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Cross-view and Cross-domain Underwater Localization based on
Optical Aerial and Acoustic Underwater Images
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Abstract— Cross-view image matches have been widely ex-
plored on terrestrial image localization using aerial images
from drones or satellites. This study expands the cross-view
image match idea and proposes a cross-domain and cross-view
localization framework. The method identifies the correlation
between color aerial images and underwater acoustic images
to improve the localization of underwater vehicles that travel
in partially structured environments such as harbors and
marinas. The approach is validated on a real dataset acquired
by an underwater vehicle in a marina. The results show an
improvement in the localization when compared to the dead
reckoning of the vehicle.

I. INTRODUCTION

In autonomous vehicles, some localization methods go
beyond a single view perception [1]. Cross-view localization
methods combine data from different perspectives such as
aerial and terrestrial images to estimate the terrestrial lo-
calization [2], [3]. Typically, these methods localize street
view images by matching georeferenced aerial images from
satellites or drones.

In this study, we localize an underwater vehicle by match-
ing its underwater acoustic images with aerial georefer-
enced satellite images. It configures a Cross-View localization
problem because the underwater acoustic images provide a
frontal view and the aerial images provide a top view of
the scene. In addition, we have the Cross-Domain problem
because of the acoustic and the optical domains of the
images. Fig. [T] represents the cross-view and cross-domain
localization problem addressed in this work. While the gray-
scale underwater acoustic images only provide distances and
shapes of the observed objects the aerial optical images
provide rich texture and color.

Our method is designed to operate in partially structured
environments such as marinas and harbors. These places
provide stable features such as piers, stones, and the shoreline
that can be observed in both aerial and underwater images.

The problem of matching of underwater acoustic and
optical aerial images was previously addressed on [4], [5],
[6]. Santos et al. [4], [5] proposed a Deep Neural Network
(DNN) based on a Siamese architecture [7] that handles the
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Fig. 1: An underwater vehicle doted on multi-beam forward-
looking sonar travels in a semi-structured marina environ-
ment. The localization is estimated using structures such
as the pier and the shoreline, both visible on the range of
the acoustic images. However, the vehicle gets lost when it
moves to an open area where no structures are available.
Aerial images of the environment can improve the local-
ization and re-localize the vehicle when it returns to the
shoreline region. Features highlighted in green and red are
adopted in a Cross-view and Cross-domain matching system.
A particle filter framework fuses both images and estimates
the vehicle location using a Deep Neural Network (DNN)
as an observation model. The system belief is built on aerial
images.

cross-domain problem by training two independent networks.
Giacomo et al. [6] presented an approach inspired by Gener-
ative Adversarial Network (GAN) [8] and Triplets Network
[9]. They trained two models using a quadruplet strategy, an
adaptation of the triplet strategy with an additional anchor
image. The paper showed the latter approach achieved better
results and performance. However, none of the previous
work addressed the underwater localization problem, only
the matching problem.

The main contribution of this work is a new underwater
localization framework based on a map built from geo-
referenced aerial image and data association with acoustic
images on the Adaptive Monte Carlo Localization (AMCL)
algorithm [10]. The method allows the robot localization in



a GPS-denied environment such as the water.

The Monte Carlo Localization, also known as Particle
Filter, is a well-known localization method that can model a
multi-modal non-Gaussian probabilistic distribution function
by spreading hypotheses in the map known as particles.
The particles allow us to select the most likely regions on
satellite images (map) that match the acoustic underwater
image (perception).

The method is suitable for data association because we
crop the aerial image such as both images, acoustic and
aerial, have the same size and shape. Aerial images cover
a large area and have a larger size than underwater acoustic
images. Therefore, the aerial image must be cropped before
its use on the image matching system.

The proposed localization framework can be applied to
unmanned underwater vehicles or hybrid aerial-underwater
vehicles [11], [12], [13], [14] to perform tasks, such as
inspection and surveillance on harbors and marinas. This
work is validated on real data collected by an underwater
vehicle in a marina and optical aerial images acquired from
a satellite.

The results showed the method can localize the underwater
vehicle using satellite images and achieving better results
than dead reckoning.

This paper is organized as follows: Section [lI| presents
related work, Section explains our proposed pipeline
and each step, Section shows the experimental results
with a real dataset, and finally, Section [Y] summarizes our
contributions and outlines our future work.

II. RELATED WORK

Methods to fuse cross-view and cross-domain data on
aerial and underwater domains to estimate underwater lo-
calization are not widely explored in the literature, being the
first to the best of our knowledge. One of the main issues
of this kind of method is the cross-view and cross-domain
matching. Some work propose a cross-view matching of
terrestrial and aerial images to geolocalize terrestrial images.
Xiang Gao et al. [15] presents a review of these methods and
classifies them as image-based and structure-based methods.
Most of the aerial and terrestrial image matching methods
explore self-similar features, semantic features, or Deep
Neural Networks approaches.

Self-similar feature methods [16], [2] look for features
present on structures such as skyscrapers facades that can be
detected in both views. For example, street view and aerial
images are matched using shared features such as texture and
color from the same skyscrapers facade.

Methods based on structures [17], [18], [19] look for the
same structures in both aerial and terrestrial view. Typically,
this approach is applied when the environment does not pro-
vide enough features to compare the images. Semantic-based
methods combine external information about the observed
scene to perform matching [20], [21].

The deep learning methods perform matching based on
learned features from the image datasets. Lin et al. proposed
the first deep learning network called Where-CNN [22] to

learn feature embedding for image matching. Workman et
al. [23], [24] obtained state-of-the-art results on wide-area
image geolocation with a new cross-view training strategy
for learning a joint semantic feature representation for aerial
images. Tian et al. [25] proposed a matching approach of
terrestrial and aerial images based on urban buildings.

Karkus et al. [26] propose an end-to-end Recurrent Neural
Network (RNN) that encodes a full differential particle filter
algorithm. The method is designed to localize an indoor
vehicle with a single camera. The simulated dataset House3D
is adopted to train and validate the method. It is an interesting
work because it allows training the network without labeled
data. However, the authors do not test the system on a real-
world environment, and it places in check if an end-to-end
approach would be able to localize on real environment data.

Localization of underwater acoustic images using aerial
satellite images has similar aspects with the terrestrial image
localization with aerial images. Both problems involve cross-
view matching. However, only the acoustic data is obtained
in a diverse domain. Furthermore, the GPS system is usually
available in ground robots while the underwater environment
is GPS-denied.

Giacomo et al. proposed in [27] a neural network that
translates a gray-scale acoustic image into a colored aerial
satellite image. The proposed network is based on the U-
Net architecture and employs techniques such as dilated
convolutions, guided filters, and the Deep Convolutional
Generative Adversarial Network (DCGAN).

A few work study the underwater acoustic and aerial im-
age match. Santos et al. [5] proposed a Deep Neural Network
(DNN) based on a Siamese architecture [7] that handles the
cross-domain problem by training two independent networks.

Giacomo et al. [6] proposed a cooperative approach for
training multiple networks to reduce the image dimension-
ality belonging to the same domain of the present work.
Their method consists of cooperatively optimizing two neural
networks that share the same architecture but not the same
weights. Then, these networks update their weights following
the triplet objective function. In the end, it is possible to use
the trained networks to extract vectors that encode the images
fed into them. Afterward, a distance between the extracted
vectors can be calculated, such as the Euclidean distance.
This network makes possible tasks such as matching and
ranking, which are of primordial importance to the present
work.

Santos et al. [5] and Giacomo et al. [6] research pro-
vide image matching methods but none of them estimate
localization. In this work we adopt the quadruplet neural
network from Giacomo et al. [6] in a complete framework
that estimates the vehicle localization.

Structure-based approaches inspired our method because
the structures can be easily identified on sonar images.
Our approach uses the structure of sonar images for the
localization in a map generated by the aerial image, in
a probabilistic framework based on Adaptive Monte Carlo
Localization (AMCL) [10].



III. METHODOLOGY

The underwater localization method is shown in Fig. [2] A
particle filter algorithm [10] estimates the vehicle localization
x; based on the current observation o;, vehicle control u;,
and the map of the scene M. Where the observation o, is
an underwater acoustic image and M is the aerial satellite
image.

The system has the following four main processes: A -
Aerial Image Processing, B - Underwater Acoustic Image
Processing, C - Cross-View and Cross-Domain Image Match,
and D - Particle Filter. Step A runs once and offline. The
remaining process runs in parallel in the computation graph
of the Robot Operating System (ROS) [28]. Each process is
described in the following sections.

A. Aerial Image Processing

The Aerial Image Processing employs the neural network
U-Net to semantic segment the aerial image in three classes:
stationary structures, movable objects, and the water high-
lighted in green, red, and blue on Fig. 2}A. The process is
better explored and better described in [29]. Movable objects
such as boats cannot be trusted on the localization problem.
However, stationary structures such as piers and stones are
relevant information to incorporate into the system. This
process runs once and offline before the mission starts. Then,
the segmented images are loaded into the vehicle memory as
a map M. Manual segmentation also can be employed since
the process runs offline with no significant time restrictions.

B. Underwater Acoustic Image Processing

The Acoustic Image Processing smooths the current acous-
tic image referenced as observation o, by aligning a batch of
previous images 0;_1,0;—3,...,0;—,. The alignment process
starts by transforming the acoustic images into a 2D point
cloud. First, a border detection based on image gradient
segments the image. Each 2D point is defined as the centroid
of the segments. The Iterative Closest Point (ICP) algorithm
finds the affine transform between the 2D point clouds. Then,
all images are transformed into the current image view point
and smoothed by averaging the pixels.

C. Cross-View and Cross-Domain Image Match

The Image Match process uses the Quadruplet neural net-
work proposed by Giacomo et al. [6] running in a Graphics
Processing Unit (GPU). The process evaluates the similarity
between a batch of semantically segmented satellite images
and the current acoustic image as represented on Fig. [2}C.

Two neural networks are used to encode acoustic and
segmentation images. Each network is used for one image
domain, i.e., one for acoustic, and another for a segmented
and cropped aerial image. A cooperative approach is used to
train the encoding networks.

It is worth noting that both the acoustic and the segmented
image encoder follow the same architecture. However, the
weights are not shared, leading to different networks, as
described in [6]. Due to the cooperative approach, the
networks are trained to perform Metric Learning, by way

of a triplet loss function. As a result, the networks produce
vectors of reduced dimensionality from the original images.
By taking the Euclidean distance between the produced
vectors, a meaningful metric can be obtained. This metric
is closer to zero when the images are similar and grows as
they diverge. Therefore, the Euclidean distance between the
vectors can be used to generate a rank of matching images.

This process receives a batch of satellite images and
one acoustic image. The images are re-scaled to the lower
resolution of 128 x 256 to fit on the Quadruplet Neural
Network input. This process output is a normalized matching
score f; of each satellite image where ¢ is the timestamp of
the acoustic image.

A inversion on the Euclidean distance between the vectors
are performed to generate a matching score f; considering
all images of the batch. Defining d* as the distance between
the satellite image k and current acoustic image, we find
dmax, = max(d} ,d?,...,dX) and dmin, = min(d;,d?,...,dX)
and applying f,k = dmax; —c{k + dmin. The final scores are

normalize such as ff = where the K denotes the

Ir
o () o
number of particles in the current set, and ¢ is the timestamp.

D. Particle Filter

The particle filter algorithm estimate the vehicle state
based on belief b,(s) that is approximated by a set of K
particles, b, (s) ~ {(s,w¥)} where 1 < k < K, wk is the
particle weight, Y, wy = 1 and each particle s,[k] represents
an hypothesis of the vehicle pose in the world at time ¢. The
belief is built on the map M, i.e the semantic segmented
satellite image. The transition model 7" and the observation
model Z update the particle set.

1) Transition Model: The transition model T estimates the
particle state s based on previous state s | and the vehicle
control signal u, such as s& ~ T(s/|u;,s* |). A constant
velocity model estimates the vehicle motion based on its
control signal. The body-centered forward motion v, is
converted to a motion on the world frame using current
vehicle orientation measured by a compass. The transition
model updates all particles every new control message u;.

2) Observation Model: The observation model Z incorpo-
rates an enhanced acoustic image o, on the particle filter set.
It computes the likelihood f¥ of ¢, given the particle state s¥
and the map M such as f¥ = Z(6,|sk,M). This is a key point
of the method because the particle state s{‘ allows us to crop
an aerial satellite image of any size in such a way that it has
the same shape and scale of the acoustic images, as shown
in Fig. [3] Each particle generates an aerial satellite image
crop that is compared with the current acoustic image using
the matching process described on Sec. As result, the
normalized score f¥ of each particle k updates the particle
weight wk.

This process runs for each new underwater acoustic image.
Initially, a information test is made, i.e. when less than 2%
of the image pixels are non-zero, we consider the image as
non-informative and discard it due to lack of information.
Otherwise, the image feeds the observation model that up-
dates the particle’s weight. This verification is useful because
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Fig. 2: Proposed framework for cross-view (top and frontal) cross-domain (optical and acoustic) vehicle localization using
acoustic and satellite images. Initially, the satellite image is semantically segmented in an offline process. The Underwater
Acoustic Image Processing performs image enhancement based on the alignment of a batch of acoustic images O; =
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0i—n}. The particle filter adopts the satellite image as the map M, the enhanced acoustic images ; as the

observations and the vehicle odometry as control signal u, and estimates the underwater vehicle state ¥;.

the vehicle can be in open waters, where there is no structure
to match the satellite image. In this case, the vehicle relies
on the odometry. When it returns to a region with structures,
the algorithm corrects the localization error using the satellite
image.

3) Initialization: The particle set is randomly initialized
following a Gaussian distribution with mean p on the last
vehicle position before dive and a standard deviation ©.

4) Re-sampling: A re-sampling process is performed on
the particle set using the Survival of the fittest principle
[10], where the unlikely particles are replaced by the more
likely ones. We adopted the roulette wheel approach which
uses binary search and re-sample all particles in O(MlogM).
After the re-sampling, we check for bad particles with the
following tests:

« Is the particle on open water? We check if the cropped
image views stationary structures or not, i.e green pixels
on the semantic segmented aerial image.

o Is the particle laying on the floor? We check if the
particle position is on a stationary structure, i.e a green
pixel on the semantically segmented satellite image.

« Is the particle out of the map borders? We check if the
particle position is out of the satellite image boundaries.

In any positive case, the particle is re-sampled again using

a higher standard deviation. As a last chance, when a particle
is re-sampled more than ten times in the same iteration, a
uniform random pose in the map is set.

IV. RESULTS

Our method is evaluated on real underwater scenario of
the dataset ARACATI 2017 using Robot Operating System
(ROS) [30].

A. Dataset ARACATI 2017

The dataset ARACATI 2017 was recorded on the marina
of Yacht Club of Rio Grande Brazil with a Seabotix Little
Benthic Vehicle LBV 300-5 and a Forward-Looking Sonar

(a) Aerial Satellite Image

(d) Satellite Image Crop

(b) Aerial Segmented Satellite Image

(e) Segmented Satellite Image Crop

Fig. 3: A particle state sf is converted into a crop of the
semantically segmented satellite image. The crop has the
same shape and scale as the acoustic images.

(FLS) BlueView P900 [31]. The vehicle was attached below a
floating board such as it stays underwater while a Differential
Global Position System DGPS stays in the top of the board
outside water as shown in Fig. ]

We evaluate the performance of the system by collecting
acoustic images, compass, odometry and DGPS as ground
truth at a maximum speed of 0.6 m/s. The marina has
a minimum depth of 1 meter and a maximum depth of
5 meters. The coastline is covered by stones that have a
strong acoustic signature. Pontoon objects, moving boats,
fish, and acoustical signatures from the seafloor and surface
are present in the sonar dat

IDataset ARACATI 2017 is available at https://github.com/
matheusbg8/aracati2017
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Fig. 4: On the dataset ARACATI 2017, a floating board
holds a DGPS on surface water and a Seabotix LBV 300
underwater ROV. It allows collecting precise position data
as well as underwater acoustic images.

TABLE I: Experiment Parameters

o u
Particle Re-sampling 0.15 | On Particle Selected with Roulette
Particle Initialization 0.5 Initial Position Guess
Bad Particle Re-sampling 15 On Particle Selected with Roulette

B. Experimental results

The Localization and Matching process are evaluated on
dataset ARACATI 2017 using a fixed number of 120 particles
and the parameters of Table [ Where o is the standard
deviation and p is the mean of a Gaussian distribution
function used to estimate the state [x,y, 8]7 of each particle
sk € S. The initial position guess is the last GPS message
before dive.

The experiment resulted on the path shown in Fig. [3
The green line indicates the DGPS data adopted as ground
truth, the blue line indicates the path from our localization
method, and the red line indicates the dead reckoning. The
localization error in meters of the dead reckoning and our
method relative to the DGPS is shown in Fig. [6]

The vehicle path crosses the six marks represented by
the circles in figures [5] and [f] It starts on the green circle,
moves to yellow, blue, purple, orange, and ends on the red
circle after 41 minutes. The results show that most of the
time our method had a smaller localization error than the
vehicle’s dead reckoning. However, some aspects must be
considered. Our system is based on images and depends on
structures to perform cross-view and cross-domain matching.
When features are not available, our method relies most on
odometry.

In the first seconds of the experiment, the particles were
initializing while the vehicle was moving. It led the particles
to lose part of the initial control signals and transition model
updates, resulting in a higher localization error. In the next
ten minutes, the localization remains high because of the
lack of features on the acoustic images. After the yellow
mark, the sonar detected the central pier, and the localization
error dropped while the vehicle was getting closer to the
structures. Then the vehicle traveled to the left side of the

Path

. —— DGPS (reference)

~—— odometry
—— particle filter

IF e
300 320 340 360 380 400
Meters
Fig. 5: Vehicle path in meters estimated by dead reckoning in
red, particle filter in blue, and DGPS reference in green. The
colored circles highlight timestamps when features were not
available on sonar or when the method starts to correct the
localization based on cross-view and cross-domain matching.
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Fig. 6: Time series in seconds with localization error in
meters from dead reckoning in red and particle filter in
blue. The light blue color indicates the uncertainty of the
particle filter, and the six colored circles indicate the same
timestamps of Figure [3]

pier and moved in an open area between blue and purple
marks. At this point, the method relied most on odometry
again because of the leak of acoustic features. After the
purple mark, the vehicle returned to the central pier. Its
localization got corrected thanks to our observation model
and the particle filter. After this point, the method had a
better localization estimation than the dead reckoningﬂ

The experiment ran on a computer with a Processor Ryzen
7 2700x and a GPU NVIDIA RTX 3070. The image match
evaluated 120 particles in 0.72 secs (1.39 Hz) and used
3.3 GB of RAM and 6 GB of VRAM. The particle filter
process used 71 MB of RAM and the average execution
time was 1.207 secs (0.83 Hz). The process runs in parallel,

>The experimental results are available in video at |https://youtu.
be/UOAcSODbalw
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and their implementation is not optimized. The top speed
of the underwater vehicle in the experiment was 0.63 m/s,
and the results were achieved by processing one acoustic
image every 4 seconds. We believe the system can run on
an embedded platform such as NVIDIA Jetson AGX Xavier
which has 32 GB of shared memory.

The current method does not estimate roll and pitch angles.
We adopted an open frame vehicle calibrated to passively
stabilize these angles. However, we believe that our method
can be adapted to operate in parallel with the attitude control
of a typical AUV.

V. CONCLUSIONS

We proposed a new underwater vehicle localization
method based on cross-view and cross-domain image match
and validated it in a real experiment. The system uses a
Deep Neural Network for image matching and an adapted
Particle Filter for state estimation. The method can localize
an underwater vehicle in a partially structured environment
with acoustic images from a Forward-Looking Sonar and
optical aerial images of the environment from satellites.

As future work, we want to compare different underwater
localization approaches in a new experiment where we
can improve the odometry model of the vehicle and test
different observation models on the particle filter algorithm.
We are also planning to perform real-time tests on embedded
platforms such as NVIDIA Jetson Xavier running together
with the robot using high-resolution images collected by
Unmanned Aerial Vehicles (UAV).
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