
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residual Learning from Demonstration: Adapting DMPs for
Contact-rich Manipulation

Citation for published version:
Davchev, T, Luck, KS, Burke, M, Meier, F, Schaal, S & Ramamoorthy, S 2022, 'Residual Learning from
Demonstration: Adapting DMPs for Contact-rich Manipulation', IEEE Robotics and Automation Letters, vol.
7, no. 2, pp. 4488-4495. https://doi.org/10.1109/LRA.2022.3150024

Digital Object Identifier (DOI):
10.1109/LRA.2022.3150024

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Robotics and Automation Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. May. 2024

https://doi.org/10.1109/LRA.2022.3150024
https://doi.org/10.1109/LRA.2022.3150024
https://www.research.ed.ac.uk/en/publications/7b9fb104-e202-47f9-bdd4-66e66a517e7c


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

Residual Learning from Demonstration:
Adapting DMPs for Contact-rich Manipulation

Todor Davchev†•∗ Kevin Sebastian Luck� Michael Burke◦ Franziska Meier�

Stefan Schaal‡ and Subramanian Ramamoorthy†

Abstract—Manipulation skills involving contact and friction
are inherent to many robotics tasks. Using the class of motor
primitives for peg-in-hole like insertions, we study how robots
can learn such skills. Dynamic Movement Primitives (DMP) are
a popular way of extracting such policies through behaviour
cloning (BC) but can struggle in the context of insertion. Policy
adaptation strategies such as residual learning can help improve
the overall performance of policies in the context of contact-
rich manipulation. However, it is not clear how to best do this
with DMPs. As a result, we consider several possible ways for
adapting a DMP formulation and propose “residual Learning
from Demonstration“ (rLfD), a framework that combines DMPs
with Reinforcement Learning (RL) to learn a residual correction
policy. Our evaluations suggest that applying residual learning
directly in task space and operating on the full pose of the
robot can significantly improve the overall performance of DMPs.
We show that rLfD offers a gentle to the joints solution that
improves the task success and generalisation of DMPs and
enables transfer to different geometries and frictions through
few-shot task adaptation. The proposed framework is evaluated
on a set of tasks. A simulated robot and a physical robot have
to successfully insert pegs, gears and plugs into their respective
sockets. Other material and videos accompanying this paper are
provided at https://sites.google.com/view/rlfd/.

Index Terms—Learning from Demonstration; Reinforcement
Learning; Sensorimotor Learning

I. INTRODUCTION

PART insertion, e.g. plugs, USB connectors, house keys
or car refuelling nozzles, is a manipulation skill required
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Fig. 1: Left: outline of the proposed framework. We collect demon-
strations using an HTC Vive tracker, and extract an initial full pose
policy using Dynamical Movement Primitives (DMPs, running at
100Hz). The control command produced by the DMP is corrected
by an additional residual policy trained using model-free RL (run at
10Hz). The resulting motor command is then fed into a real time
impedance controller (running at 500Hz) in a Franka Panda arm that
performs peg, gear or LAN cable insertion in our physical setup.
Right: The peg (top), gear (middle) and LAN cable (bottom) insertion
tasks considered in this work.

in a variety of practical applications, ranging from the home
to manufacturing environments [1]. It remains surprisingly
difficult to find robust and general solutions for this class
of tasks without depending on specialised fixtures or other
aids. Engineers have long devised ingenious methods for part
insertion. However, these are either highly case-specific in
manufacturing or not very robust in the face of hardware
wear and tear or other environmental uncertainties. Humans
solve such tasks without difficulties using visual or tactile per-
ception, dexterous manipulation, and learning. This problem
scenario is the focus of our work.

Learning from demonstration (LfD) [2] is a popular ap-
proach for effective and rapid skill acquisition in physical
robots. Existing solutions to LfD [3], [4] have shown that
robots can gain proficiency on tasks even when we may not
have detailed models or simulations of complex environments.
However, generalising to a range of scenarios without ex-
plicitly modelling and identifying the effects of contacts and
friction remains difficult, hence inhibiting robot learning in
these contact-rich settings. Model-free RL is beneficial for
solving challenging tasks [5], [6], but requires large amounts
of data and often impractical numbers of training episodes.
Furthermore, many hours of training can result in higher levels
of equipment wear and tear and increase the risk of more
severe hardware damage due to the inherently exploratory
nature of RL.
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Roboticists have recognised the need for adaptive learning
from demonstration schemes that occupy a middle ground [1].
This paper follows this spirit by combining LfD and model-
free RL in a residual pose correction framework comprised of
two complementing policies. DMPs [7] act as a base policy
acquired by LfD. The DMP approach has always included an
additive coupling term that allows for online modulation of a
DMP policy – i.e., DMPs are naturally interpreted as a form
of residual learning. We instantiate this coupling term as a
state-based policy using variants of state-of-the-art on-policy
and off-policy RL trained in an online fashion (Figure 1, left).
This yields a learning approach that is more sample-efficient
and generalises to a range of start positions, orientations,
geometries as well as levels of friction. We study the efficacy
of this framework using peg, gear and LAN cable insertions -
both in simulation and on a physical robot (Figure 1, right).

DMPs are ubiquitous in behaviour cloning settings and a
popular technique for learning from demonstration. Although
existing work has explored directly adapting DMP or coupling
terms to improve task generalisation [8]–[10], it is still unclear
how best to do this for contact-rich insertion tasks. This
paper explores DMP correction techniques and shows that a
residual correction policy that adapts directly in task space,
outside the canonical formulation, and uses reinforcement
learning is the most effective strategy among all considered
ways for learning insertion skills. Furthermore, this framework
explicitly accounts for orientation-based policy corrections in
task space. Our results show that orientation-based correction,
which is typically not applied to existing residual learning
frameworks such as [11], is essential for reliable and robust
peg-in-hole insertion. This is partly challenging because ad-
ditive orientations can introduce catastrophic singularities and
locks, while formulating residual orientation-based corrections
in quaternion space can be challenging to learn.

Contributions The key contributions of this paper are:
C1 An extensive comparison of the adaptation of different
parts of the DMP formulation using a range of adaptation
and exploration strategies for contact-rich insertion;
C2 A framework for applying full pose residual learning on
DMPs applied directly in task space, and the demonstration
of its utility to three types of physical insertion tasks;
C3 Showing that using full-pose residual nonlinear policies
(e.g. RL-driven) to adapt DMPs results in more accurate,
gentle and more generalisable DMP solutions.

II. RELATED WORK AND CONTRIBUTIONS
Insertion skills are essential in many robot manipulation

applications. They are a crucial part of manufacturing assem-
bly, home automation, laboratory testing and even surgical
automation [1]. Existing literature on this problem can be
organised into two broad categories based on whether or not
the proposed methods split the task execution into phases
based on contact times. We provide an overview of some of
these methods and position our work in this context.

Modelling Contacts It is common practice in extant ap-
proaches to first model the time(s) of contact and then
to structure the insertion strategy in terms of two sepa-
rate sub-problems - contact-state recognition and compliant

control [1]. Compliant control generally relies on a human
engineer to characterise the underlying friction and contact
model [12]. Recent approaches demonstrate high-precision
assembly through the use of additional force information [13].
These methods require careful design of the manipulated
objects and the external environment, e.g. assuming a flat
surface surrounding the hole. These assumptions may not hold
in many practical and day-to-day settings encountered in the
real world, e.g. for RJ-45 connector insertion tasks (Figure 1,
bottom row). Also, it tends to be challenging to obtain accurate
models of nonlinear changes in contact dynamics over time,
which affects reliability. In contrast, rLfD seeks to overcome
these limitations by relying on strategies extracted from human
demonstrations, and a learned policy that adapts and optimises
the end-effector pose directly in task space.

Learning from Demonstration (LfD) Learning policies for
complex robot tasks can benefit from expert demonstrations
[14]. LfD [2] is a widely adopted approach formalising this
idea and has been applied previously in the context of peg-
in-hole insertion tasks [15], but does not account for model
imperfections. DMPs [7] have been shown to improve the
generality of demonstrations in a variety of manipulation tasks
[3], [8]–[10], [16]–[22]. However, these works do not consider
full pose online adaptation behaviours in task space.

In cases where the error signal is a linear combination
of basis functions throughout movement executions, such as
minimising force/torque feedback control error in bimanual
manipulation tasks [18], [19], DMPs can be adapted by
employing linear adaptive policies. Gams et al. [20] directly
modify the forcing term (i.e. adaption in parameter space)
of a DMP iteratively and apply it to the task of wiping a
surface. Abu-Dakka et al. [21] consider adapting DMPs using
fixed feedback models as constant gains and focus on learning
the forcing term. However, this learns a representation of a
nominal behaviour and does not address learning feedback
models that are important in complex force-based tasks like
the RJ-45 connector insertion used in this work.

Previous work has also used Reinforcement Learning of
feedback models, e.g. PoWER [9] or FDG [10], to learn or
adjust nominal behaviours within a few iterations in parameter
space of the DMP formulation. However, these approaches are
limited to linearly weighted combinations of phase-modulated
features, which are less expressive and can lead to unsatisfac-
tory performance for contact-rich manipulation tasks. Alter-
natives, such as eNAC [8] have proposed adapting DMPs in
the phase-based coupling term space instead, which is helpful
for tasks that require reactive movement such as wiping [3]
or hitting a baseball [8]. This formulation does not allow
for random local task space exploration (e.g. jiggling), which
is helpful in contact-rich manipulation tasks (see Figure 2).
Instead, we propose to adapt DMPs directly in task space
avoiding these limitations.

In cases where selecting arbitrary desired points of a tra-
jectory can be done without affecting performance - such as
in smooth surface painting or handover [4], both translational
and orientation-based behavioural cloning (BC) policies can be
adapted with an analytical approach. However, large perturba-
tions of a robot’s start configuration in the context of insertion
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often leads to dramatic differences between a demonstrated
trajectory and the desired one. This can invalidate such modes
of teaching due to the significant distance between both trajec-
tories. Instead, we propose a generalisation of such methods’
structure and describe it as a framework that allows learning
to adapt DMPs directly in task space. We show that this allows
us to rely on nonlinear model-free approaches, which can
benefit contact-rich insertions. Our results show that using this
residual learning formulation leads to a robust to perturbations
and sample efficient solution.

Residual RL Acknowledging the difficulties of running
RL on physical systems, approaches like Johannink et
al. [23] combine conventional contact model-based control
with model-free reinforcement learning but do not handle
orientation-based corrections. Instead, they focus on sliding
at low levels of friction. Schoettler et al. [11] propose using
stronger priors and combine SAC with a proportional con-
troller to solve industrial position-only insertion tasks. They
do not scale to full pose corrections and encourage the use
of higher forces via a dense reward function. This works well
in Cartesian space settings with very low perturbations but is
limiting in the context of insertion. Tuning such dense rewards
requires additional insights and potentially increases the risk
of hardware damage. Zeng et al. [24], employ adaptive policies
for learning how to throw. However, none of these works
shows how best to apply residual learning to DMPs, a broadly
applicable and flexible class of models of significant interest
in robotics. Our extensive evaluation sets out to answer this.

Summary It is clear that there has been substantial work on
DMP adaptation using residual policies. However, it remains
unclear how best to do so for contact-rich insertion tasks.
This paper explores this and finds that a framework bridging
reinforcement learning and DMP learning from demonstration
in task space (rLfD) is most effective when paired with
orientation aware corrections. This framework is evaluated
in both simulated and physical systems, running under real-
time constraints. Results show that the proposed formulation
significantly reduces the sample requirements during training
and allows for the use of a sparse reward while preserving
the overall improved accuracy achieved by model-free RL. In
practice, this is important as it limits the risk of hardware
damage and thus makes this approach feasible for real-world
applications.

III. METHODS
In this paper, we learn a base policy, πb, from expert

demonstrations, represented directly in task space. We extract
separate policies for each individual task in (Figure 1, right).
We use two separate formulations for πb - namely translational
and orientational DMPs [7], [16]. The learned behaviour is
then executed by a suitable robot controller, i.e. in position
or impedance control, to produce the final robot motion. The
translation-based base policy π̂b is described by position and
velocity terms, (x, ẋ), in 3D Cartesian space. The orientation-
based base policy, π̃b is described using the orientation in
quaternion and angular velocity, (q,ω). The resulting base
policy, πb is capable of imitating the full pose trajectory of
the demonstrated behaviour. Such a formulation can gener-
alise well to perturbations of the initialisation and timing

conditions, especially when executed in free space. However,
it cannot adapt well to previously unseen task settings and
environmental perturbations, which are typical for contact-rich
manipulation tasks. In this work, we study how to alleviate this
limitation using an additional residual policy, πθ by employing
state-of-the-art model-free RL that can act directly on the end-
effector twist.

A. Problem Formulation

We consider a finite-horizon discounted Markov decision
process (MDP), M = (S,A, P, r, γ, T ) with transition proba-
bility P : S×A×S 7→ [0, 1] and a reward function r(x, a) ∈ R.
Let x ∈ S ⊆ Rnx be an element in the state space S, and
a ∈ A ⊆ Rna denote the desired robot end-effector velocity
(action). Then, a stochastic control policy parameterised by θ,
πθ(a|x) defines the probability of selecting an action a given
a state x. Let ζ = (st0 , . . . , sT ) be a trajectory with a discrete
horizon T , a discount function γ(·) and a state-action tuple
st = (xt, at) and a trajectory return R(ζ) =

∑T
t=t0

γr(xt, at).
In this context, we can define an optimal policy as π∗ =
arg maxπ∈π̄ J(π), where J(π) = Es0∼p(s0),at∼π(s)[R(ζ)] and
π̄, the set of all policies.

We can use a policy gradient method to optimise the
objective from the sampled trajectories. By relying on a DMP
to extract a fixed and pre-computed offline continuous base
policy, πb, we significantly reduce the complexity of the task
for πθ. The residual policy has to learn how to deviate from
the base policy by correcting model inaccuracies and potential
environmental changes during execution. The final policy can
compensate for system uncertainties through an adaptive term
obtained from πθ while using a base policy, πb acquired
through human demonstrations. A core question in this context
is what part of the DMP formulation should πθ be applied to.
We propose to adapt base policies directly in task space as
described in the following subsections.

B. Translation-based Residual Corrections for DMPs

Contact-rich manipulation has inherent non-linear dynami-
cal effects between the robot and the surrounding environment.
In most insertion tasks, slight perturbations can have drastic
consequences on the performance of πb. To this end, utilising
model-free solutions can help relax the challenge of modelling
contact dynamics.

Adapting DMP formulations is a well known approach as
discussed in Section II. Consider a point-to-point movement
with a DMP defined as, ẏ = 1

τ2 (αv(βv(g−x)−τy)+fω+Ct).
In this context, an online adaptation term can be learnt by us-
ing exploration noise η that is applied to different components
of this equation, e.g. to the parameters, ω of the forcing term
fω , the phase-modulated coupling term Ct or outside the phase
modulated DMP formulation (e.g. in task space). For brevity,
consider describing these different ways of applying η with
colour-coding, and namely

ẏ =
1

τ2
(αv(βv(g − x)− τy) + zfω+η + Ct(η)) + η. (1)

Most existing work focuses on adapting nominal behaviours
by learning a forcing term with some exploration signal η,
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Fig. 2: Types of exploration perturbations with Gaussian noise, η, for a simple Archimedian spiral. Applied on a translational DMP policy
(purple - A), shown as equation above. Perturbing directly in task space (green - D) results in local exploration that is important for contact-
rich manipulation. In contrast, perturbing the phase-modulated coupling term, Ct (blue - B) or the parameters ω of the forcing term, fω
(orange - C) results in locally smooth trajectories. Not perturbing the DMP is depicted in purple.

applied in parameter space (shown in orange) [9], [10], [20],
[21]. At the same time, some have studied the effects of
learning a phase-modulated coupling term1 (shown in blue)
[3], [8]. Recent work, [4] uses adaptive analytical models that
can be applied directly in task space, too (shown in green).
All of these different modes of exploration lead to learning
different residual terms that have their benefits. However, very
little has been done to compare the different residual signals
that are learnt using the different colour-coded exploration
noise from Equation 1. Similar in spirit to [25], this work
studies the benefits of those different adaptive formulations
and proposes correcting directly in task space. We conjecture
that exploration in task space (Figure 2.D) encourages jiggling
motion strategies that are useful in the context of insertion. A
learnt policy that adapts in task space should thus be superior
for contact-rich insertions.

a) Residual Learning in Task Space: In light of our
conjecture, we propose to adopt recent advances of residual
learning [11], [23] and extract a residual translational policy
π̂θ, parameterised by θ that adapts a base prior policy, π̂b
outside of the canonical system and directly in task space. The
final translational policy can then be defined as π̂f = π̂b+ π̂θ.
A key aspect of this formulation is that π̂θ is a complementary
policy that operates in task space alongside the DMP policy πb.
We now extend this formulation to orientation-based DMPs.

C. Generalising to Full Pose Corrections

Given environmental uncertainties and assuming also some
inaccuracies in the robot control itself, the translational resid-
ual formulation introduced above can correct this by combin-
ing an adapting policy π̂θ using the DMP as a prior policy π̂b,
resulting in π̂f = π̂b + π̂θ.

a) Orientation-based Corrections: The additive correc-
tion introduced above is unsuitable for orientations due to
the risk for singularities or locks associated with Euler rep-
resentations. Assuming fixed orientations or constant angular
velocity could, in principle, relax this constraint. However,
such approximations restrict applicability as motion is rarely
fixed in orientation by nature. In order to address this, we

1We will refer to this as adapting in coupling term space to differentiate
between additive terms.

introduce a residual formulation capable of accommodating
orientations. Quaternion based representations lead to smooth
interpolations that are compact and do not suffer from Gimbal
locks. Therefore, we propose the following orientation-based
residual framework.

b) Orientation based residual corrections in Task Space:
In this context, a normalised quaternion Q = [qw, qx, qy, qz]
such that ||Q|| = 1 is defined as a vector with a real scalar
value qw and a vector [qx, qy, qz] of imaginary components.
We define composition ◦ between two quaternions using Shus-
ter’s notation [26]. An orientation Qf along some orientation
trajectory is produced from a policy π̃. In this work, π̃
is composed of two separate policies: a stochastic residual
orientation policy π̃θ which operates in task space and a base
orientation policy π̃b from an orientational DMP [16].

c) Learning residual corrections in quaternion space:
Residual orientation is composed in quaternion space and
adapts the orientation of the end-effector. The policy predicts
the parameters of an angle-axis representation which consists
of a 3D unit vector r around which the robot end-effector
is rotated by a scalar angle α. This results in a residual
orientation vector {α, r}. Assuming that α ∈ [−π, π], which
covers all rotations, it follows that cos(α/2) is strictly positive.
Then, a correction Q∆ = {qw∆, qx∆, q

y
∆, q

z
∆} can be computed

where qw∆ = cos(α/2) is the real part of the quaternion. The
orientation-based adaptation relative to the base orientation can
be described as quaternion, [27] by

Q∆ = [cos(α/2),
r
||r||

sin(α/2)], (2)

where ||r|| is the L2 norm of the rotation vector. This allows
us to obtain a quaternion correction term using real numbers.
Then, adding the correction to the prior orientation is achieved
with quaternion multiplication as

Qf = Q∆ ◦Qb. (3)

The final quaternion Qf is then converted to angular velocity
using a log transform [16].

d) A Framework for Full Pose Residual Corrections: In
summary, we propose a complete, twist policy πf as

πf = [π̂f , π̃f ]T. (4)
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In practice, we combine the work introduced in [4] and
[11] and extend it to a general framework for full pose
residual learning. The individual components of our policy
can be extracted independently from each other and can be
of different nature. They can be learnt (e.g. by using RL)
or analytically defined (e.g. by using recursive least squares
(RLS) or similar to [4]). Like [11] we complement a base
policy with a residual component. However, instead of using a
basic proportional controller, we focus on improving DMPs for
contact-rich tasks. Residual learning in task space happened
to work best. We extend this by adding residual corrections
and control with RL in real-time.

D. Execution Details
a) DMPs: We used a single demonstration to build the

base policy. This was sufficient to extract 100% successful
insertions when an episode starts up to 3mm away from that
starting position. We used 40 and 70 basis functions for π̂b and
π̃b respectively. These values were chosen from a grid search
of parameter sizes (see web page for details).

b) Model-free Policies: SAC: We found that this off-
policy approach requires a recurrent neural policy to work
in the lower frequency regime given the higher frequency
controller. We used a recurrent policy with a cell state of 40.
The actor policy comprised 400 and 300-dimensional feed-
forward layers with ReLU activation functions. The critic had
a single feed-forward layer of size 300. Those parameters were
chosen in a grid search across policy network sizes. We used
32 policy update steps per iteration.

PPO We utilise the clipped objective as in Schulman et
al. [28]. We used a curriculum for the physical experiments to
reduce the sample requirements by varying the starting con-
figuration. As the agent improves we increase task complexity
until it becomes 1.5 cm away from the start configuration of
the demonstration. PPO was less sensitive to network sizes.

c) Implementation Details: Both environments are built
using Tf-Agents [29]. Training is performed using a sparse
reward. All policies rely on a normal projection for continuous
actions, which uses tanh to limit its output.

We use MuJoCo [30] and SL [31] for experimenting in
simulation and the physical world, respectively. In simulation,
we utilise Robosuite [32] and use their position controller
applied on low-level actions obtained with inverse kinematics.
To evaluate rLfD in the physical world, we used a Jacobian
transpose Cartesian impedance control run in real-time (details
on the website). Both controllers run at 500Hz, while πb at
100Hz and πθ at 10Hz (see Figure 1).

The framework supplies set-points to a real-time running
controller and uses a real-time clock to synchronise the concur-
rently running modules. We extrapolate the DMP corrections
using a standard fifth-order polynomial while assuming static
repetition of the produced residual term.

IV. EXPERIMENTAL EVALUATION
We evaluate the effects of using different adaptive correc-

tions in the context of skill acquisition for manipulation. We
perform a sequence of empirical evaluations using a 7 DoF
Franka Emika Panda arm. Our results show that rLfD with
model-free reinforcement learning techniques is both sample

5.7cm 5.3cm

4.8cm4.8cm

Fig. 3: An easy task (left) and a harder task (right). The robot is
initialised with a position sampled uniformly within ±12cm along
all axes of the initial position of the demo. Difficulty is defined by
the size of the hole. A task is complete when a peg is fully inserted.

efficient and improves the performance of DMPs on contact-
rich manipulation tasks. We split this section into two main
parts: studying the effects of using residual corrections on
a simulated environment and applying rLfD in the physical
world on three different complexity insertion tasks.

A. Applying Residual Corrections

Next, we conduct a thorough study in simulation. We apply
different types of corrections to a DMP in the context of
contact-rich manipulation.

a) Experimental Details: We study the utility of applying
residual corrections in the context of learning to insert in
simulation. We utilise two separate tasks we refer to as ’easy’
and ’hard’. The difficulty of a task is defined by the size of
the hole a peg has to be inserted in (see Figure 3). A tighter
hole indicates more difficulties, such as potential jamming due
to friction during insertion. The task with a larger hole could
be solved using only translation-based corrections. Here, we
train on the easy task but evaluate on both.

TABLE I: Accuracy of applying exploration during learning on
different parts of the DMP formulation (Type colour from Fig. 2).
Eff. is efficiency- the number of episodes a model was trained for.

Type Exploration Type Model Easy Hard Average Eff. Reward
A No corrections DMP [7] 24.0% ±2.5 8.0% ±1.4 16.0% ±2.0 n/a n/a
B phase modulated coupling eNAC [8] 7.2% ±1.9 3.4% ±2.2 5.3% ±2.1 8K exp{−L1}
C forcing-term parameters FDG [10] 23.6% ±4.3 16.2% ±1.9 19.9% ±3.1 8K exp{−L1}
C forcing-term parameters PoWER [9] 32.2% ±2.8 14.4% ±2.7 23.3% ±2.8 8K exp{−L1}
D task space translation rLfD (ours) 94.8% ±1.3 55.0% ±2.7 74.9% ±2.0 700 1[L2 ≤ κ]

b) Adapting different parts of a DMP: We summarise
the effect of using a range of RL approaches that apply
exploration noise during learning to different components of
the movement primitives formulation (see website for baseline
details). Our findings, reported in Table I, further confirmed the
conjecture from Figure 2 that exploring directly in task space
is more effective for learning in terms of accuracy. As a result,
the learnt task corrections can achieve more sample efficient
solutions using only sparse rewards, which is of essential
importance to applying RL in practical settings.

c) Adaptive strategy selection in task space: Choosing
what part of a DMP to explore to train an RL agent is essential
to their successful application in contact-rich settings. How-
ever, it is unclear whether using a nonlinear RL-based adaptive
strategy is, in fact, necessary for contact-rich insertions. We
compare using two different types of nonlinear correcting
strategies to a recursive least-squares linear policy [33] and
random adaptive noise [34] applied directly in task space.
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Fig. 4: Comparison between using residual, hybrid, DMP and model-free policies. The residual policy (green) consistently results in
experiencing generalised forces comparable to the forces experienced using only a DMP (red) when succeeding. It experiences even smaller
forces across both the easy and hard tasks when failing to insert. Lower is better.

Results (Table II) show that nonlinear adaptive strategies are,
in fact, helpful in the context of adapting DMPs for contact-
rich manipulation tasks. In all cases, only the DMP policy is

TABLE II: Residual adaptive policies in task space for DMPs
(Exploration type colour from Fig. 2). Insertion accuracy table.

Type Corrections Adaptive Policy Easy Hard Average Eff. Reward
A translation Random [34] 25.8% ±4.3 9.0% ±1.8 17.4% ±3.1 n/a n/a
A translation Linear [33] 25.4% ±3.6 8.0% ±2.6 16.7% ±3.1 n/a n/a
D translation SAC 94.8% ±1.3 55.0% ±2.7 74.9% ±2.0 700 1[L2 ≤ κ]
D translation PPO 87.6% ±1.5 69.0% ±4.6 78.3% ±3.1 25.5K 1[L2 ≤ κ]

used for the first half of an episode, with both the base and
residual policies for the rest of the execution. While using
PPO [28] performs better both on average and in terms of
generalising to more challenging tasks, it requires a higher
number of steps to reach this level of performance. In contrast,
SAC [35] can produce similar results in only a fraction of
the required steps but requires an increased number of update
iterations and thus a longer time to train. The baselines
perform worse on average but require less training as they
did not rely on iterative exploration.

d) Utilising nonlinear policies applied in task space:
Nonlinear policies can significantly improve DMPs perfor-
mance for contact-rich insertion tasks as shown above. In this
section we compare rLfD against a hybrid and an RL-only
solution applied in task space. We report results in Table III.

TABLE III: Comparing different ways of using nonlinear policies
(Exploration type colour from Fig. 2). Insertion accuracy table.

Type Corrections Policy Type Easy Hard Average Eff. Reward
A None DMP 24.0% ±2.5 8.0% ±1.4 16.0% ±2.0 n/a n/a
D translation (pure) SAC [35] 94.4% ±1.2 41.8% ±7.2 68.1% ±4.2 12.5K −(α ∗ L1 +

β
L2−ε)

D translation (hybrid) SAC 57.2% ±2.5 45.6% ±2.7 46.4% ±2.6 8K 1[L2 ≤ κ]
D translation (rLfD) SAC (ours) 94.8% ±1.3 55.0% ±2.7 74.9% ±2.0 700 1[L2 ≤ κ]

Using a model free RL solution is known to be appealing
due to its tremendous success in improving accuracy [35].
Our findings confirm this too. Table III shows that using just
SAC with no prior πb can get comparable performance to
rLfD. However, a pure RL agent requires carefully engineered
rewards and significantly longer training to reach that level of
performance. We used α = 10, β = 0.002, ε = 0.0001 for the
engineered dense reward case reported in row 2 of Table III. In
contrast, rLfD generalised better to the harder task and allowed
for a sparse reward function using a fraction of the training
requirements.

Using a hybrid formulation is a promising related approach.
Lee et al. [36] learn policies from visual pre-trained state-
space representations with SAC by switching between model-

based and model-free policies. We compare against a similar
switching strategy to the proprioceptive state representations
used by rLfD, switching between a base policy (learned via
DMP) and a model-free policy. Using hybrid switching is
appealing as it does not require prior knowledge of combining
RL with a DMP formulation. In our tasks, we found switching
to perform worse than rLfD. This indicates that rLfD may
perform well if the more informative, visual representations
proposed in Lee et al. [36] are included. We leave this study
for future work.

e) Gentle part insertion, analysis: Our analysis (Fig-
ure 4) shows that relying on SAC in both hybrid (blue)
and purely model-free (orange) approaches results in a more
forceful solution when compared to rLfD (green) possibly
due to the larger magnitude of the action space required to
compensate for the lack of a base policy. The DMP (red) failed
at times by constantly pushing downwards, which contrasts
with the less forceful searching of rLfD (green).

B. Pose Corrections with Concurrent Real-time Control
In this subsection, we scale rLfD to correct the full pose

in a sequence of physical insertion tasks using a less precise
impedance controller ran in real-time.

a) Tasks Description: We consider three tasks of differ-
ing complexity - peg insertion, similar in setup to the simu-
lated tasks above; gear; and RJ-45 connector insertions (see
Figure 1). Each of those tasks introduces an additional mode
of complexity within the context of insertion. While physi-
cal peg insertion poses challenges due to the friction-heavy
interactions with the highly nonlinear surrounding world, it
can be solved by mainly relying on translational corrections.
On the other hand, the gear insertion task requires perfect
alignment of the squared peg with the hole. Due to the tight fit,
it also requires a certain amount of downward force to achieve
insertion. Finally, inserting an RJ-45 connector requires both
perfect position and orientation. Moreover, the connector’s
plastic tip requires that a precise amount of force be applied to
avoid breaking, further increasing task complexity (webpage
for more details).

b) Experimental Details: In this subsection we provide
additional experimental setup details for the tasks we use.

Peg Insertion The peg’s width, depth and height are 28×
28×77mm with a hole with 0.4mm clearance. Evaluation was
done on 500 starting points that were sampled randomly from
six, 3D uniform distributions, each centred at up to +/- 3cm
away along each axis from the demonstrated position.
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Fig. 5: Successful peg, gear and RJ-45 insertions. Peg insertion results along the x axis are cm away from the initial position (illustrated
by a red vertical line). Gear and RJ-45 results are plotted along the x axis as degrees away from the initial orientation. Higher is better.

Gear and Lan Insertion The gear is of size 79.2×79.85×
10.79mm with a square hole of 23×23×10mm. Lan cable is
standard RJ-45. Evaluation uses 160 uniformly sampled unit
vectors per task, split into 8 bins of 20 samples of up to 40◦

and ±1cm away from the demo orientation.
Execution Details Each episode lasted at most 10 seconds.

We used πθ after 3.9 seconds of executing the base policy.
c) Using full pose corrections: Translation based cor-

rections rely on unnatural assumptions such as moving on a
3D plane only. A full pose correction is more general and
can address a broader range of tasks. We evaluate this next.
We compare DMPs with no adaptive terms (None / None),
translation-only linear adaptations, similar to [33] (Linear /
None), translation-only RL policy (PPO / None), similar to
[11]. We also compare against different types of residual
adaptive full-pose terms. We use the same linear policy from
above and add Uniform random orientation corrections (Linear
/ Random), a full pose random policy (Random / Random),
similar to [34] and our full-pose RL policy (PPO / PPO).
Table IV summarises our results. Full-pose rLfD performs

TABLE IV: Utilising full pose accuracy comparison. Pose baselines
are named as: translation policy / orientation policy.

Type Corrections Adaptive Policy Peg Gear RJ-45 Average
A No corrections None / None 52.6% ± 0.7 41.5% ± 1.5 0.0% ± 0.0 31.4% ± 0.7
A translation Linear / None 80.7% ± 4.0 58.7% ± 1.1 14.6% ± 1.6 51.3% ± 2.2
D translation PPO / None 94.2% ±0.9 50.0% ±0.4 57.2% ±2.1 67.4% ±1.1
A full pose Linear / Random (ours) 60.3% ± 2.9 76.2% ± 2.6 57.3% ± 2.5 64.6% ± 2.7
A full pose Random / Random (ours) 91.0% ±1.9 86.9% ±1.7 64.8% ±1.2 80.9% ±1.6
D full pose PPO / PPO (ours) 97.9% ± 1.2 92.2% ± 2.6 70.6% ± 1.4 86.9% ± 1.7

best. A translation-only RL policy can be useful for simpler
tasks, such as the round peg, but not when orientation matters.
Random can harm performance on translation-only tasks (such
as peg), but it can be useful for tasks like Gear, which heavily
depends on accurate orientations. Random noise may result in
better accuracy but it requires larger magnitude actions which
damages fragile tips like RJ-45 so it should be preferably
avoided.

d) Utilising full-pose nonlinear policies: Linear and ran-
dom solutions are susceptible to latent external factors in the
environment, reducing performance. Compared to the perfectly
levelled simulated surface, our physical set-up has a 1◦ slope
of the surface a socket is positioned on. Such changes may be
hard to notice, but coping with them is not always straight-
forward and is therefore important. Figure 5 disentangles the
results from Table IV. It can be seen that RL significantly
increases accuracy on out-of-distribution start configurations

(±3cm and ≥ 20◦) across all three tasks. This indicates that
an RL policy can be more effective at coping with latent
external variability factors. This is likely due to the better
generalisation of the full-pose RL corrections when compared
to translation-only, analytical or non-residual solutions. While
pure RL solutions may perform just as well, training them
is challenging in real-world settings and often impractical, as
discussed in Section IV-A.d As a result, we could not extract a
successful pure RL policy on the physical robot. More details
are available on the website.

e) Speed of Execution: The final speed of insertion is
another important factor. Ideally, a successful policy will be
highly accurate, safe and fast. We report our findings in
Table V. The nonlinear adaptation policy was the fastest. rLfD

TABLE V: Achieved speed of insertion comparison. Pose baselines
are named as: translation policy / orientation policy.

Type Corrections Adaptive Policy Peg Gear RJ-45 Average
A No corrections None / None 7.0sec ±0.1 8.1sec ±0.2 10sec ±0.0 8.6sec ±0.1
A full pose Linear / Random (ours) 7.1sec ±0.2 6.6sec ±0.1 8.7sec ±0.1 7.5sec ±0.1
A full pose Random / Random (ours) 6.3sec ±0.1 6.2sec ±0.1 8.6sec ±0.1 7.0sec ±0.1
D full pose PPO / PPO (ours) 5.1sec ±0.1 5.9sec ±0.1 8.4sec ±0.0 6.5sec ±0.1

significantly improves the performance of a base DMP policy
and generalisation to out of distribution start configurations.

f) Transferring Residual Policies across Tasks: A key
benefit of rLfD is that it allows residual skill transfer in a few
update steps, thanks to its jiggling exploration in task space.
Next, we evaluate the performance of a policy trained on a
source task src (either Gear or RJ-45) and then transfer to an
associated target task targ (either RJ-45 or Gear). Table VI

TABLE VI: Successful insertions on transfer, comparison. Pose
baselines are named as: translation policy / orientation policy.

Type Corrections Adaptive Policy Gear RJ-45 Average Eff.
D full pose (full training) πtarg 92.2% ± 2.6 70.6% ± 1.4 81.4% ± 2.0 500
D full pose (full training) πsrc 85.4% ± 1.4 54.5% ± 3.2 69.9% ± 2.3 500
D full pose (3-shot) πtarg 70.3% ± 4.0 59.1% ± 3.1 64.7% ± 3.6 60
D full pose (3-shot) πsrc→targ 92.0% ± 2.1 70.6% ± 1.7 81.3% ±1.9 60

shows the performance of the transferred policies. Columns 4
5 refer to the target tasks. We use one demo for πb and transfer
residual policies trained on the src tasks to targ using three
update steps (or 60 episodes). This equates to ∼15 minutes
of training, including resets. We denote transferred policy as
πsrc→targ and policies trained only on the targ or src tasks
as πtarg and πsrc. We consider πtarg and πsrc trained with
the full budget of 500 episodes (or ∼2 hours) and also training
πtarg from scratch for 3 update steps only (60 episodes).
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Results show that rLfD allows for successful policy transfer
on both tasks, requiring eight times less training.

V. CONCLUSIONS
This work explores DMP adaptation for contact-rich inser-

tion tasks. Results show that residual learning from demonstra-
tion (rLfD) using RL adaptive policies in task space improves
the generalisation abilities of DMPs both in simulation and
real-world experiments. Results show that rLfD with full pose
corrections is highly effective and produces a gentle to the
joints solution that can transfer across tasks. Finally, rLfD with
nonlinear policies was shown to find better solutions when
compared to linear and random policies. Future extensions
to this work include consideration of difficulty in terms of
sequences of contacts, optimising the parameterisation of the
solution and investigating ways to reduce the overall forces
applied during insertion. We also envision using rLfD to other
contact-rich manipulation tasks, such as painting [4], alongside
visual policy inputs and learning generalised across skills
policies.
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