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Occupancy Flow Fields for Motion

Reza Mahjourian*!, Jinkyu Kim*2, Yuning Chai'

Abstract— We propose Occupancy Flow Fields, a new rep-
resentation for motion forecasting of multiple agents, an im-
portant task in autonomous driving. OQur representation is a
spatio-temporal grid with each grid cell containing both the
probability of the cell being occupied by any agent, and a
two-dimensional flow vector representing the direction and
magnitude of the motion in that cell. Our method success-
fully mitigates shortcomings of the two most commonly-used
representations for motion forecasting: trajectory sets and
occupancy grids. Although occupancy grids efficiently represent
the probabilistic location of many agents jointly, they do not
capture agent motion and lose the agent identities. To this
end, we propose a deep learning architecture that generates
Occupancy Flow Fields with the help of a new flow trace loss
that establishes consistency between the occupancy and flow
predictions. We demonstrate the effectiveness of our approach
using three metrics on occupancy prediction, motion estimation,
and agent ID recovery. In addition, we introduce the problem
of predicting speculative agents, which are currently-occluded
agents that may appear in the future through dis-occlusion or
by entering the field of view. We report experimental results
on a large in-house autonomous driving dataset and the public
INTERACTION dataset, and show that our model outperforms
state-of-the-art models.

I. INTRODUCTION

In this work, we tackle the problem of predicting the
future location and motion of other vehicles and pedestrians
from the view of an autonomous vehicle (AV). To represent
future locations, we adopt the notion of occupancy grids [2]
from the robotics literature. An occupancy grid Oy, at a
particular timestep ¢, can be represented by a single-channel
gray-scale image with dimensions h X w where each pixel
corresponds to a particular grid cell in the map, and the pixel
value represents the probability that any part of any agent
occupies that grid cell. To represent future motion, we draw
inspiration from optical flow. A flow field F} at time ¢ can be
represented by a two-channel image with dimensions & x w
where each pixel holds a two-dimensional motion vector
(Az, Ay) for the corresponding grid cell. Fig. [1| illustrates
sample occupancy and flow predictions vs. ground truth on
a sample scene.

Motion forecasting is an essential component of planning
in a multi-agent environment, and of particular interest for
autonomous driving. Modeling the uncertain future as a
distribution over a compact set of trajectories per agent is
a very popular choice [1], [3], [4], [5], [6], [7]. On the
other hand, occupancy grid-based methods [8], [9], [10],
[11] provide some significant advantages: the non-parametric
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Fig. 1: (Best viewed in color) Our model predicts occu-
pancy (top-left) and flow (top-right) at discrete timesteps
in the future. Combining occupancy and flow produces a
rich occupancy representation that captures the direction
and magnitude of motion as well (bottom-left). Notice the
agent near the bottom and the two prominent predictions
corresponding to staying in the roundabout and exiting. The
ground truth (bottom-right) contains the color wheel that
maps motion direction and magnitude to different colors.
The gray traces in the bottom images show the past state
of the agents. All views are at ¢ + 1.5s. The sample scene
is from the Interaction dataset [1].

output captures a richer class of future distributions, in-
corporates shape and identity uncertainty, and models the
joint probability of the existence of any agent in a spatio-
temporal cell (rather than independent marginal probabilities
per agent). While these observations make occupancy grids
an attractive choice, occupancy grid methods have the dis-
advantage that agent identity is lost, and there is no obvious
way to extract motion from the grids (which are a snapshot
of a time interval), making it unclear how to interpolate at
finer time granularity, and impossible to know the velocity
of the agents.

This motivates Occupancy Flow Fields which extend stan-
dard occupancy grids with flow fields. By augmenting the



output with flow estimates, we are able to trace occupancy
from far-future grid locations back to current time locations
by following the sequence of predicted flow vectors. This
gives us a way to recover the most-likely agent identity for
any future grid cell.

Another advantage for producing flow predictions is that
it allows an occupancy model to capture future behavior
with fewer “key frames”, since flow predictions can be
used to warp/morph occupancy at any continuous point in
time. Since our flow formulation captures multiple travel
directions for each agent, the morphing process will lead to
a conservative expansion of occupancy from the last known
occupancy of agents. Therefore, the morphed occupancy can
be safely used by a planning algorithm that minimizes co-
location with predicted occupancy.

Given the current state-of-the-art in real-time perception,
the track quality available to a motion forecasting system can
be limited. We may lose sight of its tracked agents because
of occlusions or increased distance. More importantly, new
agents may appear through dis-occlusion or otherwise enter-
ing the AV’s field of view. Reasoning about the location and
velocity of these so-called speculative agents is critical for
safe and effective autonomous driving. Trajectory prediction
models in the literature are formulated only for agents that
have already been detected and tracked, and cannot handle
agents that may come out of occluded areas.

In summary, our contributions are as follows:

Occupancy Flow Fields: We introduce a model that predicts
both occupancy and flow in a spatio-temporal grid. This rep-
resentation allows us to predict a non-parametric distribution
of future occupancy as well as velocity of agents.
Flow-Traced Occupancy: We use the chain of flow predic-
tions over multiple timesteps to trace predicted occupancies
at any future timestep all the way back to the current
observations. Adding a loss term based on traced occupancy
predictions forces the model to establish consistency be-
tween flow and occupancy predictions, leading to significant
improvements in metrics. At inference time, tracing flow
predictions allows us to recover the identity of the agent
predicted to occupy any grid cell.
Speculative Agents: We introduce the problem of predicting
occupancy and flow for speculative agents—an important
task that to our knowledge is unexplored in the behavior
modeling literature.

II. RELATED WORK

Motion Forecasting via Trajectories. In this motion fore-
casting representation, each modeled agent’s future distri-
bution is described by a set of trajectories, which are each
a time sequence of state estimates. This set may be pre-
dicted in a discriminative, feed-forward manner, via imitation
learning [8], [12], [4], [13], [14], [15], [7], [16], [7], [5],
[6]. These models commonly predict trajectory likelihoods
and sometimes Gaussian uncertainty parameters as well,
giving rise to a full parametric probability distribution as
output [17], [4], [3], [18]. The trajectory representation has
several disadvantages mentioned in the introduction.

Motion Forecasting via Occupancy Grids. There are rela-
tively fewer motion forecasting models that employ an occu-
pancy grid representation. ChauffeurNet [8] trains occupancy
in a multi-task network to improve trajectory planning perfor-
mance. DRF [11] predicts a sequence of occupancy residuals
inspired by auto-regressive sequential prediction. Rules of
the Road [10] compares trajectory methods to occupancy
grids by proposing a dynamic program to decode likely
trajectories from occupancy under a simple motion model.
Finally, contemporaneous with this work, MP3 [9] proposes
a concept similar to Flow Fields, termed Motion Fields:
They predict a set of forward motion vectors and associated
probabilities per grid cell. MP3 employs occupancy flow in
the context of a planning task and does not offer direct
analysis on the quality and performance of their motion
forecasting method. In this work we explore occupancy
flow in detail and develops a class of metrics for directly
evaluating it.

III. METHOD

In this section, we define the occupancy flow problem,
describe our model architecture and losses, and elaborate
on how we trace flow predictions over time to establish
consistency between flow and occupancy predictions.

A. Representation

As introduced in Sec. |I, the problem is to predict an
occupancy flow field at future time ¢, given observations
from the recent state of the agents. Following the common
convention in AV motion datasets [19], [1], [5], we abstract
the agents as two-dimensional rectangles in bird’s-eye view
(BEV), characterized by position, orientation, width, height,
velocity, etc. A detection and tracking pipeline extracts the
sparse agent states over a number of timesteps from raw
sensor readings. A sequence of observations is split into
past and future segments. Our model receives the past agent
states as sparse inputs and predicts dense future occupancy.
Ground-truth occupancy is generated by rendering the bird’s-
eye view rectangles for the detected agents at each timestep.

B. Inputs

We abstract the problem inputs to be sparse environment
and agent states as estimated by any detection and tracking
system as follows:

1. Past agent states: Each agent at time ¢ is represented
as a tuple (py, O, wy, U, v, ap), where py = (x4, yt)
denotes the agent’s center position, 6; denotes the orientation,
(wy, ;) denotes the box width and length, v; denotes a
two-dimensional velocity vector, and a; denotes a two-
dimensional acceleration vector. The model receives A;, the
state of all agents at time ¢, for ¢ € {Tisput, - - -, 0}.

2. Road structure: To receive information about the
structure of the road lanes and other traffic objects, the
model is given a set of points sampled uniformly from the
line segments and curves representing the road elements.
Each sampled point is represented by a tuple (p, u) where
p = (x,y) denotes position and u denotes the type of the



underlying road element, which can be one of the following:
crosswalk, speed bump, stop/yield sign, road edge boundary,
parking line, dotted line, solid single/double line, and solid
double yellow line.

3. State of traffic lights: The model is also given the
state of traffic lights for each lane at each input timestep.
The traffic light state of each traffic-controlled lane at time
t is represented by a tuple (p:, s¢) where p; = (x4, y;) is the
position of a point placed at the end of the traffic-controlled
lane, and s, is the light state, which is one of {red, yellow,
green, unknown}.

C. Occupancy Flow Prediction

Occupancy Flow Fields can be represented as two quan-

tities: an occupancy grid O, and a flow field F}, both with
spatial dimensions h x w. Each cell in the grid corresponds
to a particular BEV grid cell in the map. Each cell (z,y) in
the occupancy grid O; contains a value in the range [0, 1]
representing the probability that any part of any agent box
overlaps with that grid cell at time ¢. Each cell (x,y) in the
flow field F; contains a two-dimensional vector (Ax, Ay)
that specifies the motion of any agent whose box occupies
that grid cell at time ¢. Vehicle and pedestrian behavior
differ significantly, so we output separate occupancy and flow
predictions for different agent classes K. More specifically,
we predict occupancy grids O; = (0),0F) and flow
fields Fy = (FY,FF) for vehicles and pedestrians, V¢ €
{1, ... Trea}-
Flow Formulation: We model the motion of agents with
backward flow (see Fig. [2). Ground-truth flow vectors be-
tween times ¢ and ¢ — 1 are placed in the grid at time ¢
and point to the original position of that grid cell at time
t — 1. More specifically, flow ground truth is constructed as
Fy(z,y) = (z,y)i—1 — (x,y), where (2,y);_1 denotes the
coordinates at time ¢t — 1 of the same agent part that occupies
(z,y) at t. The magnitude of the flow vectors is in grid cell
(think pixel) units.

Note that backward flow still models the forward motion
of agents; it just represents where each grid cell comes from
in the previous timestep rather than representing where each
grid cell moves to in the next timestep. Therefore backward
flow can capture multiple futures for individual agents using
a single flow field per timestep. On the other hand, capturing
multiple futures with forward flow requires predicting mul-
tiple flow vectors per cell and their associated probabilities,
which would increase latency, memory requirement, and
complexity of the model.

D. Speculative Occupancy Flow Prediction

The problem described in Sec. is to predict future
occupancy and flow of the agents that have been observed at
any of the past timesteps. The speculative prediction model
has the same inputs and the same output representation as the
main model. However, the task is to predict occupancy and
motion of agents that have not been observed in the past,
yet appear in the future, e. g., a vehicle appearing on the
edges of the model’s field-of-view, or a pedestrian exiting a

Predicted Forward Flow Predicted Backward Flow

Fig. 2: Hypothetical flow predictions for a single agent are
illustrated in a single forward flow field (left) and a single
backward flow field (right). Each flow vector is stored in the
grid cell (yellow square) at its base. With forward flow, each
grid cell predicts its future location, while with backward
flow each grid cell predicts its past location. Note that the
agent boundaries drawn at time ¢ are just illustration aids and
not predicted by the model. Unlike forward flow, a single
backward flow field can represent multiple next destinations
for any current occupancy, making it more effective for
motion forecasting. Note that backward flow vectors are
meaningful and predicted on every currently-unoccupied cell
in the map (not shown), but forward flow is only meaningful
on current occupancies. Moreover, since each backward
flow vector pulls occupancy from a single source, predicted
backward flow for multiple agents is also inherently free
of collisions—which indicate inconsistent predictions and are
undesired in motion forecasting systems.

sensor-occluded region. For this problem, we train the same
model with alternative labels that reflect occupancy and flow
of agents known to exist in the future but missing in past
timesteps.

E. Model

Fig. E] shows the overall architecture of our model, which
consists of an encoder and a decoder:

Encoder: the first stage receives all three types of input
points and processes them with a PointPillars-inspired en-
coder [20], [21]. The traffic light and road points are
placed directly into the grid. The agent states A; at each
input timestep ¢ € {Tinpu, - . ., 0} are encoded by uniformly
sampling a fixed-size grid of points from the interior of each
agent’s BEV box and placing those points with associated
agent state attributes (Sec. including a one-hot encod-
ing of time ) into the grid (visualized in Fig. [3). Each pillar
outputs an embedding for all the points contained in it.

Decoder: The second stage receives the per-pillar embed-
dings as input, and produces per-grid-cell occupancy and
flow predictions. The decoder network is based on Effi-
cientDet [22]: it employs EfficientNet as the backbone to
process the per-pillar embeddings into feature maps (P,
...P;), where P; is downsampled by 2¢ from inputs. These
multi-scale features are then fused in a bidirectional manner
using a BiFPN network. Then, the highest-resolution feature
map P is used to regress occupancy and flow predictions for
all agent classes K over all T},.q timesteps. More specifically,
the decoder outputs a vector of size |K| X Tpreq X 3 for
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Fig. 3: Our model architecture consists of PointPillars-inspired encoder [20], [21] and a decoder based on EfficientDet [22].

each grid cell, in order to simultaneously predict occupancy
(/K| X Tprea channels) and flow (|IC| X Tyreq X 2 channels).

F. Losses

The model is trained with supervised occupancy and
flow field losses, and a novel self-supervised Flow Trace
loss. The occupancy loss is a binary logistic cross-entropy
per grid cell between the predicted O and groundtruth
occupancy O aggregated over all spatio-temporal cells as

Tpred w—1h-—1

EO = Z Z ZH(Ot(x?y)aot(‘r>y)) (1)

t=1 z=0 y=0

where H denotes the cross-entropy function.
The flow loss is an L1-norm regression loss with respect
to the ground-truth flow F, weighted by O as

Tored w—1 h—1

=Y 33 |Fiten)
t=1 =0 y=0

1) Flow Trace Loss: As discussed in Sec. [[II-C] the
backward flow vectors at time ¢ point to the previous
location of corresponding grid cells at time ¢t — 1. Consider
the current occupancy grid for vehicles Oy. Note that
Oy is not a prediction, but can be constructed directly
from inputs. We can warp the current occupancy O
according to the first flow prediction F; for t = 1 to obtain
a grid of all possible future occupancies of the current
agents at t = 1. We recursively apply this warping process as

2.9)| Oy @

Wy =F, oW (3)

where W; denotes the flow-warped occupancy at t and Wy =
Og. Therefore, computing Wy for the final timestep applies
a chain of all flow predictions F},Vt € 1...T to compute
all potential future locations for the current occupancies at
Oy. Fig. [ visualizes this process in a sample scene. Note
that we are using backward flow fields to roll out the current
occupancies forward in time. But, thanks to backward flow
vectors, there are never any overlaps/conflicts on the origin

of cells in W,. Moreover, backward flow vectors never move
current occupancies out of the grid.

The flow warping process does not use any occupancy
predictions. However, we multiply each W; with its corre-
sponding occupancy prediction O, and require that the result
matches the ground truth occupancy O, using the loss term

Tored w—1 h—1

=33 S HW,9)Ou(,1), Ou(x,y). @)

t=1 =0 y=0

The final loss is defined as

L= Zth

where Ao, A, Ay are coefficients, and I contains all agent
classes, i. e., vehicles and pedestrians in our case.

/\oﬁo + ApLlp + Awﬁw) ®))

pred

G. Recovering Agent IDs Using Flow Traces

The flow traces discussed as a loss in Sec. [II-E.1] can also
be used at inference time to assign agent IDs to predicted
occupancies. If we augment the current occupancy grid Og
with the ID of the origin agent for every grid cell, the warping
process spreads the agent ID across the flow vectors as well.
In this setup, W; contains flow-warped occupancies with per-
cell ID attributes, from which we can directly read the agent
ID. This ID points to the agent that could occupy this grid
cell at time ¢ according to the flow predictions F1, ..., F;.
Construction of flow traces and thereby the ID recovery
process is very fast with time complexity O(h - w - Tpreq).

IV. EXPERIMENTS
A. Datasets

Crowds Dataset. This dataset is a revision of the Waymo
Open Motion Dataset [19] focused on crowded scenes. It
contains 10.5 million training and 2.8 million test examples
spanning over 500 hours of real-world driving in several
urban areas across the US. Dynamic scene entities are com-
puted from LiDAR and camera data similar to existing works
in the literature [23], [24]. All scenarios contain at least 20
dynamic agents. This dataset contains sensor readings at SHz.
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Fig. 4: Flow Traces. Top: Current vehicles occupancy OUO followed by recursive construction of flow-warped occupancies
W, . Each agent ID has been mapped to a different color. The black box shows the ground-truth location of the AV. At each
timestep, flow predictions are used to expand the potential reachable region for each agent, independently of the occupancy
likelihoods. Since the backward flow field can pull any occupied grid cell to multiple future locations, each successive
application of the warping process likely increases the reachable region. For example, notice how the vehicle highlighted by
the red arrow is predicted to either go straight, or perform a U-turn. The flow-warped occupancies are used in loss functions
at training time. At inference time, they can be used to recover agent identities for predicted occupancies. Bottom: The
same process applied to the pedestrians in the same scene. Note that the predicted flow vectors have been inverted to make

it easier to study the predicted motions.

We produce predictions for six seconds into the future, given
one second of observations.

Interaction [1]. Interaction is a publicly-available dataset
with sensor readings at 10Hz. We use 432k examples for
training and 108k examples for test. We produce predictions
for three seconds into the future, given half a second of
observations.

B. Training Setup

We produce predictions for 30 future timesteps using ob-
servations from the past 5 timesteps (Tinput = —4). For both
datasets, each prediction timestep aggregates occupancy and
flow from 3 timesteps in the dataset. Therefore Tpeq = 10
captures future occupancy over all 30 timesteps. The encoder
uses 80 x 80 pillars, each mapping to a 1m x 1m area of the
world. The occupancy and flow outputs have a resolution of
h x w = 400 x 400 cells, covering the same 80m x 80m
area. Loss coefficients are set to A\p = Ay = 1000, \p =1
to roughly balance the magnitude of different losses. The
model is trained from scratch using the Adam optimizer with
a learning rate of 0.02 and batch size of 4.

C. Metrics

Occupancy Metrics: We employ evaluation metrics used for
binary segmentation [25]: Area under the Curve (AUC) and
Soft Intersection over Union (Soft-IoU) [26]. AUC computes
AUC(OF, OF) for agent class K (vehicle/pedestrian) using a
linearly-spaced set of thresholds in [0, 1] to compute pairs of
precision and recall values and estimate the area under the
PR-curve. Soft-IoU measures the area of overlap for each

agent class K using the Soft IoU metric as

i 0y OF - OF
Soft-IoU(O), OF) = S O N O:C 5’C oF ©
ey Ot + O = Oy - Uy

where arguments (x,y) and have been omitted for brevity.

Flow Metrics: The following metrics measure the accuracy
of flow predictions: EPE computes the mean End-Point Error

L2 distance ‘ FF(z,y) — Ff(x, y)H where O (z,y) # 0.
2

ID Recall measures the percentage of correctly-recalled IDs

for each ground-truth occupancy grid OF as

> ey LIDOWVE) = ID(OF)).1[OF # 0]
>, 1[OF #0]

)

where 1[] denotes the indicator function.

Combined Metrics: These metrics require both flow and
occupancy predictions to be accurate: Flow-Traced (FT)
AUC measures AUC(WEOK, OF). Flow-Traced (FT) IoU
measures Soft-ToU(W/IOK, OF).

D. Results

We report results for applying our method to three separate
occupancy flow predictions tasks: 1) on the Crowds dataset,
2) for speculative objects in the Crowds dataset, and 3) on
the Interaction dataset.

Fig. | compares occupancy and flow metrics from two
models trained with and without the flow-trace loss on
the Crowds dataset. For metrics that require the chain of
flow predictions to be correct, i.e., FT AUC, FT IoU,
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Fig. 5: Occupancy and flow metrics separately for vehicles and pedestrians on the Crowds dataset. The plots compare
occupancy and ID recall metrics from two models trained with and without the flow-trace loss with MP3 [9]. For vehicles,
we also compare the models to occupancy grids generated from MultiPath [4], a trajectory prediction model.

Ours without trace loss Ours with trace loss

Time Occupancy Flow ID Flow-Traced Occupancy Occupancy Flow ID Flow-Traced Occupancy
(sec) AUC ToU EPE | Recall | AUC ToU AUC ToU EPE | Recall | AUC ToU
0.3 0.938 | 0.802 | 0.439 | 0.899 | 0.920 0.796 0.939 | 0.802 | 0458 | 0.950 | 0.941 0.817
0.6 0.898 | 0.720 | 0.456 | 0.841 | 0.876 0.708 0.899 | 0.723 | 0.536 | 0915 | 0.896 0.734
0.9 0.853 | 0.636 | 0.528 | 0.800 | 0.825 0.626 0.860 | 0.641 | 0.632 | 0.886 | 0.851 0.652
1.2 0.796 | 0.551 | 0.591 | 0.762 | 0.764 0.544 0.801 | 0.557 | 0.736 | 0.859 | 0.796 0.563
1.5 0.717 | 0461 | 0.667 | 0.724 | 0.687 0.457 0.730 | 0.472 | 0.797 | 0.825 | 0.723 0.476
1.8 0.651 | 0.389 | 0.722 | 0.698 | 0.620 0.388 0.659 | 0.396 | 0.820 | 0.807 | 0.652 0.401
2.1 0.576 | 0.324 | 0.811 | 0.683 | 0.544 0.323 0.578 | 0.324 | 0.870 | 0.791 | 0.572 0.328
2.4 0.509 | 0.271 | 0.887 | 0.663 | 0.475 0.270 0.509 | 0.268 | 0.893 | 0.775 | 0.503 0.272
2.8 0.432 | 0.229 | 0.935 | 0.649 | 0.399 0.228 0.429 | 0.229 | 0.935 | 0.766 | 0.425 0.234
3.0 0.366 | 0.187 | 0.947 | 0.635 | 0.338 0.188 0.369 | 0.190 | 0.995 | 0.751 | 0.365 0.196

MP3AK : 1,t+0.6s MP3lK = 3,t+0.6s Our§ K.= 1,t+0.6s
Fig. 6: Predictions by MP3 (with K =1, K = 3 flow fields)
and our model (K = 1) on a sample scene. Unlike MP3, our

backward forward flow fields have the capacity to disperse
predicted occupancy in noisy datasets.

and ID recall, using the flow-trace loss leads to signifi-
cant improvements. Note that the flow-traced occupancy
metrics tend to be lower than regular occupancy metrics,
as they compare W;O, against ground truth and we have
WOy < Oy. In other words, the best the trace process
in W; can do is to reach all predicted occupancies and
retain their intensities. We observe that when training with
the trace loss, the flow-traced occupancy metrics can reach

the same level as the simpler occupancy metrics. We notice
that for pedestrians the flow-traced metrics can even surpass
the simple metrics. Since multiplying W, can only lower
the predicted occupancy values O, we conjecture that the
improvement must be happening through W, wiping out
some predicted occupancies that are improbable according
to flow predictions, and thereby improving the match with
the ground truth.

We compare our occupancy prediction method with a
state-of-the-art trajectory prediction model, MultiPath [4],
by converting its predictions to occupancy grids. For a
consistent comparison, we train the MultiPath backbone and
decoder on the same feature maps obtained from our sparse
encoder. We convert the top 6 most-likely trajectories with
likelihoods and Gaussian uncertainties to occupancy grids by
rasterizing the predicted oriented agent boxes and convolving
them with the two-dimensional Gaussian predicted for that
timestep, weighted by the associated trajectory likelihood.
As Fig. [ shows, our rich non-parametric occupancy grid
representation outperforms the trajectory model.

Fig. |§| also compares our models with MP3 [9], which
predicts a set of K forward flow fields and associated
probabilities. Our single backward flow representation per-
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Fig. 7: Regular and speculative predictions on two sample scenes (top two and bottom two rows) from the Crowds dataset.
The left four columns display predictions for vehicles, and the right four columns show pedestrians. For each scene, a
single flow prediction (F}) and three combined flow and occupancy predictions (£}.O;) are shown. Gray boxes show the
recent state of input agents and the clouds visualize predicted occupancy and flow. Regular occupancy is predicted on the
path of moving agents. Speculative occupancy is predicted in regions which might contain agents currently hidden from the
AV (black box near bottom).
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Fig. 8: Occupancy (AUC, Soft-IOU) and flow (EPE) metrics for the speculative model on the Crowds dataset.
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Fig. 9: Occupancy and flow metrics on the Interaction dataset, which contains only vehicles. The plots compare occupancy,
flow, and ID recall metrics from two models trained with and without the flow-trace loss. Training the model with the
flow-trace loss leads to significant improvements.

forms favorably against MP3 despite having a more compact
representation. We match MP3’s performance with K = 3
for pedestrians with just one flow field. For vehicles, we
outperform it even with K = 3. MP3’s flow representation

is less compute- and memory-efficient. For K = 3, each
timestep needs 9 output channels compared to just 2 in our
method. We had to train separate MP3 models for each agent
class to fit into the memory—giving it an advantages since



our models predict all agent classes.

MP3 does not directly supervised occupancy, and its
forward flow fields have a limited capacity in spreading
occupancy in uncertain situations. With K = 3 fields, each
currently-occupied pixel can move to at most three locations
in the next timestep and touch at most 12 pixels with bilinear
smoothing. In noisy datasets where the motion of objects
can be uncertain, MP3 struggles to cover all possible future
locations of agents, and can produce predictions with agents
disintegrating into disjoint pixels. Fig. [6] demonstrates this
behavior. Moreover, our occupancy representation allows for
modeling occupancy of speculative agents, a very important
class of agents for AVs, which is not possible with MP3.

Fig. [8| shows occupancy and flow metrics for the spec-
ulative occupancy prediction task. The metrics are worse
in absolute values, since speculative prediction is a harder
problem. Note that unlike the main problem, speculative
occupancy metrics improve over time, since speculative
objects are harder to predict in near future than far future.
Most scenes have no agents disoccluding in the near future.
However, it is possible to anticipate potential disocclusions,
e. g., around the corners, with the forward motion of the
AV or other agents. Fig. [/ visualizes regular and speculative
occupancy flow predictions on two sample scenes.

Fig. [9] compares occupancy and flow metrics on the
Interaction dataset from two models trained with and without
the flow-trace loss. We have included the metric values on
this dataset in Table [I] as well. Again, we see significant
improvements in metrics that depend on the chain of flow
predictions. Regular occupancy metrics slightly improve un-
der the flow trace loss as well. However the one-step flow
accuracy metric regresses for the model trained with the trace
loss, especially for early timesteps. Since object detection
and pose estimation models are often run independently from
frame to frame, the AV datasets typically include very noisy
readings. Often even bounding box extents fluctuate between
subsequent frames, which leads to noisy occupancy and flow
labels in ground-truth. The trace loss incentivizes the model
to smooth out these fluctuations and learn the true behavior
of the agents to be able to capture their long-term motion
patterns, rather than trying to model the noise and temporal
inaccuracies in the detection pipeline.

V. CONCLUSIONS

In this paper we proposed a motion forecasting model that
predicts both occupancy and flow on a spatio-temporal grid,
allowing us to predict not only the probabilistic location,
but also the extents, motion, velocity and identity of agents
(whether observed or speculative) in the future. We also
showed that our method for warping current occupancies
based on flow predictions can improve our motion forecast-
ing metrics. Future work can explore gains from predicting
speculative occupancies in an AV planning application.

REFERENCES

[1] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kiimmerle, H. Konigshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “Interaction dataset: An international, adversarial and

[2]

[3]

[6]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

cooperative motion dataset in interactive driving scenarios with se-
mantic maps,” arXiv:1910.03088, 2019.

S. Thrun and A. Biicken, “Integrating grid-based and topological
maps for mobile robot navigation,” in Proceedings of the National
Conference on Artificial Intelligence, 1996, pp. 944-951.

T. Buhet, E. Wirbel, A. Bursuc, and X. Perrotton, “Plop: Probabilistic
polynomial objects trajectory prediction for autonomous driving,” in
CoRL, 2021, pp. 329-338.

Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,”
CoRL, 2019.

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, er al., “Argoverse: 3d
tracking and forecasting with rich maps,” in CVPR, 2019, pp. 8748-
8757.

H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in /CRA,
2019, pp. 2090-2096.

T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.
Wolff, “Covernet: Multimodal behavior prediction using trajectory
sets,” in CVPR, 2020, pp. 14074-14 083.

M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” RSS, 2019.
S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified model to map,
perceive, predict and plan,” in CVPR, 2021, pp. 14403-14412.

J. Hong, B. Sapp, and J. Philbin, “Rules of the road: Predicting driving
behavior with a convolutional model of semantic interactions,” in
CVPR, 2019, pp. 8454-8462.

A. Jain, S. Casas, R. Liao, Y. Xiong, S. Feng, S. Segal, and R. Urtasun,
“Discrete residual flow for probabilistic pedestrian behavior predic-
tion,” in CoRL. PMLR, 2020, pp. 407-419.

S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict
intention from raw sensor data,” in CoRL, 2018, pp. 947-956.

D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-
to-end 3d detection, tracking and motion forecasting with a single
convolutional net,” in CVPR, 2018, pp. 3569-3577.

S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
ICCV, 2009, pp. 261-268.

A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi, and
S. Savarese, “Car-net: Clairvoyant attentive recurrent network,” in
ECCV, 2018, pp. 151-167.

J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and
G. P. Gil, “Multi-head attention for multi-modal joint vehicle motion
forecasting,” in /CRA, 2020, pp. 9638-9644.

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajec-
tron++: Multi-agent generative trajectory forecasting with heteroge-
neous data for control,” arXiv preprint arXiv:2001.03093, 2020.

S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. R. Qi, Y. Zhou, et al., “Large scale interactive motion
forecasting for autonomous driving: The waymo open motion dataset,”
in ICCV, 2021, pp. 9710-9719.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in CVPR, 2019, pp. 12697-12705.

J. Kim, R. Mahjourian, S. Ettinger, M. Bansal, B. White, B. Sapp, and
D. Anguelov, “Stopnet: Scalable trajectory and occupancy prediction-
for urban autonomous driving,” in ICRA, 2022.

M. Tan, R. Pang, and Q. Le, “Efficientdet: Scalable and efficient object
detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020.

N. Fairfield and C. Urmson, “Traffic light mapping and detection,” in
ICRA, 2011, pp. 5421-5426.

B. Yang, M. Liang, and R. Urtasun, “Hdnet: Exploiting hd maps for
3d object detection,” in CoRL, 2018, pp. 146-155.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” TPAMI, vol. 40, no. 4,
pp. 834-848, 2017.

G. Mittyus, W. Luo, and R. Urtasun, “Deeproadmapper: Extracting
road topology from aerial images,” in /CCV, 2017, pp. 3438-3446.



	I Introduction
	II Related Work
	III Method
	III-A Representation
	III-B Inputs
	III-C Occupancy Flow Prediction
	III-D Speculative Occupancy Flow Prediction
	III-E Model
	III-F Losses
	III-F.1 Flow Trace Loss

	III-G Recovering Agent IDs Using Flow Traces

	IV Experiments
	IV-A Datasets
	IV-B Training Setup
	IV-C Metrics
	IV-D Results

	V Conclusions
	References

