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Abstract—High-Definition (HD) maps can provide precise geo-
metric and semantic information of static traffic environments for
autonomous driving. Road-boundary is one important information
presented in HD maps since it distinguishes between road areas and
off-road areas, which can guide vehicles to drive within road areas.
But it is labor-intensive to annotate road boundaries for HD maps
at the city scale. To enable automatic HD map annotation, current
work uses semantic segmentation or iterative graph growing for
road-boundary detection. However, the former could not ensure
topological correctness since it works at the pixel level, while the
latter suffers from inefficiency and drifting issues. To provide a
solution to the aforementioned problems, in this letter, we propose
a novel system termed csBoundary to automatically detect road
boundaries at the city scale for HD map annotation. Our network
takes as input an aerial image patch, and directly infers the
continuous road-boundary graph (i.e., vertices and edges) from this
image. To generate the city-scale road-boundary graph, we stitch
the obtained graphs from all the image patches. Our csBoundary
is evaluated and compared on a public benchmark dataset. The
results demonstrate our superiority. The project page is available
at https://sites.google.com/view/csboundary/.

Index Terms—City-scale road-boundary Detection, HD map,
Self-attention, Autonomous Driving.

I. INTRODUCTION

ROAD boundary is important for autonomous vehicles. It
can distinguish road areas from off-road areas, so that

vehicles could be constrained within safe regions and poten-
tial accidents could be avoided. Early work usually detects
road boundaries with on-vehicle sensors, such as LiDAR and
camera [1], [2]. However, robustly detecting road boundaries
is challenging, since boundaries are long-and-thin and usually
with irregular shapes. Moreover, occlusions often happen on
real roads, which severely degrades the detection performance.
To provide a solution to the aforementioned problems, high-
definition maps (HD maps) have been widely used in existing
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autonomous driving systems. Recent progress in this area has
witnessed several methods using aerial images to automatically
annotate line-shaped objects (e.g., road-lane and road-boundary)
in HD maps.

Typically, HD maps are hand-labeled from bird-eye-view
(BEV) images, such as high-resolution aerial images, or over-
head images from pre-built point-cloud maps. With the rapid
development of aerial photography and remote sensing, high-
resolution aerial images could be easily accessed all over the
world. In addition, unlike pre-built point-cloud maps that are
expensive to create and update, high-resolution aerial images
are more cost-effective. In our previous work, we released a
benchmark dataset of aerial images, topo-boundary [3], for road-
boundary detection. With this dataset, we propose to automati-
cally annotate a city-scale HD map of road boundaries in New
York City (NYC) in this work.

As a kind of geographic information system (GIS), HD map
has two primary ways to record spatial data: vector representa-
tion and raster representation. For line-shaped objects such as
road curbs, vector representation (i.e., graph with vertices and
edges) is usually adopted. Therefore, to automatically annotate
the HD map of road boundaries, we need to obtain the graph
of road boundaries. In real-world applications, since the aerial
images usually cover a very large area (e.g., a whole city), we
cannot directly produce the whole graph of the area due to the
limitation of computation resources. Instead, we apply a sliding
window to crop image patches and stitch the obtained graph
of each patch into the final city-scale HD map. In this way,
automatic HD maps annotation is divided into two sub-tasks:
(1) predict the graph of road boundaries within an image patch,
and (2) stitch the graph of different patches into a large city-
scale graph as the final draft HD map.

Few past works have exactly the same scope as this work (i.e.,
automatically annotate the city-scale HD map of road bound-
aries from BEV aerial images), while they focus on related tasks,
such as road-lane detection [4]–[6], road-network detection [7]–
[10], road-curb detection [11], [12] and road-boundary detec-
tion [3], [13]. These works could be classified into three pri-
mary categories: segmentation-based methods, iterative-graph-
growing methods, and graph-generation methods. Most early
works on line-shaped object detection belong to segmentation-
based methods [14], [15]. They first predict the segmentation
map of the target object and conduct post-processing algorithms
to extract the final graph, such as skeletonization. Due to the
poor topology correctness of segmentation-based methods, some
recent work [7], [8], [11], [12] iteratively grow the graph vertex-
by-vertex in a sequential manner. Even though this category of
methods presents much better topology correctness, they suffer
from the drifting issue (i.e., error accumulation) and awful
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parallelization capability. To address the shortcomings of the
aforementioned works, He et al. [9] first proposed to directly
generate the graph of line-shaped objects by using a carefully
designed graph encoding scheme.

In this paper, we first predict the key vertices of the input
aerial image, then predict the adjacency matrix of the obtained
key vertices for graph edges. Since the length of the obtained
key vertices is variant, in the past, RNN and iterative operations
are utilized to handle various length input [16]. But RNN and
iterative operations are not efficient and cannot make full use
of long-term memories, thus a better approach for adjacency
matrix prediction is required. Compared with RNN that requires
sequential operations, transformer [17] can directly handle var-
ious length input and is easier to be parallelized. Considering
the aforementioned characteristics of transformer, in this paper,
we propose to use it for adjacency matrix prediction, so that
the graph could be generated without neither complicated post-
processing nor iterative steps. To the best of our knowledge,
this is the first paper that makes use of transformer to predict
graphs for automatic HD map annotation. The contributions of
this work are summarized as follows:

1) We propose a new approach to define keypoints of line-
shaped objects for road-boundary graph vertex detection.

2) We propose a novel adjacency matrix prediction network
named attention for adjacency network (AfANet).

3) We design a system named csBoundary for city-scale
road-boundary HD map automatic annotation in aerial
images.

II. RELATED WORKS

A. Segmentation-based methods

Many early works on line-shaped object detection extract
graphs by two-step segmentation-based methods [10], [14], [15],
[18]. They first predict the segmentation probabilistic map.
Since segmentation maps are in the raster format, a series of
post-processing is then conducted to refine the segmentation
results and extract the graph by geometric techniques, such as
binarization and skeletonization. Batra et al. [15] made use of
the orientation map to enhance the segmentation result of road
networks, and trained another network to refine the segmentation
result, which greatly improves the correctness of the final output.
However, even with carefully-designed post-processing, this
category of method still suffers from serious topology errors,
such as incorrect disconnections and ghost connections.

B. Iterative-graph-growing methods

RoadTracer [7] is believed to be the first work that predicts
the graph of line-shaped objects by iterative-graph-growing
methods. The authors first manually selected several initial
vertices of the road network. Then, starting from these initial
vertices, a decision-making network was trained to predict the
coordinate of the next vertex. In this way, the road-network
graph was generated vertex-by-vertex through iterative graph
growing. This method is also adapted to other tasks, such
as road-boundary detection [3], [13] and road-curb detection
[11]. [13] could present satisfactory results on road-boundary
graph prediction, but it only works on the highway with simple
and clean scenarios. Our previous work [3] could achieve

good detection performance, but it takes a huge amount of
time for training and inference due to the inefficient iterative
steps. Moreover, since the prediction error is accumulated with
the growing graph, this category of method is difficult to be
extended to city-scale tasks.

C. graph-generation methods

Directly predicting graphs from images is a challenging
task, since graphs may have different numbers of vertices and
the relationship between vertices (e.g., edges) is difficult to
formulate. There are some past works utilizing vector fields
to achieve graph prediction [9], [19], [20]. Xue et al. [19]
aimed to predict line segments of an image. They proposed a
vector field named attraction field which could be predicted by
segmentation networks. Then the authors designed a decoding
scheme to recover line segments from the predicted attraction
field. Similarly, [20] proposed a new vector field to predict the
polygon of buildings in satellite images. [9] is believed to be
the first work that detects line-shaped objects in BEV images of
this category of methods. In this paper, each pixel of the input
image was encoded by a 19-dimensional vector. Then the 19-
dimensional encoding tensor was predicted by neural networks.
Finally, the graph was decoded from the predicted encoding ten-
sor by the proposed decoding algorithm. However, this method
cannot distinguish edges with small included angles. Moreover,
this category of methods heavily relies on the heuristic decoding
algorithms, which limits their generalization ability.

D. Transformer

Transformer [17] has been widely applied in deep learning
tasks in recent years. The main module of transformer is the self-
attention layer, which could handle various length input. Com-
pared to RNN that has been widely used in the past, transformer
is much more efficient due to the good parallelization ability
[17]. Transformer has been applied in graph neural networks
(GNNs) [21], but extracting graphs from images is not fully
explored yet. To the best of our knowledge, this is the first
work that uses transformer for automatic HD map annotation.

III. THE PROPOSED METHOD

A. The method overview

In this paper, we aim to solve the problem of automati-
cally annotating city-scale road-boundary HD maps using aerial
images. Suppose the input is a set of aerial image patches
{Ii}Ni=1 which covers a large area (e.g., a whole city), then the
output should be a city-scale road-boundary graph G = (V,E).
Since the city-scale aerial images cover a very large area, the
road-boundary graph could not be obtained directly due to the
limitation of computation resources. Therefore, the problem is
divided into two sub-problems: (1) how to detect the road-
boundary graph Gi in a single aerial image patch Ii cropped
by a sliding window; and (2) how to stitch the predicted graph
of all patches {Gi}Ni=1 into the final city-scale road-boundary
graph G. The graph G can be used as the draft HD map of
road boundaries for autonomous driving. The pseudocode of
our system is shown in Alg. 1, and the corresponding section
ID is listed in the comment of each key step. Please refer to
our supplementary document [22] for more details.
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(a) FPN output
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𝑀 × 1024
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C
AfA Decoder
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Fig. 1: The system overview of csBoundary. (a) Taken as input a 4-channel aerial image Ii, we first predict the keypoint map
and segmentation map of road boundaries by using FPN. Then these maps are concatenated into a new 6-channel feature tensor;
(b) Based on the predicted keypoint map, a set of processing is conducted to extract the vertex coordinates of the graph of which
the length is M ; (c) For each extracted vertex, we crop a L × L-sized ROI centering at the keypoint. Then the ROI is sent to
an encoder network to calculate the local feature vector. Similarly, a global feature vector can be obtained. Then we concatenate
feature vectors with the keypoint coordinate into the final embedding of the current vertex; (d) AfANet predicts the adjacency
matrix of extracted vertices based on the vertex embeddings. Then, the road-boundary graph Gi of Ii is obtained based on vertices
and the adjacency matrix. Finally, we stitch the graph of all aerial images {Gi}Ni=1 into the final city-scale road-boundary graph
G. For better visualization, only RGB channels are visualized for aerial images. Please zoom in for details.

Algorithm 1: The proposed csBoundary

Input: A set of aerial image patches A = {Ii}Ni=1

Output: A city-scale undirected & unweighted graph G
1 begin
2 Kp ← ∅, Gp ← ∅
3 Image patch expansion # III-B
4 while A not empty do
5 I ← A.pop()
6 K ← FPN(I) # III-C
7 Kp.push(K)
8 end
9 Keypoint segmentation map stitching # III-F

10 while Kp not empty do
11 K ← Kp.pop()
12 Extract graph vertices as V # III-D
13 Predict edges by AfANet as E # III-E
14 Gp.push(Gi = (V,E))
15 end
16 Graph stitching # III-F
17 return G
18 end

Like [9], our csBoundary belongs to the graph-generation
method and it predicts the road-boundary graph without heuris-
tic post-processing or iterative operations. csBoundary first
predicts two probabilistic maps by the feature pyramid network
(FPN) [23], including a keypoint map and a road-boundary
segmentation map. These two maps are then concatenated with
the input aerial image Ii into a 6-D feature tensor. Based on
the predicted keypoint map, we conduct a series of processing

to find the local maximum, and extract the coordinates of
graph vertices, whose length is denoted by M . To predict
the adjacency matrix of vertices, inspired by the self-attention
mechanism in transformer networks, we propose the attention
for adjacency network (AfANet). Taken as input the 6-D feature
tensor and coordinates of extracted graph vertices, AfANet di-
rectly outputs the adjacency matrix. Centering at each extracted
vertex, we crop a L×L-sized region of interest (ROI) on the 6-D
feature tensor and calculate a 1024-length local feature vector by
the AfANet encoder. Similarly, the whole 6-D feature tensor is
sent to the encoder to obtain a 1024-length global feature vector.
These two feature vectors are concatenated together with the
coordinate of the current vertex as the final vertex embedding,
whose length is 2050. After processing M extracted vertices, we
have M 2050-length vertex embedding vectors. Then, AfANet
predicts the adjacency matrix of graph vertices by the decoder
network. Based on the predicted graph vertices and adjacency
matrix, we can compute the graph Gi of the input aerial image
patch Ii. Finally, we stitch the graph of all patches {Gi}Ni into
the final city-scale road-boundary graph.

B. Aerial image data split and expansion

In this paper, the aerial images are from the benchmark
dataset released in our previous work [3]. In the dataset, there
are 2,049 4-channel 5000 × 5000-sized high-resolution aerial
image tiles that cover 5 boroughs of the whole NYC. Due to
the memory limitation of GPU devices, we split each tile into
25 1000 × 1000-sized image patches. The data split method
is visualized in Fig. 2. In our previous work, we did not
consider graph stitching and removed some image patches based
on proposed filtering rules. While in this paper, we keep all



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2022

Image patch 
1000 × 1000 × 4

: Staten Island : Brooklyn : Queens : Manhattan : Bronx 

New York City
Image tile 5000 × 5000 × 4Staten Island Borough

Fig. 2: Visualization of data split in the original dataset. The
aerial images of the dataset cover the whole NYC. There are
5 boroughs in NYC and they are illustrated in different colors.
In each borough, there are a set of image tiles whose size is
5000×5000. Considering the limited GPU memory, each image
tile is further split into 25 1000 × 1000-sized image patches.
There are no intersection areas between adjacent patches.

Raw aerial images 

1000 × 1000 × 4

Expand

Expanded aerial images 

1100 × 1100 × 4

: Four adjacent aerial images : Intersection aera of two images : Intersection aera of four images

Fig. 3: Visualization of image patch expansion. In this paper, all
aerial image patches are expanded into 1100×1100-size, which
creates intersection areas between adjacent patches (light gray
and dark gray areas). Dashed rectangles on the right represent
the original image edges. These intersection areas will benefit
the graph stitching process.

the image patches and follow the idea of [10] for city-scale
graph stitching. For each image patch, we expand its size to
create overlapping areas between adjacent image patches. The
overlapping areas are critical to the stitching process. More
details will be discussed in the following subsections. The
visualization for the image expansion is shown in Fig. 3.

C. FPN and keypoint map

Feature pyramid network (FPN) [23] is widely used in the
past works on line-shaped object detection [5], [11], [13] due
to its great ability to capture multi-scale image features. In
csBoundary, FPN is utilized for keypoint map and segmentation
map prediction. The keypoint map can detect keypoints of road
boundaries, and some keypoints will be treated as vertices of the
output graph. The segmentation map is used to detect foreground
road-boundary pixels.

Unlike human pose estimation [24] and road network detec-
tion [9] that usually have clearly defined unique keypoints (e.g.,
joints for human skeleton and crossroad for road network), road
boundaries are usually polylines without branches. Therefore, it
is hard to find unique keypoints with clear semantic meanings.
To provide a solution to conquer this, we make use of the
orientation map [15] that records the direction vector of each
pixel, and define pixels whose orientation has large enough
differences with adjacent pixels as keypoints. In short, pixels
where the road-boundary curvature is large enough are treated
as keypoints. In addition, within each image patch, we define
the intersection points of the road-boundary and image edges as

: Image edge of the current patch

Keypoints

Keypoints

: Image edge of adjacent patches

A
B

(A) Gathered rounded-corner keypoints

(B) Isolated keypoints

: Extra lines to create more keypoints

Fig. 4: Demonstration of keypoints. There are generally two
types of keypoints. (1) Intersection keypoints. This category
of keypoints is the intersection points of road boundaries and
manually defined lines, such as the edge of the current patch
(blue dash line), the edge of adjacent patches (green dash line)
and extra lines (orange dash line); (2) Corner keypoints. They
could be gathered keypoints at rounded-corners (yellow points in
region A) or isolated keypoints locating at curve road boundaries
with sharp corners or gradual curvature changes (yellow points
in region B). All keypoints are uniquely defined.

keypoints for graph stitching. Sometimes the keypoints defined
by the aforementioned methods may be too sparse, thus we
add extra lines to create more intersection points as auxiliary
keypoints. Examples of keypoints are visualized in Fig. 4.

D. Vertex extraction

Graph vertices are extracted from the predicted keypoint map
by finding local peaks. After obtaining the predicted keypoint
map, we first find its skeleton. Then, for isolated keypoints
whose corresponding skeleton instances are short, we directly
use the center of the skeleton as graph vertices. While for
rounded-corner keypoints that many points gather together,
the skeleton will be curved line segments, then we only add
endpoints of the curved line segments into the graph vertex set.
In the final graph, the rounded-corner vertices are connected
by corresponding skeletons directly without adjacency matrix
prediction. The vertex extraction pipeline is shown in Fig. 5.

E. Adjacency matrix prediction

After graph vertex extraction, the connection relationship
between vertices (i.e., edges) should be predicted. In past works,
this is usually done by heuristic algorithms that decode edges
from carefully designed vector field maps [9], [20]. To further
enhance the effectiveness and efficiency of graph edge predic-
tion, inspired by transformer and self-attention mechanism, we
propose the attention for adjacency net (AfANet) to predict the
adjacency matrix of the graph.

First, for each extracted graph vertex, we calculate a vertex
embedding by the AfANet encoder. Then we put the embedding
vector of all vertices into the AfANet decoder and obtain the
adjacency matrix.

1) AfANet encoder: The vertex embedding is produced by a
multi-layer convolutional encoder network. Each vertex embed-
ding is of 2050-length, which is concatenated by a 1024-length
global feature, a 1024-length local feature and the normalized
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Keypoints

prediction

(a) Gathered keypoints

(b) Isolated keypoints

Skeletonization
Extract 

vertices

Keypoints

prediction Skeletonization
Extract 

vertices

Fig. 5: Vertex extraction pipeline. Yellow points denote the
skeleton of the predicted keypoint map, and red points represent
the extracted graph vertices. (a) For gathered keypoints (i.e.,
whose skeleton is a curved line segment), we only keep two
endpoints of the skeleton and add them into the graph vertex
set (red points), while other points are not added (cyan line). In
the final graph, we will connect the endpoints by the cyan line;
(b) For isolated keypoints, we directly calculate its skeleton and
add the center point of the skeleton into the graph vertex set.

Add & Norm

Input vertex feature tensor

𝑀 × 2050

Attention

Add & Norm

Feed Forward

𝟑 ×

AfA

Adjacency Matrix

Positional 

Encoding

(a) AfANet decoder

Softmax

Input

Output

Mat Mul

Q K

Linear Linear

Norm Norm

V

Linear

Norm

Mat Mul

Scale

(b) Attention module

Mat Mul

Q K

Linear Linear

Input

Output

Norm Norm

(c) AfA module

Fig. 6: The visualization of AfANet decoder. Taken M × 2050-
sized vertex embedding tensor as input, AfANet decoder pre-
dicts the M×M -sized adjacency matrix of extracted graph ver-
tices. (a) The general network structure of the AfANet decoder;
(b) The modified attention module; (c) The AfA module.

2-D coordinates of the corresponding vertex. The global feature
is obtained by directly passing the 6-D feature tensor through
the encoder network. For the local feature, we crop a L × L-
sized ROI (L is 64 in our experiment) on the 6-D feature tensor
and send it to another branch of the encoder network. Suppose
M vertices are extracted, then we will have a M × 2050-sized
feature tensor containing the information of all vertices by the
encoder network.

2) AfANet decoder: AfANet decoder is inspired by the self-
attention mechanism. It can handle various length input and
predict the adjacency matrix of the input directly. Suppose the
size of the input is M × d, then the shape of output is M ×M .
The attention module of AfANet decoder is modified from the
original self-attention module [17]:

Attention(Q,K,V) = softmax(norm(Q) · norm(K)) · V (1)

Stitch

: Left image patch

: Right image patch

: Vertex of the right patch

: Vertex shared by both patches

: Vertex of the left patch

Fig. 7: Demonstration of graph stitching. The blue image patch
is adjacent to the red one (blue patch on the left and red patch
on the right). For better visualization, they are placed vertically.
The gray areas are the intersection areas. The graph of the blue
patch (yellow edge and orange vertex) and the red patch (green
edge and cyan vertex) are predicted separately. Purple vertices
are shared by both patches. These two patches could be stitched
together easily by connecting exclusive vertices of two patches
with the shared vertices.

The AfA module only utilizes Q(Query) and K(Key), and
outputs the dot-product attention map as the adjacency matrix:

AfA(Q,K) = norm(Q) · norm(K) (2)

The structure of the AfANet decoder is visualized in Fig. 6.

F. Graph stitching

Following the Broad Area Satellite Imagery Semantic Seg-
mentation (BASISS) method [10], before extracting vertices
from keypoint maps, we stitch predicted keypoint maps by
averaging the intersection areas (e.g., for an intersection area
of two keypoint maps, its value is the average of corresponding
areas of these two keypoint maps). In this way, the intersection
area of adjacent predicted keypoint maps will be exactly the
same. Then, we extract vertices from the keypoint map of both
image patches, and there will be some shared vertices within
the intersection area. The graph of the two adjacent image
patches could be stitched together easily by connecting exclusive
vertices of two patches with the shared vertices. An example
demonstrating the graph stitching process is shown in Fig. 7.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

We use the dataset released from our previous work topo-
boundary [3]. But different from topo-boundary, in this paper,
we aim to solve the city-scale road-boundary graph detection
problem, while topo-boundary only focuses on patch-scale de-
tection. Topo-boundary also removes some image patches by
proposed filtering rules, such as hard patches with complicated
scenarios. In this paper, we consider all patches without filtering.

There are 2,049 4-channel 5000 × 5000-sized aerial image
tiles in the dataset. We split each tile into 25 1000 × 1000-
sized image patches considering the limited memory resources
of GPU devices. Then for city-scale graph stitching, we expand
each image patch into 1100 × 1100-size. We split the dataset
by borough (Manhattan, Brooklyn, Queens, Bronx, and Staten
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Island), which is visualized in Fig. 2. In our experiments, the
Staten Island borough is for testing, while other boroughs are
for training and validation.

B. Implementation details

In our experiments, we first train the FPN for 10 epochs
with the learning rate as 0.001 and decay rate as 10−4. Then
we extract graph vertices based on predicted keypoint maps.
To enhance the performance of AfANet, we first pre-train the
network with ground-truth graph vertices, and then train AfANet
with the graph vertices extracted from predicted keypoint maps
for 20 epochs. The adjacency matrix label can be calculated
by using graph vertices and ground-truth road-boundary binary
label maps. During inference, we run an extra graph stitching
step. We conduct experiments on a PC with an i7-8700K CPU
and an RTX3090 GPU. For better evaluation and comparison, in
our experiments, we provide the patch-scale evaluation results
(i.e., graph within a single patch) which are the same as topo-
boundary, and the city-scale evaluation results (i.e., graph after
the stitching step).

C. Evaluation metrics

In our experiments, we have 5 metrics for evaluation, in-
cluding 3 pixel-level metrics (i.e., Precision, Recall and F1-
score) following our previous work [3], and two topology-level
metrics, i.e., Average path length similarity (APLS) [25] and
too long/too short (TLTS) similarity [26]. These metrics are
sufficient to provide a comprehensive and fair comparison for
different methods.

1) Pixel-level metrics: Precision, Recall and F1-score are
three relaxed metrics to measure the correctness of the predicted
graph at pixel level. We first rasterize the predicted road-
boundary graph (i.e., convert vector graph to raster image),
and denote obtained foreground pixels as P = {pi}

Np

i=1. Sim-
ilarly, we rasterize the ground-truth road-boundary graph as
Q = {qi}

Nq

j=1. Suppose the relax ratio is τ . Then we have

Precision =
|{p|d(p,Q) < τ, ∀p ∈ P}|

|P |
,

Recall =
|{q|d(q, P ) < τ, ∀q ∈ Q}|

|Q|
,

F1-score =
2Precision ·Recall
Precision+Recall

,

(3)

where |·| represents the number of elements of a set, and d(e, S)
calculates the shortest Euclidean distance between an element
e and a set S. Relax ratio τ could reflect the level of error
tolerance. In our experiments, we show the results by setting τ
as 2, 5 and 10 pixels, respectively.

2) APLS and TLTS: In many past works, APLS and TLTS
are utilized to measure the topology correctness of the obtained
graph. Let G denote the ground-truth graph and P denote the
predicted graph. Then we randomly select two vertices {g1, g2}
from G, and calculate the shortest path between g1 and g2
as l(g1, g2). Finally, we find the two corresponding vertices
{p1, p2} in P and calculate l(p1, p2). Then the APLS score
of this vertex pair is

APLS = 1−min(1, |l(g1, g2)− l(p1, p2)|
l(g1, g2)

) (4)

After sampling a certain number of vertex pairs, the final
APLS score is the mean of APLS of all vertex pairs. TLTS
also relies on randomly sampled vertex pairs and shortest path
calculation. Define an error tolerance threshold φ (default value
is 0.05 in our experiment), if the difference between l(g1, g2)
and l(p1, p2) is larger enough, i.e.,

|l(g1, g2)− l(p1, p2)| > l(g1, g2) · φ, (5)

then this vertex pair is said to be too long or too short. TLTS
is the ratio of vertex pairs that are not too long or too short.

D. Comparative results

In this section, we evaluate csBoundary together with the
other three baseline models that belong to different categories
of methods. The city-scale evaluation results are shown in Tab.
II and patch-scale evaluation results are listed in Tab. I. The
average time usage is shown in Tab. III.

• OrientationRefine (ICCV2019) [15]: This baseline is a
typical segmentation-based work. It first predicts the seg-
mentation map of road networks and then corrects the
segmentation results by another refinement network.

• Enhanced-iCurb (RA-L2021) [3]: This baseline is the
state-of-the-art iterative-graph-growing work. Starting from
initial vertices, it iteratively generates the road-boundary
graph vertex by vertex.

• Sat2Graph (ECCV2020) [9]: This baseline is believed to
be the first work that can directly predict the graph of line-
shaped objects from the graph generation perspective. After
extracting keypoints, Sat2Graph can obtain graph edges by
decoding the predicted vector field map.

From Tab. I and Tab. II, it is found that pixel-level metric
scores are similar for patch-scale evaluation and city-scale
evaluation, since pixel-level metrics focus on locality, which
is not greatly affected by the graph stitching process. However,
APLS and TLTS of the city-scale results are much lower than
that of the patch-scale results because city-scale evaluation
requires longer correctly connected paths in the final graph.

OrientationRefine presents good pixel-level performance,
since it directly optimizes the results on pixels. However, the re-
sults of OrientationRefine severely suffer from topology errors,
such as incorrect disconnections and ghost connections. More-
over, these topology errors could not be effectively corrected by
post-processing. Thus, this method has relatively worse APLS
and TLTS scores. Although enhanced-iCurb could better handle
the graph topology and presents satisfactory results in most
urban areas, its performance greatly drops when the scenario
is complicated and irregular (e.g., in suburbs) due to the error
accumulation and drifting problems. Besides, it takes a quite
long time to train due to the iterative operations that are hard to
accelerate. The original Sat2Graph cannot obtain meaningful
results because of the isomorphic encoding issue mentioned
in the last section of the Sat2Graph paper [9], which makes
the choice of keypoints not unique so that the graph vertices
cannot be accurately extracted. Thus, in the experiment, we use
graph vertices extracted by our method to implement Sat2Graph.
However, different from keypoints of the road network, the
road-boundary keypoints in this paper could be very far or
closed to each other, which makes the encoding scheme of
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(a) Ground-truth (b) OrientationRefine [15] (c) Enhanced-iCurb [3] (d) Sat2Graph [9] (e) Ours

Fig. 8: Qualitative visualization. Each subfigure is of 2000 × 2000-sized. (a) The ground truth (cyan lines); (b) Results of
OrientationRefine (green lines); (c) Graph obtained by enhanced-iCurb (orange lines); (d) Graph obtained by Sat2Graph (orange
lines). It cannot present reasonable results since its encoding scheme cannot be well adapted to our task; (e) Graph obtained by
csBoundary. Yellow points are normal vertices, red points are rounded-corner vertices, orange lines are normal edges and cyan
lines are edges connecting corresponding rounded-corner vertices. Please zoom in for details.

TABLE I: The patch-scale quantitative comparative results. The best results are highlighted in bold font. For all the metrics,
larger values indicate better performance.

Methods
Precision ↑ Recall ↑ F1-score ↑

APLS ↑ TLTS ↑
2.0 5.0 10.0 2.0 5.0 10.0 2.0 5.0 10.0

OrientationRefine [15] 0.507 0.805 0.865 0.408 0.650 0.706 0.439 0.699 0.753 0.462 0.437
Enhanced-iCurb [3] 0.458 0.744 0.825 0.446 0.713 0.785 0.433 0.704 0.778 0.707 0.669

Sat2Graph [9] 0.343 0.624 0.757 0.139 0.268 0.326 0.163 0.322 0.397 0.150 0.134
csBoundary 0.333 0.704 0.877 0.300 0.650 0.808 0.306 0.682 0.825 0.734 0.690

TABLE II: The city-scale quantitative comparative results. The best results are highlighted in bold font. For all the metrics, larger
values indicate better performance.

Methods
Precision ↑ Recall ↑ F1-score ↑

APLS ↑ TLTS ↑
2.0 5.0 10.0 2.0 5.0 10.0 2.0 5.0 10.0

OrientationRefine [15] 0.517 0.816 0.868 0.352 0.551 0.589 0.408 0.637 0.678 0.235 0.219
Enhanced-iCurb [3] 0.412 0.695 0.785 0.412 0.671 0.749 0.410 0.678 0.760 0.299 0.279

Sat2Graph [9] 0.460 0.484 0.604 0.128 0.240 0.293 0.159 0.304 0.374 0.037 0.030
csBoundary 0.309 0.659 0.830 0.291 0.600 0.738 0.297 0.652 0.772 0.376 0.343

TABLE III: The time consumption of the methods. We report
the average time taken for one epoch.

OrientationRefine Enhanced-iCurb Sat2Graph csBoundary

Training 4.98h 86.01h 4.33h 2.47h
Inference 0.76h 9.10h 1.45h 0.82h

Sat2Graph not suitable for our task. As a result, Sat2Graph
cannot effectively capture the connection information (i.e., edge)
between vertices, and has inferior outcomes. Compared to the
aforementioned baselines, the superiority of our csBoundary is
well demonstrated. csBoundary presents good topology correct-
ness as well as pixel-level performance without affecting the

efficiency thanks to the AfANet.

E. Ablation studies

In the ablation studies, we evaluate the necessity of local
feature and global feature of the vertex embedding. The local
feature captures the local visual information of graph vertices,
which is critical to describe a vertex; the global feature is shared
by all vertices and it represents the spatial as well as the visual
information of the whole image. Both features are critical for
vertex embedding, and removing either of them will harm the
comprehensive description of a vertex, thus making the final
evaluation results degraded. Based on the results shown in Tab.
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TABLE IV: The quantitative results of city-scale ablation studies. The best results are highlighted in bold font. For all the metrics,
larger values indicate better performance.

Methods
Precision ↑ Recall ↑ F1-score ↑

APLS ↑ TLTS ↑
2.0 5.0 10.0 2.0 5.0 10.0 2.0 5.0 10.0

Without global feature 0.375 0.699 0.818 0.254 0.474 0.545 0.286 0.538 0.623 0.311 0.307
Without local feature 0.270 0.628 0.813 0.221 0.505 0.657 0.240 0.569 0.716 0.345 0.319

csBoundary 0.309 0.659 0.830 0.291 0.600 0.738 0.297 0.652 0.772 0.376 0.343

IV, the importance and necessity of local feature and global
feature of the vertex embedding are confirmed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed csBoundary, a novel method to
automatically annotate city-scale road-boundary HD maps from
high-resolution aerial images. To achieve the goal, the graph
of the road-boundary needs to be correctly detected. We first
predicted the keypoint map and extracted graph vertices by pro-
posed algorithms. Then inspired by the self-attention mechanism
of transformer, we designed AfANet to obtain edges of the graph
by predicting the adjacency matrix of graph vertices. CsBound-
ary was evaluated on a public benchmark dataset released by
our previous work. Comparative experiments were conducted to
verify the superiority of csBoundary over past works. We also
justified the rationality of the design of csBoundary by several
ablation studies. The effectiveness and efficiency of csBoundary
were demonstrated by the experimental results. In the future, we
plan to adapt AfANet to other line-shaped object detection tasks
to illustrate the generalization ability of our proposed method.
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