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Constrained Motion Planning of A Cable-Driven Soft Robot
With Compressible Curvature Modeling

Jiewen Lai, Bo Lu, Qingxiang Zhao, and Henry K. Chu

Abstract—A cable-driven soft-bodied robot with redundancy
can perform the tip trajectory tracking task and in the meanwhile
fulfill some extra constraints, such as tracking with a designated
tip orientation, or avoiding obstacles in the environment. These
constraints require proper motion planning of soft material-based
body that can be axially compressed. In this letter, we derived the
compressible curvature kinematics of a cable-driven soft robot
which takes the undesirable axial compression that caused by the
cable-driven mechanism into account. The motion planning of the
soft robot for tip trajectory tracking tasks in constrained condi-
tions, including fixed orientation end-effector and manipulator–
obstacle collision avoidance, have been investigated. The inverse
solution of cable actuation was formulated as a damped least-
square optimization problem and iteratively computed off-line.
The performance of path and trajectory tracking and the
obedience to constraints were evaluated via the simulation we
made open-source, as well as the prototype experiments. The
method can be generalized to the similar multisegment cable-
driven soft robotic systems by customizing the robot parameters
for the prior motion planning in tip trajectory following tasks.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Whole-Body Motion Planning and Control, Constrained
Motion Planning

I. INTRODUCTION

SOFT robots are primarily composed of materials with low
Young’s moduli that are comparable with the biological

materials like muscles [1], [2]. They can be potentially used in
many applications, such as robot-assisted minimally invasive
surgery [2]–[5] and laser steering [6]. Using a robot tip to track
a designated trajectory poses an essential scene of automation.
The field of conducting trajectory tracking using rigid-bodied
robots has been well-explored, while challenges remain for the
soft-bodied robots, especially when they are redundant. The
elasticity of the soft materials, as well as the way of actuation,
would bring complex variation to the robot modeling.

For a Cable-Driven Soft (Continuum) Robot (CDSR) which
requires at least 3 actuation cables to achieve spatial manip-
ulability, one can adopt the geometrically-derived piecewise
constant curvature (PCC) approach to obtain the closed-form
solutions for modeling [7]–[10]. If assuming the arc length
(robot’s “backbone”) to be constant, the PCC would simplify a
robot segment to a 2-DOF module. It has been experimentally
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validated that the neutral axis of a continuum segment would
conditionally perform as a constant-curvature arc [9].

However, the simplification or approximation of constant
arc length in solving the modeling equations may not pre-
cisely reveal the robot configuration, especially when the
axial compression of the soft body is significant enough to
vary the body stiffness along with different directions [11].
Some groups provided a general approach to update the arc
length with respect to the bending [10]. Other model-based
methods with better applicability have also been proposed
[8], [12]–[15]. Particularly, the inevitable axial compression
of the cable-driven continuum robots has been investigated
and modeled in [8] and [12] using a mechanic-based method.
Based on a series of proof-of-concept verification in 2-D, the
actuation-associated axial strain has been studied with the
cable decoupling being considered at the system level. This
could be further introduced to the 3-D scenarios with the
constrained motion being assigned.

The other thing is that many soft robots reported in the
literature exclude the control of tip orientation, i.e., only the tip
position is considered [16], [17]. One of the major reasons is
that the adoption of the PCC model simplifies the controllable
DOFs, requiring a soft manipulator to have at least three
segments to have full control in the task space [18]. But
prototyping a CDSR with three or even more segments could
be challenging due to the densely distributed cables, especially
when it comes to the millimeter-grade, not to mention the
complicated coupling among the segments.

Moreover, a redundant robot is also capable of providing
alternative motions for the designated tip position, and these
motions can lead to collision-free control in the obstructed
environment. Related work have been done in terms of sim-
ulation [19], [20] and 2-D prototype experiments [21]–[23].
Collision-free motion planning for a redundant CDSR under
the constrained conditions remains an important topic in the
field. On one hand, the cable-driven mechanism benefits the
miniaturization of a spatially maneuverable soft robot. On the
other hand, proper motion planning would gift the redundant
soft robots the ability to work in constrained conditions, such
as the task-based manipulation and manipulator-obstacle col-
lision avoidance, both of which might interest the physicians.

In this letter, we explicitly derive the kinematic model for
a multi-segment cable-driven soft robot on a linear stage
(i.e., 3n + 1 DOFs, where n denotes the number of soft
segments with three cables for actuation) with improved
accuracy by accounting for the passive axial compression
which is undesirably caused by the actuation and the coupling
effect between segments. The conventional PCC provides the
framework for the model-based control of continuum robots,
but the applicability is not good enough for CDSRs where the
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Fig. 1. Sketch of a CDSR. The axial compression is colored in purple. The
sketch at the right is partially modified from [8]).

multiple cable actuation for desired bending would at the same
time introduce undesirable axial compression and coupling.
Our improved model offers a higher accuracy and will be more
realistic in the task space with the above-mentioned condition
considered. In addition, a multi-segment CDSR simulator was
developed to illustrate the robot performance under different
constrained conditions, including (i) fixing the orientation of
the tip, and (ii) avoiding obstacles in tip path following.
The improved model and motion planning method were also
examined through an experimental platform with 2 segments
to evaluate the actual performance and compare with the
simulation results.

II. COMPRESSIBLE CURVATURE MODEL

A. Mechanics of A Single Soft Segment
A continuum manipulator is usually designed with a flexible

backbone along the neutral line to support the equidistantly
distributed discs. The flexible backbone has a high stiffness
Ka along its axial spine, and relatively low stiffness Kb in
its lateral direction, so that it provide an ideal “bending”
deformation. However, for a soft material-based robot without
a backbone, the axial stiffness Ka can be small, and neglecting
its effect could cause a perceptible error in the task space,
given that most of the maneuverable soft robots are extrin-
sically driven. Therefore, we take the relationship between
cable-driven mechanism and its undesirable axial compression
into the modeling consideration.

Leveraging from the PCC model in [7], for a multisegment
soft robot with n segments, the k-th soft segment (k ≤ n)
can be geometrically parameterized in the configuration space
by ψk = [θk, φk, κk]> where θk ∈ [0, θmax] is the angle of
bending, φk ∈ [−π, π) is the angle of bending direction, and
κk is the bending curvature related to the initial undeformed
length of the segment Lk (therefore, time-invariant) and κk =
θk/Lk. Thus, the position of the k-th segment with respect to
its base frame Σk−1 can be expressed by

xk−1
k =

xkyk
zk

 =
1

κk

cosφk (1− cos θk)
sinφk (1− cos θk)

sin θk

 . (1)

As depicted in Fig. 1, the configuration of the k-th segment
ψk can be derived from the cable actuation as [7]

θk(q)=
2
√
q2
k,1+q2

k,2+q2
k,3−qk,1qk,2−qk,1qk,3−qk,2qk,3

3r
,

(2)
φk(q)=atan2

(
3 (qk,2−qk,3) ,

√
3 (qk,2+qk,3−2qk,1)

)
,

(3)

κk(q)=
2
√
q2
k,1+q2

k,2+q2
k,3−qk,1qk,2−qk,1qk,3−qk,2qk,3

3r/Lk
,

(4)
where r denotes the (constant) symmetric distance between the
center of the cross-section and the cable channel, and qk,i ⊆
qk denotes the actuation-by-length of the i-th cable of k-th
segment, given by the subtraction of the in-body cable length
Lk,i and the length of the neutral line Lk as

qk,i = Lk,i − Lk = −θkr cos (φk + (i− 1) ξ), (5)

where i ∈ {1, 2, 3} and ξ = 2π
3 . Thus, the joint variables

of the k-th segment expressed in the linear displacements
of the actuation cables can be written in the form of qk =
[qk,1, qk,2, qk,3]> ∈ Q3, with Q3 being an admissible space
on which the unconstrained joint variables can evolve. Note
that Q3 6⊂ R3 since the parameter θk ∈ [0, θmax] is bounded.
The above equations (1)–(5) conclude the PCC model of a
continuum segment, of which the neutral line Lk is assumed
to be constant. However, for a compressible soft segment, the
segment length sk is a variable related to the tensile force
of cables—within the elastic limit, a shorter segment would
be expected under a higher tensile force. Note that sk ≤ Lk.
It results in a compressible curvature arc. The cable length
variables can be mapped with the tensile force variables under
several assumptions, including (i) the neutral line deforms
as a circular arc, (ii) the soft segment demonstrates a linear
elasticity under tensile force, (iii) the friction between the
cable and channel is omitted, (iv) the gravitational potential
energy of the elastomer is neglected [9] (see supplementary).

For a multisegment soft robot with n segments coupled
together, as a result of the accumulative tensile force, the axial
strain of the (k − 1)-th segment would be larger than that of
the k-th segment. In the local k-th segment, we assume the
tensile force of the cables as fk = [fk,1, fk,2, fk,3]>. When
cables are actuated and at the equilibrium, a suitable candidate
function fk : Q3 7→ R3 that maps to the joint variables to a
force vector that satisfies the quasi-static equilibrium for all
qk,i ∈ Q3 can be concluded, such that

φk (f) = atan2
(

3 (fk,2 − fk,3) ,
√

3 (fk,2 + fk,3 − 2fk,1)
)
.

(6)
In a quasi-static state, as shown in Fig. 1, we can write the
static equilibrium equation for a single cable as [8]

Fk,i = Feq,i + fk,i + f ′k,i = 0, (7)

where fk,i and f ′k,i are the cable tensile and the reaction force
perpendicular to the tip plane, respectively. Note that, different
from the unbolded fk,i, the bolded fk,i represents the vector
of tensile. Feq,i ∈ R3 denotes the resultant equilibrium force
that bends the segment, which can be derived by taking the
integration over the time-variant arc length sk as

Feq,i =

∫ sk

0

wi (σk) dσk = κ−1
k

∫ θk

0

wi (σk) dσ
[θ]
k

= κ−1
k

∫ θk

0

Rk−1
k ·

−fk,iκk cos (φk+(i−1) ξ)
−fk,iκk sin (φk+(i−1) ξ)

0

dσ
[θ]
k ,

(8)
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where wi (σk) denotes the distributed load in an infinitesimal
cable length of σk, with dσk = κ−1

k dσ
[θ]
k , and Rk−1

k is the
rotation matrix that defines the k-th frame orientation w.r.t.
that of the (k − 1)-th frame as

Rk−1
k = Rot (z̄k−1, φk)·Rot (ȳk−1, θk)·Rot (z̄k,−φk) , (9)

where the operator Rot(ūk, δ) ∈ SO (3) is the rotation matrix
of rotating angle δ along the unit axis ūk of the k-th segment.

As the cables are equally distributed, based on Eq. (8), we
take the triple product of them and find out that

F>eq,1 · (Feq,2 × Feq,3) = 0, (10)

meaning that the three resultant equilibrium forces are copla-
nar vectors (abbreviation for s = sin and c = cos). Given
the fact that Feq,i is a function of fk,i, we can conveniently
decouple the tensiles. As the soft segment bends, the resultant
of torque acting on the tip of the k-th segment, τk, can be
derived from the sum of cable tensile as

τk =

3∑
i=1

(ri × fk,i) = r

3∑
i=1

(fk,i cos (φk + (i− 1) ξ)) ,

(11)
where × denotes the cross-product operation because there are
i different cables, and ‖ri‖ = r, with ri being the concerning
vector from the neutral line to the i-th cable in a distance
of r. From (6), one can obtain cosφk(f) and sinφk(f) (see
supplementary), such that (11) can be rewritten as

τk = −rFk, (12)

where Fk=
√
f2
k,1+f2

k,2+f2
k,3−fk,1fk,2−fk,1fk,3−fk,2fk,3.

In this model, we consider the cross-sectional area as Ak =

π
(
r2
o,k − r2

i,k

)
where both radii are variables subjected to the

compression of the soft body, and the segment length can be
derived as

sk (f) = Lk

(
1 +

∑n
j=k

∑3
i=1 fj,i

EAk

)
(13)

which in fact defines a variable axial stiffness. The variable
radii are given by

ro,k (f) = ro

1−
ν
∑n
j=k

∑3
i=1 fj,i

Eπ
(
r2
o,k − r2

i,k

)


ri,k (f) = ri

1−
ν
∑n
j=k

∑3
i=1 fj,i

Eπ
(
r2
o,k − r2

i,k

)
 ,

(14)

where ro and ri are the original radii of the soft segment, and
ν = 0.45 is the Poisson’s ratio of the soft body. The derivation
of Eq. (14) is available in the supplemented page and codes.
When the robot is compact with a relatively large aspect ratio
( roLk

), like the robot adopted in our paper, the effect on the
radial change may not be obvious. Nevertheless, robots made
from soft materials with a high Poisson’s ratio, low elastic
modulus, and a long segment length would see the difference.

The local bending angle can be derived as the free-end
slope of a cantilever beam under a couple moment of Mk

by dθk/ds = Mk/EI , which yields

θk (f) =

∫ sk

0

Mk

EI
ds =

rFksk
Kb

=
Mk

KT,k
, (15)

where Kb = EI is the flexural rigidity of the structure, Mk =
|τk| is the local bending moment of the k-th segment, Mk

is the bending moment of the k-th segment subjected to the
variable length, and particularly,

KT,k (sk) =
Kb

sk
=
EI

sk
=
Eπ
(
r4
o,k − r4

i,k

)
4sk

(16)

denotes the bending stiffness of the k-th segment, which
can vary dramatically for a soft-bodied robot. And thus, the
curvature related to the cable tensile can be computed as

κk (f) =
θk (f)

sk (f)
. (17)

Eq. (16) indicates the fact that the segment compression would
result in a variable bending stiffness locally, and the proximity
toward the base implies an even stiffer case. Therefore, for a
multisegment soft robot with coupled cables, the local bending
stiffness of each segment shall be different and relevant if
it is not being the distal-most. Instead of terming the local
bending stiffness independently [12]–[14], we formulate the
variable stiffnesses that are responsive to the axial compres-
sion, therefore, the cable actuation. The formulation suggests
that the undesirable axial compression will not only affect
the tip positioning, but also the necessary inverse solution in
reality. A numerical verification will be provided in Sec. VI-A.

B. Mechanics of A Coupled Soft Segment
Since the cables of the distal segment would pass through

the channels of the proximal segments, the coupling effects
shall be considered. In this subsection, we use a hat sign to
represent the coupled configurations of the relative proximal
segments, namely, ψ̂k = [θ̂k, φ̂k, κ̂k]>, where k 6= n.

The bending angle of the far-most n-th segment, θ̂n, is only
related to the local tensile fn. Therefore, its configuration can
be obtained using (6), (15), and (17). However, the bending
and twisting of the (n − 1)-th segment is subjected to the
local actuation qn−1 as well as the successive actuation qn.
The manipulation of the successive segment would generate
an additional moment that couples the configuration of its
previous segment backward [12], denoted by

M̂n−1 =Mn−1 + M̂n, (18)

where M̂n−1 denotes the incorporated moment acting on
the (n − 1)-th segment, and M̂n ≡ Mn. Eq. (18) can be
trigonometrically solved by giving arbitrary local directions
[14]. After reformulation, the general coupled configuration
can be solved as

θ̂n−1 =
1

KT,n−1

(
M2

n−1 +K2
T,nθ

2
n

+2Mn−1KT,nθn cos (φn−1 − φn + ζ))
1
2 ,

(19)

φ̂n−1 = π − atan2 {Mn−1 cosφn−1 +KT,nθn cos (φn − ζ) ,

Mn−1 sinφn−1 +KT,nθn sin (φn − ζ)} .
(20)

Hence, the coupled curvature of the (n − 1)-th segment can
be obtained as

κ̂n−1 =
θ̂n−1

sn−1
. (21)
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Note that these coupled configurations are “compression-
responsive”, implying infinite solutions in the joint space
unless with the bending stiffness KT,k being specified.

III. ROBOT DESCRIPTION

In this work, we evaluated the methodology using a two-
segment CDSR prototype in [5]. The dimension and physical
parameters of the robot are given in Fig. 2. As shown in Fig.
2, for the second segment, three servo motors with actuation
cables are installed with an offset of 180°, viz., ζ = π. The
manipulator is vertically mounted on a linear slide to form an
insertion-retraction motion which is noted as q0 and q0 ≥ 0.
Therefore, the actuator space can be expressed as

q =
[
q0 q1,1 q1,2 q1,3 q2,1 q2,2 q2,3

]>
, (22)

where qc :=
[
q1,1 q1,2 q1,3 q2,1 q2,2 q2,3

]>
is defined

as the cable actuation. The cables we used were braided fish
wire, which was relatively stiff in the axial direction (maxi-
mum 30 kg-force of tension) and thus they are assumed to be
inextensible under the actuation of the selected servo motors
(Dynamixel XM430-W350, ROBOTIS) with a capability of
maximum 10 Nm of torque. Therefore, the tensile force of
cables can be analogously directed as the motor actuation. The
homogeneous transformation matrix of the tip with respect to
a spatially-fixed world frame Σ0 can be expressed as

T0
tip (q) =

[
I3×3 H
01×3 1

] [
R̂0

1 x̂0
1

01×3 1

] [
R̂1

2 x̂1
2

01×3 1

]
, (23)

where H = [0, 0, q0]> denotes the slide motion.

IV. OPTIMIZATION-BASED CONSTRAINED MOTION
PLANNING FOR TRAJECTORY TRACKING

Given a linear velocity for the robot tip ẋ ∈ R3 where
ẋ = ẋ0

k, the corresponding actuation velocity that drives that
robot tip to reach the goal shall be inversely computed by

q̇ = J†ẋ +
(
I− J†J

)
q̇N , (24)

where J (q) ∈ R3×7 is a Jacobian matrix inferring a redundant
robot, and (·)† denotes the right pseudo inverse operator as
J>
(
JJ>

)−1
. The second term projects the components of q̇N

to the null space of J, with I being a 7-by-7 identity matrix.
When the Jacobian matrix is updated in each time instance,

the change in the tip position in an infinitesimal period of time
∆x can be approximated based on the change of the actuation
∆q, such that ∆q = J†∆x.

The above equation may provide infinite solutions due to
the system redundancy. However, it can be solved using some
numerical approaches. One can solve the inverse kinematics of
using a Jacobian-based pseudo-inverse method with a full rank
J (q). The other numerical approach utilizes the damped least-
squares (DLS) inverse [24], which can avoid singularities with
proper selection of the damping parameter λ, and provides a
numerically stable method of selecting ∆q. In order to solve
the needed actuation q for a desired path Xd = [x

(1)
d , ...,x

(N)
d ]

expressed by a finite set of discrete N nodes, we compute
the inverse kinematics (IK) by solving a convex least-square
optimization problem as

arg min
∆q

‖J∆q −∆x‖22 + λ2‖∆q‖22, (25)

where λ ∈ R>0 is a non-zero damping constant. This quadratic
optimization computes ∆q that minimizes the error between
the generated tip position and the desired tip position (first
term), considering the feasible minimum motion in the actua-
tion space (second term). It can generate one of the solutions
which fulfills the requirement of tip path following, but the
manipulator’s motion may not be optimal. By exploiting the
null space as introduced in (24), more sub-goals can be
included to satisfy different constraints from the environment
and on the robot. In this paper, we consider two important
constraints for the motion planning.

A. Constraint 1: Fixed Orientation End-Effector

The control of the orientation of the soft robot’s tip is crucial
in many applications but has rarely been reported. However,
the problem can be well-solved by adding the incremental
change of tip orientation as an optimization term. Let the
instantaneous change of tip orientation at the j-th point of
the desired path Xd be represented by the Euler angles as
Ω
(

∆q
(j)
c

)
= ∆

[
α(j) β(j) γ(j)

]>
. The Euler orientation

of the tip is only related to the cable actuation qc ⊆ Q3n.
Hence, the optimization (25) can be reformulated as

arg min
∆q

‖J∆q−∆x‖22+

3∑
i=1

‖Ωi (∆qc)−∆Ωi‖22+λ2‖∆qc‖22

s.t. A ·∆q ≤ b and qmin ≤ q ≤ qmax,
(26)

with A = diag(10−3, 1, 1, 1, 1, 1, 1) and b = 0.01 · ones(7, 1),
both of which define the linear inequality constraints. The
parameters are empirically selected with the rule that the slide
motion shall be minimal compared to the manipulator’s, other-
wise, the slide (joint) motion will be significant, compared to
the cables’, as they share the same unit of mm. Ωi means the
i-th row of the column vector, and ∆Ωi is the desired change
in tip orientation. Based on the work region of the robot tip,
the bounded conditions are set as qmin = −[0, 2, 2, 2, 2, 2, 2]>,
qmax = [60, 0, 0, 0, 0, 0, 0]>. Compared to (25), the additional
term in (26) minimizes the error between the generated task-
space orientation change and the desired task-space orientation
change under the linear inequality and bounded constraints.
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B. Constraint 2: Manipulator-Obstacle Collision Avoidance
As introduced in (24), the null space motion enables the

CDSR to perform tip trajectory tracking in an obstructed
environment without any manipulator–obstacle collision.

For an obstacle with an arbitrary shape, a sphere, with a
radius of Robs and a spatial centroid of O, can be defined
to enclose the entire obstacle. The (cylindrical) radius of the
CDSR is Rsr, and therefore the critical distance between the
virtual backbone of the CDSR and the obstacle centroid for
collision is Robs + Rsr. Thus, the critical distance at the
moment of collision shall be defined as the minimal Euclidean
distance that connects the obstacle centroid O to the critical
point of the robot virtual backbone at a particular instant of
actuation S (∆q) as

if min ‖S (∆q)−O‖2


< Robs+Rsr collision
= Robs+Rsr critical dist.
> Robs+Rsr no collision,

(27)

where min (·) returns the minimum of (·). Therefore, as shown
in Fig. 3, the collision avoidance can be regulated as the
minimization of

G (∆q) =
Robs +Rsr

min ‖S (∆q)−O‖2
. (28)

Noted that G (∆q) → 0 refers to the cases without possible
collision, i.e., min ‖S (∆q) − O‖2 � Robs +Rsr. In this
regard, equation (25) can be revised as

arg min
∆q

‖J∆q −∆x‖22 + η‖G (∆q) ‖22 + λ2‖∆qc‖22

s.t. A ·∆q ≤ b and qmin ≤ q ≤ qmax,
(29)

where η is a positive constant to weight the sensitivity of
collision avoidance. The linear inequality and bounded values
still follow the setting in Constraint 1.

V. SIMULATION

This section will demonstrate the simulated results of the
constrained motion of a two-segment CDSR for tracing the
pre-defined paths without considering the time prescription,
with the additional requirement being fulfilled. The simula-
tions were written in Matlab using the parameters of our
prototype. The animation was built based on the plotting of a
number of 3-D points along the robot body by computing the
compressible curvature forward kinematics using the inverse
solution that being solved from the optimization. Codes are
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proximal segment is bent; (b) only the distal segment is bent; (c) both segments
were bent, but the proximal bending compensated the distal bending; (d) both
segments were bent in the same direction.

Algorithm 1: Optimization of constrained motion of CDSR

Input: Desired path/traj. Xd = [x
(1)
d , ...,x

(N)
d ] ∈ R3×N ,

optimization para. and constraints, desired orientation
Ωd ∈ R3×N or obstacle para. Robs, O

Result: Actuation q ∈ R7×N for the contrained motion
1 for i = 1 : N do
2 while ‖∆x‖2 > threshold do
3 Query qcurrent ∈ R7×1;
4 Calculate x0

tip = forwardKine (qcurrent);
5 Calculate ∆x = x

(i)
d − x0

tip;
6 Compute ∆q ← arg min∆q{objFun (∆x)} from

(26) or (29);
7 Set qcurrent ← qprevious + ∆q;
8 Set qprevious ← qcurrent;

9 Set q(i) ← qcurrent;

available onlinea. Please refer to the README.md files for
implementation. All simulations were performed using a PC
with an Intel Core i7-8750H CPU @2.20GHz 16GB RAM.

The basic bending motion of the CDSR using the improved
compressible curvature model is shown in Fig. 4. It can be seen
that, due to the coupling effect, actuating the distal segment
would result in a passive bending for the proximal segment.

A. Simulation 1: Fixed Orientaiton End-Effector

The path tracking tasks using a fixed orientation tip were
simulated based on the compressible curvature model. The
related demos are available in the supplementary video. The
simulation implemented equation (26) with the initial value of
∆qinit = −10−2[−0.01, 1, 2, 1, 2, 1, 2]> and an empirically-
selected damping coefficientb of λ2 = 0.1. The trial path were
represented by a finite number of nodes along its path using
parabolic functions. The tracking time can be controlled and
predicted based on N and the computational time of each
interval. The control algorithm is shown in Algorithm 1. The
goal is to use the optimized inverse solution to implement
the CDSR such that it can follow a pre-defined path with a
constrained motion. The time required to compute the solution
using the PC with the given specification is about 0.4 second
per for-loop using pure Matlab script. It can be further boosted
to an update rate of 60 Hz when being converted to C.

aURL: https://github.com/samlaipolyu/ncc motion planning
bLarger λ will result in a “stiffer” motion. Readers may try different values

using our code according to the practical need.

https://github.com/samlaipolyu/ncc_motion_planning
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Fig. 5. Simulation 1: tracking paths with the orientation of the end-effector fixed. Left: tracking a square with the tip pointing “upward” with respect to the
CDSR. Right: tracking an eight with its tip tilted by 45°. The corresponding cable actuation, tip position error, and tip orientation error are givena.

The simulation results of two examples are shown in Fig.
5. The left part of the figure demonstrates the tracking per-
formance of a planar square path (with N = 91 nodes) with
its fixed orientation end-effector. The desired tip orientation
was set as Ωd = [0, 0, 0]>, i.e., intuitively, pointing “upward”
with respect to the base frame, forming a vertical tip pose
throughout the path tracking process. With the desired path and
orientation predefined, the proposed DLS IK solver computes
the needed cable actuation in the form of tensile force (f < 0)
and the motion of linear slide q0 to compensate the change
of z0

tip for the desired working surfaces. Then, we input the
actuation to the simulator to visualize the move using forward
kinematics. The results indicate that CDSR motion generated
from the computed actuation can satisfy the tip positioning
within an absolute error of 0.8 mm. The orientation can be
well aligned as desired within a 1-degree error.

The tip orientation with respect to the world frame can be
assigned and maintained as much as possible. The right part of
Fig. 5 shows the simulation result of tracking an “8”-shaped
path (N = 91 nodes), with a desired orientation defined
as Ωd = [0, 0, 45]> degrees. The computed tip position
error norm is within 0.6 mm. The error in the tip pointing
angle γ is within 2°. The other two Euler angles, α and
β, are fluctuating but within minor angular errors. Another
two examples with more complex paths are given in the
supplementary. The accuracy of maintaining the orientation
depends on the magnitude of the tilted angle: higher accuracy
could be expected when the tip is completely “vertical”. The
method is also applicable in a changing orientation Ωd.

B. Simulation 2: Manipulator-Obstacle Collision Avoidance
The related demos are available in the supplementary video.

The simulation implemented equation (29) with the same
∆qinit and λ2 in Sec. V-A. Regarding the obstacle setting, we
consider a sphere located at O = [−10,−30, 90]> mm with
respect to the world frame Σ0, with a radius of Robs = 7.5
mm. The collision avoidance sensitivity is η = 0.1. The CDSR
shall complete the path tracking task accurately but avoid any
manipulator-obstacle collisions. To demonstrate the effective-
ness of our method, as shown in Fig. 6-a, we provide a circular
path with prescribed time, x

(t)
d = [41 cos (t) , 41 sin (t) , 110]>

mm with t = 0 : 2π sec in an π
45 interval, which would have

had a collision with the robot body under normal IK solution
from (25). By applying (29) to algorithm 1, the solver can
provide a null space solution such that the CDSR can adjust
its body motion and dodge the obstacle, while the tip keeps
tracing the planned path (Fig. 6-b).

VI. EXPERIMENT

A. Model Verification
Based on the numerical simulation, we verified the dif-

ferences on tip positioning between using the compressible-
associated Ka,k and KT,k versus the constant Ka and KT .
Here we provide two examples in Fig. 7. We first employed
a random set of actuation to the simulator and obtained a
proposed robot pose (Green) using KT,k (sk). Then, with
the same actuation, and setting the bending stiffness to be a
constantly defined Ka and KT , we could obtain a deviated
robot pose (Red). Based on our 100 mm-long prototype,
such tip positioning norm difference can be up to about 5
mm. A larger difference will be expected when using softer
materials or applying on longer robots. The results indicate
the importance of considering the axial compression when we
were modeling a soft material-based actuator.

The compressible curvature model on a soft segment was
experimentally verified. As depicted in Fig. 8, a planar bending
test was conducted on the proximal segment of a CDSR.
Due to the material softness, the segments would undergo an
axial compression when the cables were actuated. Here we
use an inextensible PCC model that excludes the arc length
variation when the robot is in motion, i.e., sk (f 6= 0) = Lk
as the baseline. Note that the PCC model should be fitted
to when sk(f = 0) = Lk. In Fig. 8, group 1 and group 2
denote the total arc length of 98 and 96 mm, respectively. The
result indicates that the inextensible PCC model for general
continuum robots may not be satisfactory enough for soft-
bodied robots. However, our compressible curvature model can
better predict the tip position with given actuation inputs.

B. Constrained Motion Planning
Experiments were conducted to evaluate the performance

of the proposed motion planning approach for a two-segment
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CDSR prototype based on the compressible curvature model.
Since the tensile force that applying on the inextensible
cables can be analogously viewed as the cable displacement,
we experimentally scaled the proportion between the applied
tensile force and cable displacement, i.e., qc = µf , where
µ = 18 mm/N based on the tuned cable tension. To produce a
smooth input for the motor, a moving median filter was used
to reduce the periodic trends and outliers in the solution. A
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Fig. 9. Experiment of tracking an oval with the tip being vertical to the ground
(tilt angle = 0°). Snapshot by time sequence; actuation input qc; tip positioning
error on 3 axes and orientation error; and overall tracking performance.

bench-top RGB-D camera (RealSense D435, Intel) was used
to retrieve the features of a labeled CDSR as shown in Fig. 2,
and transform the data to the world frame coordinate.

The performance of trajectory tracking under the constraint
1 (fixed orientation) have been tested. We used parametric
functions of time step to represent the trajectories. We verified
that the computed input can produce constrained manipulator
motions as desired with satisfactory accuracy. Fig. 9 shows the
results in the case where the end-effector was required to trace
an oval with its tip orientation being vertical to the ground. The
visual measurement indicates an axial error within 2 mm and
an orientation error within 10°. Fig. 10 shows the situation
when a 20° tilt angle was assigned to the CDSR under the
same path. Even though the positioning accuracy at the long
end of the elliptical path was not as good as in the vertical
case as the manipulator attempted to flex itself to maintain the
certain tip orientation along with the tracking, the result was
satisfactory in fulfilling the fixed orientation requirement.

The performance of trajectory tracking under constraint 2
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Fig. 11. Experiment of tracking a square in an obstructed environment with
collision-free motion planning of the soft manipulator.

(collision avoidance) has also been tested on the prototype.
A �15 mm spherical obstacle was located at [−10,−15, 95]
mm in Σ0, which would have had blocked the robot motion
in tracking the square trajectory. By deploying the proposed
motion planning method, the computed inverse solution was
able to drive the CDSR to avoid collision with the desired
tip path being tracked (Fig. 11). The experiment shows that
the tracking error was within 5 mm, which was overall
satisfactory. However, it should be noted that, aligning with
the simulation result, the error of tracking would be enlarged
near the critical point of collision due to the deliberate motion
for the avoidance. This can be treated as a trade-off for the
collision-free motion depending on the selection of η.

VII. CONCLUSIONS

In this work, we demonstrated a constrained motion plan-
ning approach incorporated with the compressible curvature
modeling for a multisegment cable-driven soft robot under
the segment coupling effect. The robot modeling includes the
undesirable segment shortening due to the material elasticity
and cable-driven mechanism. Based on the mechanics of the
cable and soft body, the decoupled mapping among spaces
of the actuator, configuration, and task were derived. On top
of that, we developed an optimization-based motion planning
algorithm to extend the controllability of a redundant soft
robot for tip trajectory tracking in constrained conditions,
including with a fixed orientation tip, and with the avoidable
manipulator–obstacle collision. Based on a two-segment robot
prototype, numerical simulation and experiments were carried
out to confirm and evaluate the explicitly-formulated model
and the proposed algorithm for tip trajectory tracking tasks.

Our method may be generalized for similar multisegment
cable-driven soft robots in constrained motion planning.

However, force-related interaction has been excluded in the
current method. Future effort may be made in studying the
variable-stiffness motion planning by exploiting the soft body
compression which varies the soft body’s stiffness.
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