to the self-attention layer in SAConvT stack.

utilize labeled data, we include a triplet loss Ltri to better
model the latent space during training:

Ltri = max
(

COS(z, zn)− COS(z, zp) + α, 0
)

(7)

where COS(·) is the cosine similarity score ranging from 0 to
1, zp and zn are positive and negative inputs from the same
and different class respectively.

C. Implementation Details

There are 4 hierarchical levels in the classification network.
The pooling function used in SAConv stacks are [Max, Max,
Max, Avg]. For segmentation network, there are 4 × 2 levels
in the U-Net structure. Max Pooling is only used for the first
3 levels and Average Pooling for the rest. Category one-hot
vector is concatenated to the feature before the last level. For
auto-encoding network, there are 3 × 2 levels in the U-Net
structure. For simplicity, dq = dk = dv sizes for Query, Key
and Value are the same in a self-attention layer.

We use Farthest Point Sampling (FPS) and K-Nearest
Neighbour (KNN) in Sampling and Grouping layers respec-
tively. In Normalizing layer we subtract probing point’s coordi-
nates from the neighbourhood and multiply different constants
in each levels. In Interpolating layer we use exp(−βd) where
β = 16 for weighted average of features based on point’s
relative distance d. MLP consists of multiple set of [Dropout,
Linear, BatchNorm, GELU] sequence.

V. EXPERIMENT

In this section, we evaluate the proposed SA-CNN models
in a series of comprehensive experiments. Concretely, we first
evaluate our model in classification and part segmentation
benchmarks. Then, demonstrate the ability in shape retrieval
and performance in unsupervised classification of our auto-
encoder. Lastly, we visualize the results of point cloud re-
construction and illustrate the continuity of the latent space
through latent walk in multiple object domains.

A. Shape Classification

We evaluate SA-CNN on 3D point cloud classification task
using ModelNet40 [34] which consists of 9843 training models
and 2468 test models in 40 classes. We uniformly sample
1024 points, zero the bounding box’s center and normalize
to unit sphere. During training we augment data with per-
point Gaussian noise with std 0.001, random rotation between
[-25, 25] degree in the vertical axis and [-5, 5] for the other 2
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TABLE I
MODELNET40 CLASSIFICATION BENCHMARK. INPUT CONSISTS OF

NUMBER OF POINTS, ’P’(POINT) AND/OR ’N’(NORMAL).

Methods Input #param(M) Accuracy(%)

PointNet [8] 1k p 3.5 89.2
PointNet++ [9] 1k p 1.5 90.7
PointNet++ [9] 5k p,n 1.5 91.9
Kd-Net [35] 32k p 2.0 91.8
PointCNN [16] 1k p 0.3 92.5
DGCNN [18] 1k p 1.8 92.9
PCNN [36] 1k p 1.4 92.3
DensePoint[33] 1k p 0.7 93.2
RS-CNN[37] 1k p 1.4 93.6
KPConv [17] 7k p 14.3 92.9
Pnt Tfmer [24] 1k p,n 13.50 92.8
Pnt Tfmer [20] 1k p 9.6 93.7
PCT [21] 1k p 2.9 93.2
PointASNL [25] 1k p - 92.9
AttPNet [22] 1k p - 93.6
PAT [23] 1k p - 91.7

SA-CNN (Ours) 1k p 0.04 92.3

TABLE II
COMPUTATIONAL COMPLEXITY FOR MODELNET40 CLASSIFICATION. ALL

METHODS TAKE AS INPUT 1024 POINTS ON A GEFORCE RTX 3090.

Methods FLOPs Params Training
/sample size(Mb) size(Mb)

PointNet [8] 878M 14 60
PointNet++ [9] 1.69G 6 138
DGCNN [18] 4.78G 7 185
KPConv [17] 200M - -

PointCNN [16] 210M 1 22
Pnt Tfmer [24] 92G 88 5736
Pnt Tfmer [20] 3.6G 38 6334

PCT [21] 70G 12 2400
DensePoint [33] 651M - -
RS-CNN [37] 295M - -

SA-CNN (ours) 8M 0.2 2

axes, scaling between [0.6667, 1.5] and translation between
[-0.2, 0.2] in all 3 axes. During testing, we adopt voting
strategy where 10 tests are performed with the same data
augmentations except rotations and noise.

Table I shows the comparison of classification results in
term of overall accuracy and the number of parameters on
ModelNet40. Statistic in term of floating point operations
(FLOPs) per sample and memory for parameter and train-
ing required on GPU are depicted in Table II. SA-CNN
classifier has 4/5/6/7 as number of head and attention size,
8/7/6/16 as the neighbourhood size, with sampling ratio
0.3N/0.075N/0.015N , feature size 16/32/64/96 in the 4 lev-
els, and a p = 0.6 dropout before the output layers.

Due to the simple and efficient hierarchical architecture
SA-CNN achieves the lowest number of parameter, FLOPs
and memory by several order of magnitude, while having
comparable accuracy to the other self-attention and non-
attention methods. This advantage makes SA-CNN suitable for
low computation/memory point cloud applications. Although

Fig. 6. Hierarchical point cloud decoding on ShapeNet with 2048 points.
Left column is the ground truth and right columns are the reconstructions.

Fig. 7. Hierarchical point cloud decoding on robots and human. Left column
is the ground truth and right columns are the reconstructions.

generic, the accuracy gap (1.4%) to the state-of-the-art sug-
gests that SA-CNN could work with additional mechanism
[25], [24], [23] to boost classification performance.

B. Part Segmentation

We evaluate SA-CNN on fine-grained object recognition
using ShapeNet part [39] benchmark in point cloud parts
segmentation task which consists of 12137 models for training
and 2874 for testing. Models are classified into 16 categories,
and each category contains between 2 to 6 parts. For each
model we zero the bounding box’s center and normalize
to a unit sphere. During training we augment data with
random rotation between [-10, 10] degree, scaling between
[0.8, 1.25] and translating between [-0.1, 0.1] in all 3 axes.
The performance metric used for this task is intersection-
over-union (IoU). There are 3 IoUs reported: IoU for each
categories, mean IoU (mIoU) over all categories, and mIoU
over all instances.
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TABLE III
PART SEGMENTATION RESULTS (IOU %) ON SHAPENET PART BENCHMARK. INPUTS ARE EITHER 3D POINTS, OR POINTS WITH NORMAL (N).

method input cat. int. air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate tablemIoU mIoU plane phone bike board
SCN[38] 1k 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
Kd-Net[35] 4k 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet[8] 2k 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++[9] 2k,n 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PCNN[36] 2k 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
DGCNN[18] 2k 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
RS-CNN[37] 2k 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
DensePnt[33] 2k 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
Point Tfmer[20] - 83.7 86.6 - - - - - - - - - - - - - - - -
AttPNet [22] 2k 82.8 85.2 - - - - - - - - - - - - - - - -
GAPNet [14] 2k 82.0 84.7 84.2 84.1 88.8 78.1 90.7 70.1 91.0 87.3 83.1 96.2 65.9 95.0 81.7 60.7 74.9 80.8
LAE-Conv [15] 2k 84.1 85.9 83.3 86.1 85.7 80.3 90.5 82.7 91.5 88.1 85.5 95.9 77.9 95.1 84.0 64.3 77.6 82.8

SA-CNN (Ours) 2k 84.0 86.7 85.1 85.3 85.4 78.6 91.7 79.4 91.4 87.6 86.8 95.5 72.2 94.6 81.3 62.3 81.5 84.8

Fig. 8. Latent walk in robots and human models.

Quantitative comparison among the other methods are
summarised in Table III. SA-CNN achieves state-of-the-art
on instance mIoU and several category IoUs. These results
demonstrate SA-CNN’s capability and robustness in recognis-
ing a diverse range of fine-grained shapes. Fig 10 depicts some
examples of the ShapeNet segmentation results.

C. Reconstruction with Auto-Encoder

In this section, we demonstrate the performance of SA-CNN
in auto-encoding. We train the auto-encoder using models
from two different domains. For rigid object reconstruction,
we use models from ModelNet40 [34] and ShapeNetCore
[40] with 40 and 55 classes respectively. For non-rigid object
reconstruction, we use SMPL [41] human, allegro hand and
aliengo quadruped robot model. All non-rigid dataset consists
of 4096 synthetically generated training models of different
poses. We uniformly sample 2048 points as input as well
as output for the training of auto-encoder, and visualize the
hierarchical decoding and reconstructions with latent size of
128 in Fig 6 and Fig 7.

Fig. 9. Latent walk among ShapeNetCore objects.

TABLE IV
THE SHAPE RETRIEVAL RESULTS ON THE MODELNET40.

Methods Latent Size mAP (%)

PointNet[8] - 70.5
PointCNN[16] - 83.8
DGCNN[18] - 85.3
DensePnt[33] 256 88.5

AE 32 84.0
AE 64 85.4
AE 128 86.7
AE 256 87.1

AE + Triplet 32 88.9
AE + Triplet 64 89.2
AE + Triplet 128 90.1
AE + Triplet 256 89.7

Next, we evaluate SA-CNN qualitatively on auto-encoding
by visualizing the latent walks of both rigid and non-rigid
objects. Linear interpolations of latent code between 2 models
are fed to the decoder to get the output reconstructions. Fig 8
and Fig 9 depict some examples of latent walks.
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Fig. 10. Examples of ShapeNet part segmentation which contains 16
categories, each having 2 to 6 parts. Top row is segmentation predictions
by SA-CNN model, and the bottom row is the corresponding ground truths.

Fig. 11. Examples of ModelNet Shape retrieval task. Given a query model
(left) from the test set, top nearest neighbours (right) from the training set are
retrieved. Neighbours from the wrong class are highlighted in red.

D. Shape Retrieval

We evaluate the performance of SA-CNN auto-encoding
with shape retrieval task. We train the auto-encoder using
ModelNet40. For this task, given a query shape in test set, we
first extract its latent vector using the encoder. Then we search
for the top 10 nearest latent vectors seen during training by
cosine distance. We report the mean average precision (mAP)
based on the retrieved nearest neighbours.

Table IV summarizes the shape retrieval performance
trained with various latent sizes. With pure unsupervised
training, our auto-encoder is able to match with methods that
train with classification model. With just 32 latent size our
method that train with reconstruction and triplet loss surpasses
all other methods. Fig 11 depicts some examples of queries
and the corresponding nearest neighbours. It is observed that
some instances from classes such as cup and pot, and chair and
stool, are highly similar, which leads to lower performance in
classification by retrieval.

E. Unsupervised Classification

In this section, we evaluate the quality of SA-CNN repre-
sentation learning by comparing classification accuracy using
only the latent code as the input feature of a linear Support
Vector Machine (SVM). We pre-train the auto-encoder using
ShapeNetCore, and then fit and test the SVM using the latent

TABLE V
UNSUPERVISED CLASSIFICATION ON MODELNET40 USING LATENT

REPRESENTATION PRE-TRAINED ON SHAPENETCORE.

Methods Latent Size Accuracy (%)

VConv-DAE [42] 6912 75.5
3D-GAN [43] 448 83.3

MRTNet-VAE [29] 224 86.4
AE-CD [2] 512 84.5

FoldingNet [11] 512 88.4

SA-CNN (Ours) 128 87.1
SA-CNN (Ours) 256 88.6

TABLE VI
SA-CNN’S PART SEGMENTATION AND AUTO-ENCODING MODEL

COMPLEXITY IN NUMBER OF PARAMETER AND FLOPS PER SAMPLE.

Network Setting #param #FLOPs

Part Segmentation 1k points 227k 1.2G
2k points 227k 2.4G

Encoder/Decoder

32 latent 22k/35k 15M/20M
64 latent 58k/77k 38M/80M

128 latent 160k/190k 100M/180M
128 latent 160k/190k 116M/271M2k points

code of ModelNet40 train/test split. Table V depicts the latent
size and results of the task. Our auto-encoder achieves the
state-of-the-art with only 256 latent size show that SA-CNN
is capable of compact and efficient unsupervised representation
learning for point cloud data.

F. Model Complexity

Model complexity is an important aspect while using self-
attention mechanism. In addition to Table II, we further
summaries model complexity in term of number of parameters
and FLOPs per sample of SA-CNN’s part segmentation and
auto-encoding models in Table VI.

SA-CNN part segmentation network has 4/5/6/7/8/8/7/6
number of head and attention size, 0.4N, 0.12N, 0.024N
sampling ratio, 14/12/10/8 neighbourhood size,
16/32/64/96/128/128/96/64 feature dimension in the levels,
and uses Max pooling for the first 3 and Avg pooling for the
rest of the SAConv. Auto-encoding networks have similar
settings but increase proportionally to the latent size.

VI. CONCLUSION

In this work, we present SA-CNN, a lightweight self-
attention based encoding and decoding architecture for 3D
point cloud representation learning. The proposed SA-CNN
is a drop-in replacement for multiple hierarchical point cloud
analysis tasks. We demonstrate that SA-CNN achieves the
state-of-the-art or comparable performance to other methods
on multiple benchmarks with significantly lower model com-
plexity. In addition, we visualize the multi-stages point cloud
reconstruction and their latent walks on rigid objects as well
as non-rigid human and robot models.
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