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Optimization-based Trajectory Tracking Approach
for Multi-rotor Aerial Vehicles in Unknown

Environments
Geesara Kulathunga1, Hany Hamed2, Dmitry Devitt2, Alexandr Klimchik2

Abstract—The goal of this paper is to develop a continuous
optimization-based refinement of the reference trajectory to
’push it out’ of the obstacle-occupied space in the global phase
for Multi-rotor Aerial Vehicles in unknown environments. Our
proposed approach comprises two planners: a global planner and
a local planner. The global planner refines the initial reference
trajectory when the trajectory goes either through an obstacle
or near an obstacle and lets the local planner calculate a
near-optimal control policy. The global planner comprises two
convex programming approaches: the first one helps to refine
the reference trajectory, and the second one helps to recover the
reference trajectory if the first approach fails to refine. The global
planner mainly focuses on real-time performance and obstacles
avoidance, whereas the proposed formulation of the constrained
nonlinear model predictive control-based local planner ensures
safety, dynamic feasibility, and the reference trajectory tracking
accuracy for low-speed maneuvers, provided that local and global
planners have mean computation times 0.06s (15Hz) and 0.05s
(20Hz), respectively, on an NVIDIA Jetson Xavier NX computer.
The results of our experiment confirmed that, in cluttered
environments, the proposed approach outperformed three other
approaches: sampling-based pathfinding followed by trajectory
generation, a local planner, and graph-based pathfinding followed
by trajectory generation.

Index Terms—Constrained Motion Planning, Planning under
Uncertainty, Collision Avoidance.

I. INTRODUCTION

THe reference trajectory tracking for multi-rotor aerial
vehicles (MAVs) is used in various domains, e.g., cin-

ematography, or landing on a moving platform. Even though
many approaches have been proposed for tracking specified
reference trajectories [1]–[3], it remains an open research prob-
lem due to several reasons: achieving real-time performance,
avoiding close-in obstacles, adhering to different weather con-
ditions, etc. Subsequently, generating a near-optimal control
policy for maneuvering through a cluttered unknown environ-
ment is a rather challenging task when enforcing the dynamic
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Fig. 1. Experiment with the proposed trajectory tracker to showcase how
the proposed approach works in real conditions. In this experiment, the total
distance of R was about 54m, and the length of Ptn was set to 10

feasibility and safety constraints in real-time. Model Predictive
Control (MPC) is one of the promising techniques to address
such challenging tasks. However, due to the computational
aspects of MPC, it is difficult to achieve real-time perfor-
mance in most situations using limited available resources [4].
Such aspects are mainly because of the way the problem
is formulated, e.g., as an NMPC (Nonlinear MPC), as an
LMPC (Linear MPC), and the way constrains, e.g., obstacles
and inputs, are handled. Moreover, the accuracy of the near-
optimal policy generation of MPC depends on the sensing
capabilities, e.g., FoV (Field of View), sensing distance, and
the way surrounded free space and obstacles are represented.
For instance, free space can be formed as a set of convex
polyhedrons along the refined reference trajectory. Afterwards,
incorporating a linear motion model, the problem can be
formulated as convex rather than non-convex.

This paper proposes an optimization-based approach that
solves two trajectories simultaneously, when the first one tries
to refine the initial reference trajectory pushing the reference
trajectory away from the known obstacles, while the second
one generates a near-optimal control policy at every planning
step incorporating the refined trajectory (Fig.1). Thus, the
contributions of this work are as follows:

1) Developing a framework for reference trajectory track-
ing, ensuing safety and dynamic feasibility in which the
global planner refines the reference trajectory allowing
the local planner to generate a near-optimal control
policy quickly at every planning iteration

2) Proposing a fast approach, formulated as a convex
problem, for pushing the reference trajectory away from
obstacle zones, where we implemented a parallel version
of Convex Decomposition [5] (Algorithm 1, line 9)
and a simplified approach, as compared to conservative
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Fig. 2. The high-level system architecture of the proposed trajectory tracker. The global and local planners run in parallel as two separate threads while
sharing the reference trajectory. Each of the components, i.e., Global, Local, Mapper, average frequencies, are estimated on an NVIDIA Jetson Xavier NX
computer (see Fig. 10), which is utilized for real-world experiments

approaches in prior work, for time allocation
3) Real-world and simulated experiments that showcase the

agile flights in various unknown cluttered environments
and a new dataset we used for benchmarking our ap-
proach with the three other approaches

II. RELATED WORK

Most of the recent trajectory tracking approaches are formu-
lated as optimization problems where all the constraints are
incorporated in close loop manner. Moreover, such constraints
can be embodied as a part of the objective or as a part of the
constraints, which can be either soft or hard constraints [6]–
[8]. Such problem formulation, i.e., employing both objective
and constraints, can belong to one of the types: convex [9] or
non-convex [4] (non-linear). Non-convex problem formulation
is usually computationally expensive. In the recent work of
Liu et al. [10], a successive convex decomposition-based free-
space representation, i.e., a series of overlapping polyhedra,
was proposed. Such a free-space representation helps to keep
MAV within the free space for the given interval. Specific
interval allocation can be calculated in several different ways:
let the solver allocate intervals [11] or define several intervals
prior to solving. Once intervals are allocated, different methods
can be used for time allocation (fixed or adaptive) [5].

Trajectory tracking problem can be solved during two
different planning stages: local or/and global, in which local
and global planners can be formulated as two separate or
one combined optimization problem. As far as MAVs are
concerned, most of the approaches exploit differential flatness
property, where the smoothness and dynamic feasibility are
estimated by minimizing the L2 norm of velocity difference
over the trajectory [12]. However, problem formulation can be
complex when enforcing different constraints [13], e.g., obsta-
cle, time, and input constraints. Thus, in the literature, various
approaches have been proposed to handle the said constraints.
The most primitive paradigm is to use path planning followed
by trajectory generation [14], [15], which can be considered as
an open-loop problem. However, such approaches fail due to
the high computation time, as well as when the environment

is highly dynamic and cluttered. To reduce the computation
time and have fast reaction time, motion primitive-based local
trajectory planning [16]–[18] were proposed. Such approaches
are often trapped in local minima. Hence, the objectives of
global planer and local planner can differ mainly due to the
expected nature (or characteristics) of problem formulation as
follows:

The functions and characteristics of a local planner are:
it plans for a local near-optimal trajectory based on the
currently perceived information within the close vicinity with
higher accuracy [3], [19]; it generates near-optimal control
policy in an online fashion in every iteration; it performs
trajectory smoothing and feasibility checking to ensure the
differential/dynamic constraints; the trajectories are planned
consecutively, depending on the way they handle the next
set of information that comes in, e.g., how they react to
dynamic and static obstacles and how they decide whether to
incorporate previous information [1], [2]; long horizon-based
trajectory planning may generate wasteful unnecessary long
trajectories [4].

The functions and characteristics of a global planner are:
it tries to plan the global near-optimum trajectories [20]; it
constructs the map of the way, either memory-less or fusion-
based [17], (a memory-less map does not consider any
previous information, but rather considers only current map;
a fusion-based map building does not discard stale data, i.e.,
previous information, which might be problematic for dynamic
obstacles, i.e., some free-known space could be considered as
occupied-known space [14]); with the known mapping, global
planner generates the obstacle-free kinematically feasible tra-
jectory that often ensures the differential/dynamic constraints;
it minimizes backtracking and generates efficient trajectories
in cluttered environments [17] in which maintaining a clear
picture of the environment is a heavy burden on computational
perspective; the computational complexity depends on how
much information is incorporated and the way a problem is
formulated, e.g., constrained/unconstrained, linear/non-linear
optimization problem [8], [9], [20].

Therefore, safety, appropriate maneuver, dynamic feasibil-
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ity, and real-time performance are the main objectives that
trajectory tracker must have. The safety and feasible trajec-
tory generation of local or global planners depend on the
manner free-known and free-unknown spaces are incorporated.
Hence, planning space can be defined to lie within the sen-
sor’ FOV or outside of it [21]–[23], provided that a series
of sensor data has been incorporated for constructing the
environment map. When the environment is cluttered, local
planners perform poorly due to the uncertainty of instance
sensing data. Prediction horizon-based planning is commonly
used for such environments, in which local planners can be
more conservative compared to global planners. Such a local
planner can be formed in multiple ways, e.g., Linear Model
Predictive Control (MPC) [24], Nonlinear Model Predictive
Control (NMPC) [4] , and Corridor-based Model Predictive
Contouring Control(CMPCC) [25], based on the necessity and
the requirements. The global planner must be less conservative
compared to the local planner, e.g., when defined as an
unconstrained function minimizer. In the proposed approach,
the local planner is formed as an NMPC, whereas the global
planner is formed as a box-constrained function minimizer.

Accurate environment mapping is important to perform
robust planning. Out of many, memory-less and fusion-based
are the main methods that are used for mapping the environ-
ment [9]. Memory-less methods rely on the instantaneous data,
i.e., most of the time only on the last sensor reading, whereas
fusion-based methods - on the stacking sensor readings in a
specific form, e.g., Octomap [26], Voxblox [27], as a map.
Such methods may have considerable estimation error and high
computation time that depend on the hardware and sensors
capabilities. However, estimation error that emerged due to
drift and poor sensing measurement can be overcome by
resetting the fusion from time to time. Therefore, the latter
methods are preferred over the memory-less methods specially
for reasoning of cluttered environments due to several reasons,
such as limited FOV and the lack of prior information about
previous sensing data. Once a map is constructed, Euclidean
distance transform mapping (EDTM) [28] can be utilized to
estimate the free distance from a considered position. For the
mapping, we built instantaneous EDTM on top of Octomap.

III. METHODOLOGY

The proposed approach uses a parallel architecture, which
consists of a local and a global planner, and where the
global planner pushes the initial reference trajectory away
from obstacle zones Om, whereas the local planner generates
an optimal control policy for tracking the modified reference
trajectory by global planner. The high-level view of the pro-
posed reference trajectory tracker is given in Algorithm 1. A
pictorial visualization of the notion that is used throughout the
paper is shown in Fig. 3. The known obstacles and unknown
obstacles are defined as Om ∈ M and Ou 6∈ M , respectively.
Similarly, Fm ∈ M and Fu 6∈ M denote the known free
space and unknown free space. Hence, Fm ∪ Om ⊆ M and
all the unknown region becomes R3\M ⊆ (Ou ∪ Fu). Initial
reference trajectory, namely R consists of a set of control
points: ci, i = 0, ..., Nc, where the number of control points

Fig. 3. Notion used for defining the reference trajectory tracker and different
spaces to the current pose Qp of MAV

is given by Nc. For generating R, we used the approach
proposed in [4], which is based on uniform bspline. The
initialization time of the trajectory planning and current time,
where the desired pose on the reference trajectory should lie,
are denoted by t0 and tn, respectively. For a given time tn,
starting and finishing control points are retrieved with respect
to cs ⊆ [0, Nc) and ce ⊆ (cs, Nc − 1] indices. The time
difference between two consecutive control points, i.e., ci
and ci+1, is defined as δtd , which was set to 0.05s in our
experimental setup. The actual discretization time interval of
continuous system dynamics δtc was set to 0.05. Besides, δtc
and δtd , which both can be the same or slightly different from
each other, can be configured. The number of control points
within the Rtn , namely, refining horizon, is denoted by Nr.
The avoidance distance, which is the minimum free distance
Dz allowed in between MAV and the closest obstacle to MAV.

Algorithm 1 Reference trajectory tracker
Inputs: at time tn, Rtn : reference trajectory to be refined,
Qp: current pose of MAV, Ptn : trajectory to be tracked ,
Mtn : EDT map of the environment
Outputs: Rtn : refined reference trajectory; Ptn ∈ Rtn ,
vx, vy, vz, ωz : control command to maneuver MAV;

procedure GLOBAL PLANNER
Rtn ←< Qp, Rtn >
So ← CheckingOccupiedSegments(Rtn ,Mtn )
if So > 0 then

for i← So do
Ai, bi ← ParallelConvexDecomposition(Sio)
Si∗ ← FindPushingDirections(Sio, Ai, bi)
Rtn ← CalculateGradients(Si∗, Rtn )

return Rtn ← ApplyBoxConstraintOptimization(Rtn )

procedure LOCAL PLANNER
Ptn ←< Qp, Ptn >
Co ← GetCloseInObstacles(Ptn ,Mtn )
return < vx, vy, vz, ωz >← ApplyNMPC(Ptn , Co)

A. Global Planner

The proposed approach consists of two planning stages:
local and global. The local planner is designed as a constraint
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nonlinear optimization problem (NLP), specifically an NMPC.
The computation time of NMPC increases when the number
of constraints increases, i.e., reference trajectory lies closer or
within the obstacles. Such behaviour can lead to local minima
and cannot find near-optimal control policy to avoid close-
in obstacles. Hence, the global planner does refine the initial
reference trajectory in parallel with the local planner to push
the reference trajectory away from the obstacle zones. Hence,
the proposed global planner is formulated as follows:

J = λsmoothJsmooth + λobsJobs + λfeasibilityJfeasibility,
(1)

where λ∗, ∗ ∈ {smooth, obs, feasibility} are weight pa-
rameters were set as 0.2, 0.6, and 0.2, respectively. λsmooth
and λfeasibility were set to low values mainly due to relax
smoothness and feasibility adjustment compared to obstacle
avoidance adjustment by putting high penalty weight λobs.
In the following sub-sections, formulation of global planner
components is explained adhering to Algorithm. 1.

1) Finding Pushing Direction: Some of the control points
in Rtn can occur within the obstacles zones. Hence, control
points that lie within the obstacle zone Om must be pushed
towards an obstacle-free zone Fm. Let Sio ∈ Rtn be the ith

segment within Rtn to be modified. Sio consists of a set of
control points cj ∈ Sio, j = 0, ..., Nseg

i , where Nseg
i is the

number of control points in Sio. Thus, pushing direction of each
control point is determined by solving the following convex
problem for each segment:

min
p0,...,pn

λ1t1 + λ2t2 + λ3t3

s.t. Apj ≤ b,
‖p0 − c0‖2 ≤ t1,
‖pn − cn‖2 ≤ t2,
n−1∑
k=1

‖pk+1 − pk‖2 ≤ t3,

(2)

where A and b represents the free space Fm as a convex poly-
hedron from c0 to cn in Sio (Sec.III-A2). For the ith segment,
n = Nseg

i . The regularization parameters: λ1 = 0.8, λ2 = 0.8,
and λ3 = 0.6, were set in a way to provide more bias on
start and end control points compared to middle control points.
p0, ...,pNseg

i
construct the updated segment Si∗ corresponding

to Sio that will be used for finding each control point’s gradient
direction (Sec. III-A3).

2) Parallel Convex Decomposition: To further reduce the
computation time, we have implemented the parallel version of
Convex Decomposition [5] (Algorithm 1, line 9). Once desired
control points are identified, i.e., cj ∈ Sio, j = 0, ..., Nseg

i

(Sec.III-A1), check for intermediate control points that are
in Fm. Convex decomposition is applied to such successive
control points in parallel that result in the free space in the
form of H-rep Ax ≤ b for each Sio.

3) Calculating Gradients: The objective of Jobs is to push
each Sio, i = 0, ..., Nseg segment towards the obstacle-free
zone. Nseg is the number of segments that are within the
obstacle zone for the considered refine trajectory segment Rtn ,
at time tn. For the ith segment, by knowing Sio, S

i
∗ can be

determined (III-A1). To find each gradient direction vector
that crosses the cj ⊥ Si∗, j = 0, .., Nseg

i , let v1 = cj+1 −
cj−1 be the approximated direction vector along cj , and pk ∈
Si∗ be the control point that intersects v1 ( Fig. 4). Then,
the corresponding direction vector v2 can be defined as pk −
cj . By calculating angle θ = cos−1(v1 · v2/ ‖v1‖2 ‖v2‖2)
between v1 and v2, the optimal value of k can be determined
as provided in Algorithm 2. Thus, the gradient vector that
corresponds to cj can be fully determined as:

cgradj = (c∗j − cj)/
∥∥c∗j − cj

∥∥
2
,

c∗j = pk +
(pk − pk−1)(v1 · (cj − pk))

v1 · (pk − pk−1)

. (3)

Algorithm 2 Estimation of direction vectors pushing the
control points towards the free space.
Inputs: at time tn, Rtn : reference trajectory to be refined,
Nseg: segments indices to be refined within Rtn
Outputs: Rtn : after adding, gradient vector corresponds
to each control point

procedure GRADIENTESTIMATION
for i← 0 to Nseg do

for j ← 1 to Nseg
i do

k ← Nseg
i /2

v1 = cj+1 − cj−1, v2 = pk − cj
cj ∈ Sio, pk ∈ Si∗
val = previous val← v1 · v2

while k ≥ 0 and k < Nseg
i do

k ←
{
k −−, if val ≤ 0
k + +, otherwise

val← v1 · v2

if val · previous val ≤ 0 then
c∗j ← pk +

(pk−pk−1)(v1·(cj−pk))
v1·(pk−pk−1)

δd←
∥∥c∗j − cj

∥∥
2

cgradj =
c∗
j−cj

‖c∗
j−cj‖

2

return Rtn

Once gradient vectors are estimated, Jobs is determined (4),
which is defined as a continuously differentiable exact penalty
function.

Jobs = ΣNr−d
i=d Jobsi ,

Jobsi = vi · dis3e,
∂Jobsi
∂ci

= −3 · dis2e · c
grad
i ,

(4)

where dise = Dz − (ci − c∗i ) · c
grad
i and vi = ci+1 − ci,

and avoidance distance Dz was set to 0.8m (distance must be
higher than the radius of the MAV) in our study.

4) Dead Zone Recovery: The map construction is not
precise when the depth sensor has a small FoV. Moreover,
EDTM building takes a considerable amount of time when
the environment is cluttered. Therefore, the local planner
may generate control commands that lead to quadrotor Qp
maneuvers into the Dz (Fig. 3) zone. In such situations,
free space segmentation (Sec.III-A2) does not provide cor-
rect constraints set A, b. Hence, the proposed approach (2)



KULATHUNGA et al.: OPTIMIZATION-BASED TRAJECTORY TRACKER 5

Fig. 4. Pushing control points that are within the obstacle zone, towards the
free space. Projected control points segment (Si

∗) is obtained as explained
in Sec. III-A1 utilizing Si

o for ith segment. c∗j depicts gradient vector
corresponding to cj

fails to estimate control points p0, ...,pNseg
i

appropriately,
i.e., estimated control points may lie in the extreme ends
(c0, cNsec

i
) of the provided trajectory Sio, provided that Rtn is

not dynamically feasible. Hence, the objective is to consider
whole Rtn rather than each segment separately, followed by
the free space segmentation. Thus, the following recovery
mechanism is proposed to push the Rtn away from Om. The
recovery mechanism is executed only when the (2) is failed.

min
p1,...,pNr

Nr∑
l=1

ql

s.t. Ar(pl + cl) ≤ br, ‖pl‖2 ≤ ql, l = 1, ..., Nr,
(5)

where cl, l = 1, ..., Nr are the control points to be pushed.
The recovered control points are determined by pl + cl, Nr
is the number of control points at time tn in Rtn , and Ar and
br are obtained by giving Rtn to Algorithm 1, line 9.

5) Smoothing: We have employed a velocity controller
since the proposed trajectory tracker targets low-speed ma-
neuvers. Hence, higher-order components, i.e, acceleration,
jerk, snap, should be minimized, which causes effects such as
vibrations. However, we decided to minimize only acceleration
components without considering higher-order components,
e.g., jerk, snap. We have formulated Jsmooth minimizing both
acceleration and jerk components as well as only considering
acceleration components. However, adding jerk did not affect
Jsmooth considerably. Thus, Jsmooth was formulated only as
minimizing the acceleration components:

Jsmoothi = a>i ai,
∂Jsmoothi

∂ci
= 2

∂ai
∂ci

, (6)

where ∂ai/∂ci = 1, ∂ai/∂ci+1 = −2, ∂ai/∂ci+2 = 1.
ai,vi, ci ∈ R3 are respectively acceleration (ai = ci+2 −
2ci+1 + ci), velocity (vi = ci+1 − ci), and control point at
ith index of Rtn .

6) Feasibility: To ensure the refined trajectory, namely,
Rtn , which is dynamically feasible for the maneuver, objective
function penalizes the velocity and acceleration components
only when their limits exceed the min and max, as follows:

Jfeasibilityi = (vi ⊕ vmax)>(vi ⊕ vmax) · 1

δ2

+ (ai ⊕ amax)>(ai ⊕ amax)
(7)

where the operator ⊕ is defined as

⊕ =

 − if vi > vmax || ai > amax
+ if vi < −vmax || ai < −amax

not considering otherwise
,

(8)
where allowed maximum velocity and acceleration compo-
nents are given by vmax ∈ R3 and amax ∈ R3, respectively.
When the velocity and acceleration components are within
the allowed range, there will be no added cost. Once objective
function J (1) was formed, we have used L-BFGS-B (Limited-
memory Broyden Fletcher Goldfarb Shanno Box-constrained
algorithm) [29] for solving J. Subsequently, Mosek solver [30]
was employed to solve (2) and (5).

B. Local Planner

At time tn, Ptn = [Qp, ctn , ctn+1, ..., ctn+Np ] ⊆ Rtn
forms the reference trajectory for the given prediction hori-
zon, Np. The local planner generates the optimal con-
trol to maneuver the quadrotor considering close-in ob-
stacles g2(w) and system dynamics g1(w) where w =
[utn , . . . ,utn+Np−1, xtn , . . . , xtn+Np ]. Hence, the objective of
local planner is to optimize both control inputs and states
simultaneously. Such an objective can be designed using
multiple shooting technique as follows:

JP (x,u)tn =

Np∑
l=0

‖xtn+l − ctn+l‖
2
Q +

∥∥∥utn+l − vreftn+l
∥∥∥2
R

min
w

JP (x,u)tn

s.t. g1(w) = 0, g2(w) ≤ 0

xmin ≤ xtn+l ≤ xmax ∀0 ≤ l ≤ Np
− vmax ≤ utn+l ≤ vmax ∀0 ≤ l ≤ Np − 1,

(9)
At every planning cycle, local planner gets Qp,xtn , and utn as
an input and estimates the optimal control policy, i.e., ûtn =
{v̂xtn , v̂

y
tn , v̂

z
tn , ω̂

z
tn}, where v̂µtn , µ ∈ x, y, z denotes velocity on

each µ direction, and yaw angle around z axis is given by ω̂ztn .
The local planner is adopted from our previous work, where
the explanation of g1, g2 and ûtn is detailed [4].

To conclude, as summarized in Algorithm. 1, this section
explained how the proposed trajectory tracker is formulated. In
the following section, the qualitative and quantitative analysis
of the proposed approach is provided.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

The experiment prototype of MAV DJI M100 (Fig. 5)
is equipped with the following components: Velodyne Lite
16 lidar for reasoning the MAV’s surrounding environment;
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Nvidia Jetson NX computer for online computations. Offline
computations and the simulated experiments were carried out
on an Intel i9-9900K (16) @ 5 GHz computer. Hence, the
timing breakdowns were measured for both real-world and
simulated experiments by those two computers. The simulated
experiments were performed in a Gazebo environment. For the
simulated and real-world experiments, PX4 [31] and DJI A3
controllers were employed, respectively.

Fig. 5. The experimental prototype MAV (DJI M100) was used in real-world
experiments. The proposed approach runs on the on-board computer (Nvidia
Jetson NX) and sends control commands to A3 controller

The first experiment2 was aimed to estimate reference
trajectory tracking error without refining. Such trajectory
tracking can be directly used in, for example, cinematography.
Moreover, this is a way to check the local planner (9) is
able to track the reference trajectory that the proposed global
planner provides. As shown in Fig. 6, we estimated position
estimation error

∣∣p− pref ∣∣
2

between the tracked trajectory p
and the reference trajectory pref . The fusion of GPS position,
IMU data, and vehicle velocity is used to estimate p, whereas
pref is the output of local planner. The mean estimation error
|p− pref |2 was less than 1m during the whole flight in which
velocity varied in between -1.2 m/s to 1.2 m/s.

Fig. 6. Experimental results for real-world tracking accuracy without con-
sidering obstacles. Estimated tracking error is less than 1m during the whole
experiment

The second experiment was devoted to demonstrating the
behaviour of the proposed approach in a real-world condi-
tion3, where the initial reference trajectory passes through a
cluttered environment followed by open space and back to a
cluttered environment where the terminal pose was placed in
an obstacle zone. Map update range (update range) was kept
4m from the center of the MAV and max speed set to 0.6m/s
for the safety of MAV. Total flight time was around 150s
and the distances of initial reference trajectory and traversed
trajectory were 54.3m and 79.8m, respectively. Since trajectory
termination pose was within the obstacles, trajectory tracker
terminates early(see Fig. 8). Such a behaviour is due the

2 tracking accuracy without considering obstacles: https://www.youtube.
com/watch?v=pKVeGdr8crU

3 behaviour of the proposed approach in a challenging environment https:
//youtu.be/g6xHvkcrYcQ

Fig. 7. The trajectory tracking error for real-world experimental results on
tracking the reference trajectory shown in Fig. 6

fact that the global planner was designed as a box-constraint
function minimizor, whereas local planner was designed as a
constraint NLP. Hence, the local planner terminated correctly,
though the global planner completely failed to refine, which
is in fact true.

Fig. 8. Showcasing the behaviour of the proposed trajectory tracker in a
challenging environment

In the third experiment4, we conducted four different real-
world tests to estimate the run-time breakdown (mean com-
putation time) in the average case. Three out of four tests
were performed in static environments: open area with small
obstacles, open area with sizeable obstacles, and a cluttered
environment) and the fourth experiment was performed in a
dynamic environment ( Fig.9). Reference trajectories of each
of them were completely different from each other. However,
we fixed the trajectory tracking duration to 90s. Afterwards,
run-time breakdown (Fig.10) was estimated based on three
sub-modules: NMPC solver (main force of the local planner),
EDT mapper (utilize both local and global planner), and main
parts of the global planner (smoothing, feasibility, calculating
gradients, and finding pushing directions). The objective was
to understand how the run-time of each of the listed sub-
modules is affected due to environmental changes. Since those
three modules were executed in parallel, local and global

4 experiments used for estimating the run-time https://www.youtube.com/
watch?v=jyDe5BSigm8
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TABLE I
COMPARATIVE ANALYSIS OF THE PROPOSED APPROACH AND THE THREE OTHER APPROACHES FOR CHECKING GOAL-REACHING ACCURACY. ALL THE

METRICS WERE OBTAINED DURING EXPERIMENTS ON 12 DIFFERENT ENVIRONMENTS WHILE KEEPING THE SAME START AND GOAL POSES

Algorithm Success Fraction (SF) Mean Computation Time (MCT) in seconds Distance Estimation (m)
Mean Max Min

[15] RRT* max allowed iterations=10000 0.41 2.4 112.56 198.45 91.04
[4] Ptn = 20, update range = 5m 0.58 0.397 93.5 154.67 68.45
[4] Ptn = 40, update range = 5m 0.66 0.441 98.91 201.56 78.23
[9] Nwhole = Nsafe = 6 max poly = 3 0.83 ≈ 0.01 54.56 81.45 49.39
[9] Nwhole = Nsafe = 12 max poly = 6 0.83 ≈ 0.01 53.78 78.67 47.45
Proposed Ptn = 10, update range = 4m 0.91 0.04± 0.01 56.78 68.78 49.86
Proposed Ptn = 15, update range = 6m 1.0 0.03± 0.01 54.89 66.80 48.67

Nwhole, Nsafe : the number of discretization points in the whole and safe trajectory, max poly: maximum number of polydrons to represent the free
space, Ptn : NMPC prediction horizon length

planners have mean computation times of approximately 0.06s
(15Hz) and 0.05s (20Hz), respectively.

Fig. 9. Different scenarios for real-world experiments: static (a,b,d) and
dynamic (c) were used to estimate the run-time breakdowns of the proposed
trajectory tracker (Fig.10)

Fig. 10. Estimation of mean computation time (run-time) of the proposed
approach, i.e., time break down of each sub components, in real-world
scenarios (see Fig.9)

In the final experiment, we have generated 12 random
forests, e.g., Fig. 11(a), where density (40m×40m×10m) was
kept the same for all the environments. The three other
methods: RRT* [15], a local planner [4], and FASTER [9]
were used to validate the proposed approach. The results are
provided in Table I and an example test case is shown in
Fig. 11. When the environment is cluttered, FASTER failed
mainly due to the inability to find a path to local goal pose
using JPS [32]. In the proposed approach, the dead zone re-
covery technique tries to recover when the global planner fails
to refine the trajectory and the local planner is also capable
of planning ahead independently from the global planner. In
consequence, the proposed approach has a higher success rate
(number of times successfully reach the goal) compared to the
other methods despite mean computation time (MCT) (ratio

of total execution time to the total number of iterations) is
slightly lower than FASTER. Since we are targeting low-speed
maneuver, MCT is also acceptable. In each environment, the
same start and goal poses were considered and the distance
between them was set to 38.6m, ensuring no obstacle presence
on those poses. There is no distinctive difference in the mean
distance estimation between the proposed and FASTER.

Fig. 11. An example of testing the proposed (b) and FASTER (c) algorithms
on a randomly generated forest (a)

V. CONCLUSION

This work presents a reference trajectories tracking ap-
proach for low-speed agile flights ensuring safety and dynamic
feasibility in completely unknown environments. The essential
properties of the proposed approach are online trajectory re-
finement and near-optimal control policy generation in parallel
in horizon-based fashion, while only reasoning the surrounding
environment. The proposed approach was tested on various
simulated and real-world environments, achieving long range
trajectory tracking. The local and global planners have mean
computation times of approximately 0.06s (15Hz) and 0.05s
(20Hz), respectively, provided that tracking accuracy is less
than 1m in obstacle-free zones. We expect to extend this work
for high-speed maneuvers in which we are going to focus on
improving the local planner. The source code and complete
experiments are available at Github4
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