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Abstract— Deformable object manipulation remains a chal-
lenging task in robotics research. Conventional techniques for
parameter inference and state estimation typically rely on a
precise definition of the state space and its dynamics. While
this is appropriate for rigid objects and robot states, it is
challenging to define the state space of a deformable object
and how it evolves in time. In this work, we pose the problem
of inferring physical parameters of deformable objects as
a probabilistic inference task defined with a simulator. We
propose a novel methodology for extracting state information
from image sequences via a technique to represent the state of
a deformable object as a distribution embedding. This allows
to incorporate noisy state observations directly into modern
Bayesian simulation-based inference tools in a principled man-
ner. Our experiments confirm that we can estimate posterior
distributions of physical properties, such as elasticity, friction
and scale of highly deformable objects, such as cloth and
ropes. Overall, our method addresses the real-to-sim problem
probabilistically and helps to better represent the evolution of
the state of deformable objects.

I. INTRODUCTION

The problem of simulation parameter inference received
a considerable amount of attention in the broad scientific
community: [1] provides a recent survey. The ‘real-to-sim’
term is commonly used to refer to parameter inference for
large-scale models and general-purpose simulators, recent
examples include [2], [3]. More broadly, ‘real-to-sim’ can
refer to any problem formulations and methods that help
identify and bridge the gap between reality and simulation,
e.g. [4], [5]. In robotics, this problem has been addressed
extensively for the case of rigid objects [6], [7], [8], [9],
[10]. Many of these methods rely on using canonical repre-
sentations of the state and assume reliable state estimation
for obtaining low-dimensional representation of objects in
the scene. Deformable objects present unique challenges
for defining or learning low-dimensional representations.
Focusing on the relevant parts of their state requires interpret-
ing high-dimensional data, such as images or point clouds.
However, computer vision methods that succeed in learning
robust low-dimensional representations of rigid objects can
fail to learn on the more complex data patterns that the
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highly deformable objects present. Even when an acceptable
representation is available, the trajectories obtained when
manipulating deformable objects still contain complex pat-
terns reflecting the dynamics of the deformables. Methods
that succeed using trajectories containing only rigid objects
can fail to interpret the more challenging patterns in the data
with deformables, even when the state representation is low-
dimensional (our experiments show such examples).

Given these challenges, we advocate the Bayesian treat-
ment and cast the ‘real-to-sim’ problem as simulation-based
inference. Bayesian methods can leverage simulation as a
source of prior knowledge in a principled way, and can
conduct inference from real observations in a data-efficient
manner. In this work, we consider likelihood-free inference
techniques introduced by [7] that can infer flexible mul-
timodal posteriors, and hence are well-equipped to cope
with the challenge of interpreting complex and noisy data
patterns in a principled manner. We investigate how these
inference methods behave when the observed deformable
object state is noisy and approximate. Keypoint-based rep-
resentations are promising for deformable objects because
of their representational flexibility, ability to quickly obtain
a low-dimensional state of an object, and the potential to
train from on a small set of observations. For example, we
are able to train an unsupervised approach from [11] with
data from only 1 minute of hardware data and 100 simulated
trajectories. However, keypoints are not guaranteed to be
consistent across frames and tend to appear on different parts
of an object. Supervised keypoint extraction techniques can
learn to track a certain set of locations reliably, as we show
in our experiments with the model from [12]. However, the
keypoints can still permute between these locations even
in adjacent frames. Under these conditions, we show that
existing inference methods have significant difficulties in
real-to-sim experiments, where the real data is obtained from
real images of a robot manipulating deformable objects.

Our contribution is a formulation of the problem of real-to-
sim for deformable object manipulation as simulation-based
inference over a distributional representation of the state.
Specifically, we interpret keypoints on objects extracted from
images as samples from an underlying state distribution. We
then embed this distribution in a reproducing kernel Hilbert
space (RKHS) via the kernel mean embedding operator [13].
This yields a representation that is permutation-invariant,
addressing the case when the keypoints are permuted. Fur-
thermore, this distributional interpretation allows us to avoid
the need for keypoints to consistently track exactly the same
locations on the object. More generally, this also opens pos-
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sibilities for using any probabilistic output of vision-based
modules, including nonparametric particle-based methods,
since RKHS mean embedding can be easily applied in these
cases. We call the resulting method BayesSim-RKHS.

To show that our approach can successfully handle param-
eter inference for deformable objects we include experiments
on 3 different scenarios on hardware with real deformables:
(i) wiping a table surface with cloth; (ii) winding a rope onto
a spool; (iii) spreading a highly deformable piece of cloth by
flinging it in the air, then dragging it over the table surface.
In all these scenarios, BayesSim-RKHS significantly outper-
forms existing BayesSim variants. We demonstrate that this
advantage is not tied to a specific keypoint extraction method.
We show results that use a recent supervised keypoint method
developed specifically for deformables [12], and a general
unsupervised method that was developed with rigid objects
as the primary use case [11].

II. BACKGROUND

A. Simulating, Representing and Manipulating Deformables

There are promising results for learning to perceive and
manipulate deformable objects, as surveyed in [14], [15],
[16]. However, works in this field usually construct a small
self-contained scenario, and do not offer a way to align
general-purpose simulators with reality. This is due to the
significant challenges in simulation, perception and control
of highly deformable objects even when considering only one
task or scenario. Typical examples include: manipulating an
elastic loop [17]; hanging a piece of cloth [18]; assisting to
put on a hat [19], a shirt [20], a gown [21], a sleeveless
jacket [22]. Setting up these scenarios on hardware requires
significant effort. Hence, simulation with support for various
types of deformable objects is a much needed aid that
can help to speed up experimentation with novel types of
tasks, perception and manipulation algorithms. Interest in
this direction has been indicated several recent workshops
for modeling and manipulation of deformable objects, held
at the leading robotics conferences [23], [24], [25]. A major
obstacle is that the more advanced simulators, which support
a broader range of objects and types of deformation, are
difficult to tune manually. Hence, the community indicated
the need for automated ways to find parameter estimates that
make simulation behave stably, and make the behavior of the
deformables resemble that of the real-world objects.

A number of existing methods for simulation parameter
inference consider the case of rigid objects [6], [7], [8], [9],
[10], [26] and assume access to low-dimensional state, such
as object poses. One could argue that methods developed
for rigid objects can be applicable to the case of deformable
objects. For example, the recently popular keypoint extrac-
tion methods can generalize to the case of objects that are
somewhat deformable, but still mostly maintain their shape
(e.g. plush toys [27], flexible shoes [28]). However, most of
these algorithms would not be applicable to the case of highly
deformable fabrics, ropes and cables, where the object does
not ever return to a canonical shape during manipulation.
Such cases could benefit from new techniques that emerge in

the machine learning community, e.g. [11], [29]. However, in
this work we show that existing parameter inference methods
need to be extended to work effectively with such learned
state representations of deformables.

B. Probabilistic Parameter Inference

A recent survey [15] includes an overview of methods
for parameter estimation for simulators and models of de-
formable objects. These include direct error minimization
and parameter estimation techniques that assume access to a
direct way to compare the desirable and achieved deforma-
tion. To be applicable to a real-to-sim problem, this would
require careful measurement of the deformation of the real
deformable object, which can be intractable in many real-
world scenarios. The alternatives that relax this assumption
include exhaustive/random search and genetic algorithms,
which require a large amount of compute resources. The
techniques based on neural networks could improve data
efficiency, but most lack the ability to capture uncertainty and
only aid in producing a point estimate. This is problematic,
because many currently available simulators for deformable
objects are unable to produce behavior that exactly matches
reality. Hence the need to combine such simulators with
domain randomization techniques [18], [30], [31]. This can
ensure that control policies learned with the aid of simulation
can handle a range of possible behaviors, instead of being
narrowly focused on a mean estimate of the behavior.

BayesSim [7] is a likelihood-free method that has been
applied to a variety of robotics problems [32], [8], [33],
[34], [35]. It offers a principled way of obtaining posteriors
over simulation parameters, and does not place restrictions
on simulator type of properties, i.e. can work with non-
differentiable black-box models. BayesSim allows to infer
multimodal posteriors with a mixture density neural net-
work (MDNN) [36], [37], obtaining full covariance Gaus-
sian components. Since Gaussian mixtures are universal
approximators for densities [38], [39], given enough mix-
ture components BayesSim posteriors can ensure sufficient
representational capacity. Combining techniques based on
neural networks and Bayesian inference allows BayesSim to
be scalable and flexible in terms of its modeling capabilities.

BayesSim performs probabilistic inference by considering
a prior p(θθθ) over a vector of D simulation parameters θθθ =
[θ1, ..., θD] and a derivative-free simulator used for obtaining
trajectories of a dynamical system. Each trajectory xxxs is
comprised of simulated observations for states SSS = {sss}Tt=1

of a dynamical system and the actions AAA = {aaa}Tt=1 that
were applied to the system. BayesSim then collects a few
observations from the real world, e.g. a single trajectory xxxr

and uses it to compute the posterior p
(
θθθ
∣∣∣{xxxs(i)}Ni=1

,xxxr
)

.
Instead of assuming a particular form for the likelihood and
estimating p(xxx|θθθ), BayesSim approximates the posterior by
learning a conditional density qφ(θθθ|xxx), represented by an
MDNN with weights φ. The posterior is then:

p̂(θθθ|xxx=xxxr) ∝ p(θθθ)/p̃(θθθ)qφ(θθθ|xxx=xxxr), (1)



with an option for a proposal prior p̃(θθθ) used to collect
simulated observations to train the conditional density.

In previous works, BayesSim first summarized simulated
and real trajectories by extracting the sufficient statistics:

ϕ(SSS,AAA) =
(
{〈τττ i, aaaj〉}Ds,Da

i,j=1 ,E[τττ ],Var[τττ ]
)
, (2)

where τττ = {ssst − ssst−1}Tt=1 contains the trajectory state
differences, Ds, Da are the state and action dimensional-
ities, 〈·, ·〉 denotes a dot product between the state and
action feature vectors. Works that applied BayesSim to low-
dimensional states (e.g. robot joint angles, object poses and
velocities) used these states directly. [34] applied BayesSim
to scenarios with granular media and developed domain-
specific summary statistics of depth images of granular
formations, such as dispersion and statistical dependence of
the grain locations (mean, standard deviation, interquartile
range, kurtosis, and distance correlation). In this work, we
present a novel methodology to perform inference using state
trajectories directly from images, without the need to first
extract sufficient statistics from trajectories.

III. OUR APPROACH : BAYESIAN INFERENCE WITH
DISTRIBUTIONAL RKHS EMBEDDINGS

A. BayesSim with a Distributional View of Deformables

In this section we describe BayesSim for deformables.
The method begins by first executing a trajectory with a
robot manipulating a deformable object. For example, for
the wiping scene, this could correspond to executing a simple
horizontal motion, where the robot drags a cloth on a table
surface. We record robot poses and RGB images of the scene.
Our goal is to infer a simulation parameter posterior, such
that samples from it yield simulations that resemble reality
in terms of deformable object motion. We obtain simulated
trajectories and RGB images from simulations of the scene
with a deformable object. Simulation parameters are sampled
from a uniform distribution on the 1st iteration. We use these
initial real and simulated images to train keypoint extraction
models. We extract the keypoints from simulated images and
include them in the state observations:

SSS = {sss}Tt=1 : ssst =
[
gripper pose, kkk1, ..., kkkK

]
, (3)

where gripper pose is the Cartesian pose of the gripper, and
kkk1, ..., kkkn are the extracted keypoints (2D in pixel coordi-
nates or 3D in world frame if camera-to-robot transform is
given). Following BayesSim, we obtain simulation training
trajectories xxxs={ssst, aaat}Tt=1, where aaat are the robot actions,
e.g. target Cartesian gripper poses, joint angles or velocities
(depending on the desired control mode). We use a set of
simulated trajectories to learn a conditional density qφ(θθθ|xxx)
represented by an MDNN with weights φ. We then obtain
the posterior p̂1(θθθ|xxx = xxxr) using the real trajectory xxxr and
Equation 1. The above constitutes one iteration. We obtain
a new set of simulation trajectories by sampling simulation
parameters from the approximate posterior p̂1, then repeat the
above steps to obtain p̂2 as posterior for the 2nd iteration,
and so on.

To guarantee that our state representation has favorable
properties, both in terms of theory and practice, we propose
to transform the part of the state that contains keypoints
kkk1, ..., kkkK . Our insight is that the keypoints can be viewed as
noisy samples from a probability distribution that has support
on the surface of the deformable object in the scene. The full
state of the deformable is unobservable due to occlusions by
other objects as well as self-occlusions. Moreover, keypoint
extraction methods do not guarantee ordering, and do not
guarantee placement of the keypoints on consistent parts
of the object. Nonetheless, our insight of treating them
as samples from the distribution that captures the state of
the deformable allows us to overcome these shortcomings.
Furthermore, this distributional treatment yields a method
that is robust to noise by construction, and can benefit from
principled theoretical tools for analysis and interpretation.

B. An Intuitive Explanation of Kernel Mean Embeddings

Kernel mean embeddings allow to map distributions into
infinite dimensional feature spaces [13]. Conceptually, they
are able to represent probability distributions without loss
of information in a feature space that is more amenable to
mathematical operations. A desirable property that a kernel
mean embedding satisfies is that it can recover expectations
of all the functions in a given reproducing kernel Hilbert
space F . This property of the mean embedding map µX ∈ F
is technically stated as:

EX [f(X)] = 〈µX , f〉, ∀f ∈ F . (4)

To get an intuition for why this is useful, consider the
following example: if an RKHS F is sufficiently large, e.g.
includes all monomials {X,X2, X3, ....}, then we can obtain
all the moments of the distribution of X by simply taking dot
products with f ∈ F . In the above, X is a random variable
with domain Ω and distribution P (X), F is an RKHS on Ω
with a kernel k(x, x′). This means that F is a Hilbert space
of functions f : Ω→ R with the inner product 〈·, ·〉F .

Kernel slices k(x, ·) are functions in F that satisfy the
reproducing property:

〈
f(·) , k(x, ·)

〉
F = f(x). A kernel

slice k(x, ·) can be viewed as an implicit feature map
φ(x) with k(x, x′) =

〈
φ(x) , φ(x′)

〉
F . [40] shows that

commonly used kernels are indeed sufficiently large. These
characteristic kernels ensure that µX mapping is injective,
hence embedding P (X) as µX does not lose information
about P (X). The RBF kernel k(x, x′) = exp(−σ||x−x′||22)
is the most widely used kernel. The fact that it can be formed
by taking an infinite sum over polynomial kernels connects
to our ‘moments of distributions’ example above.

The Riesz representation theorem states that µX in Equa-
tion 4 exists and is unique. Using the reproducing property
and linearity of integration, an explicit formula for µX
can be obtained: µX = E[φ(X)] =

∫
Ω
φ(x) dP (x) (after

simplifying). This suggests defining the empirical kernel
embedding using i.i.d. samples x(1), ..., x(N) from P (X) as:

µ̂X := 1
N

N∑
n=1

φ
(
x(n)

)
. (5)
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Fig. 1. An overview of our BayesSim-RKHS method, with a focus on the
proposed RKHS-net layer, shown within the blue rectangle. The RKHS-net
layer can take samples from any distribution as inputs, and in this work we
compute the distributional embedding for the keypoints kkk1, ..., kkkK .

[41] justifies the above choice by showing that µ̂X converges
to µX as O(1/

√
N), independent of the dimensionality of X ,

which avoids the curse of dimensionality. Instead of dealing
with infinite-dimensional implicit maps φ(x), applying the
kernel trick allows to operate with the finite-dimensional
Gram matrix K : Kij = k

(
x(i), x(j)

)
, i, j = 1...N .

C. RKHS-Net Layer for Distributional Embeddings

For scalability reasons, we can avoid the computation of
the Gram matrix by approximating the kernel function by its
inner product:

k(x, x′) =
〈
φ(x) , φ(x′)

〉
F≈ φ̂(x)T φ̂(x′), (6)

where φ̂(x) is a finite dimensional approximation of φ(x),
known as random Fourier features [42], [43]. Following the
derivation in [42], we first employ Bochner’s theorem, which
states that any continuous shift-invariant kernel k(x, x′) :=
k(x−x′) can be represented in terms of its Fourier transform:

k(x− x′) =

∫
p(ω) exp

(
iωT (x− x′)

)
dω,

where p(ω) is the spectral density corresponding to kernel
k(x − x′). For real a real-valued kernel k(·, ·), the right-
hand side can be written without the imaginary part as
Eω
[

cos
(
ωT (x−x′)

)]
. This expectation can be approximated

with a Monte Carlo estimate yielding:

k(x− x′) ≈ 1

M

M∑
m=1

cos
(
ωTmx− ωTmx′

)
= φ̂(x)T φ̂(x′),

φ̂(x)T= 1√
M

[
cos(ωT1 x), sin(ωT1 x), ..., cos(ωTMx), sin(ωTMx)

]
When ω∼N (000, I), the above approximates an RBF kernel
with σ = 1. More generally, when ω ∼ N (000, σI) this
approximates an RBF kernel with a hyper-parameter σ.
The frequencies ω are usually sampled randomly, yielding
components of the form cos(σ−1 ◦ωTMx), sin(σ−1 ◦ωTMx).
[42] provides approximation bounds and further analysis of
the random Fourier features (RFF) approximation.

We propose to use the RFF feature approximation to
construct the mean embedding for the part of the state
that benefits from the distributional representation. In the
current work this includes the keypoints kkk1, ..., kkkK . Though,
in general, the proposed approach is not limited to handling

keypoint representations, and can embed any distributional
part of the state. Furthermore, we propose to integrate this
into the overall learning architecture in a fully differentiable
manner. We accomplish this by constructing a neural network
layer that obtains random samples for ω, and then propagates
the gradients through to adjust them during training. We also
propagate the gradients through σ. Figure 1 illustrates this.

D. Keypoint Extraction Modules

We now describe two keypoint extraction methods: one is
a data-efficient supervised method, for which the user needs
to annotate a small set of images to indicate the desired
locations for the keypoints [12]; the other is unsupervised,
and only needs unlabeled RGB frames for training [11].

[12] is a recent method designed for learning features to
help refine coarse keypoint prediction to a precise consistent
location on an object. This method has been shown to
work well as part of a larger framework aimed to solve the
perception, planning and manipulation challenges for the task
of untangling knots. The aim is to learn semantic keypoints
that roughly capture the state of the deformable objects. For
scenarios with cloth we annotate the corners of the cloth to
indicate the desired areas where the algorithm should learn
to place the keypoints. For ropes it is less obvious what
the ‘best’ location for placing a keypoint should be. Hence,
we make a simple choice of spacing the keypoints uniformly
along the rope. Using these annotated images as RGB image
observations, we learn a mapping f : RW×H×3 → RW×H×4,
where each channel of the output represents a 2D heatmap for
one keypoint. Given 250 images (125 simulated, 125 real),
we annotate four task-relevant keypoints on each image.
Then, we apply affine, lighting, and color transformations to
augment the dataset, obtaining the overall augmented dataset
size of 3000 images. A network with a ResNet-34 backbone
is then trained to predict 2D Gaussian heatmaps centered at
each keypoint. After training, the positions of the keypoints
are predicted as argmax over each channel heatmap.

We aim for our overall approach to effectively handle
noisy outputs that unsupervised approaches can yield as
well. For this, we adapt an unsupervised keypoint extraction

Fig. 2. Left: keypoints from the supervised approach [12] appear close
to the desired corner regions, despite deformations. They tend to track
consistent locations, but the method does not aim to guarantee this. Right:
example results from our adaptation of the unsupervised method from [11].



Fig. 3. Left: scenarios we consider in our hardware experiments. Right:
examples of simulation with various parameters; the initial parameter ranges
are wide, which yields both realistic and unrealistic behavior, as expected.

approach based on the Transporter architecture [11]. This
method takes as input RGB images xsrc and xtgt. A con-
volutional neural network (CNN) and a keypoint detection
network encode the input to the spatial feature map Φ(x)
and a keypoint network Ψ(x). Then, a ‘transport’ operation is
performed to modify the feature map of the input image, such
that source features at the location of the source image key-
points are subtracted out, while target features at the location
of the target image keypoints are pasted in: Φ̂(xsrc, xtgt) =
(1−HΨ(xsrc)) · (1−HΨ(xtgt)) ·Φ(xsrc)+HΨ(xtgt) ·Φ(xtgt).
Here, H denotes the mapping from keypoint coordinates to
Gaussian heatmaps. Then, a decoding CNN reconstructs the
target image from the transported feature map. The training
is guided only by the reconstruction loss. We extend this
approach to ensure that the keypoint network Ψ(x) allocates
keypoints to the manipulated objects, as opposed to placing
them on the robot. The pose of the robot and its geometry
(mesh) are usually known to high precision. Hence, there is
no benefit in tracking the motion of the robot from the RGB
images. We obtain the robot mask (the part of the image that
has robot in the foreground) by using depth filtering methods
on the depth readings that we acquire from an RGBD camera
mounted in the workspace. We mask out the areas with the
robot from the reconstruction loss during training, and this
helps the method focus on the regions with the deformable
object. The right side of Figure 2 shows an example of the
keypoints we obtain with this approach.

IV. EXPERIMENTS

In the following sub-sections, we first describe the sce-
narios we consider, then explain our hardware setup and
evaluation strategy, then illustrate the results of real-to-sim
experiments using two types of keypoint extraction methods.

A. Description of Real and Simulated Scenarios.

For our experiments we consider three scenarios that in-
volve deformable objects with various levels of deformation.
The first is a wiping scenario, where a robot manipulates a
thick cloth to wipe a table surface. This scenario aims to
test the case when capturing the state of the real object is
tractable, but finding an appropriate simulation posterior is

challenging. The real wiping cloth is clearly visible in most
frames, and undergoes only small deformations. In contrast,
simulated cloth can be highly flexible, and easily crumbles
when medium-to-low bending and elastic stiffness simulation
parameters for the cloth are sampled together with medium-
to-high values for the friction parameter. These cases are
frequent in the initial uniform simulation parameter samples.

In the second scenario the robot winds a highly flexible
rope around a spool. This scenario presents a challenge for
the keypoint extraction methods, since there are no obvious
canonical locations for keypoints. Furthermore, parts of the
rope are occluded by the spool.

In the third scenario the robot flings the cloth up, then
lowers it down and drags it on the table surface. This
scenario is challenging for perception, both for real images
and simulation, since the cloth is highly flexible and not fully
visible at any point. With medium-to-high friction, the ends
of the cloth spread out on the table, but the top corners of
the cloth remain obscured due to self-occlusion.

In all of these scenarios we infer a joint posterior for bend-
ing stiffness, elastic stiffness, friction, and the scale/size of
the deformable object. The rest of the simulation parameters
are left as defaults, and are the same across all the scenarios.
We use the PyBullet simulator [44], with the Finite Element
Method (FEM) option for simulating deformable objects.
While FEM can be computationally expensive and precise
in general, the default settings we use in PyBullet prioritize
speed over fidelity to obtain faster-than-realtime simulation.
Figure 3 shows visual examples of our scenarios.

In this work, we focus on inference of posteriors of phys-
ical simulation parameters, and do not explore the aspect of
a large mismatch in camera perspective or visual appearance
of the scene. Hence, we make simulation environments that
approximately match the visual appearance, which is easy
to achieve in the PyBullet simulator. We load a realistic
background and texture for the deformable object, and
approximately match the camera pose. Addressing a large
visual gap for a simulator that cannot import custom visual
elements can be done by either training keypoint methods
with heavy visual domain randomization, or by exploring
novel differentiable rendering techniques. We leave these
directions for future work. In this work we also do not
focus on the aspect of simulating grasping of the deformable
object with high fidelity. In our simulated environments
we attach a simple grasp anchor to the cloth/rope objects,
instead of simulating the interaction between the gripper’s
fingers and the thin-shell deformable object. SoftGym [45]
is a recent example of a suite of simulation environments
geared towards sim-to-real that adopts a similar approach
for a subset of environments.

B. Hardware Setup and Evaluation Methodology

Our hardware setup includes a Kinova Gen3 7DoF robot
arm with a Robotiq 2F-85 gripper, and an Intel RealSense
D435 camera. The camera provides RGB image data during
experiments and is positioned to view the table surface.
As image resolution, we use 320 × 320 pixels in all our



Fig. 4. Left: our hardware setup. Right: visualization of our evaluation
strategy to measure the alignment between the behavior of the real and a
simulated deformable objects. The ‘ground truth’ masks are only used for
evaluation, and are not given to any of the algorithms we compare.

experiments. To execute the desired robot trajectories we use
velocity control in the Cartesian (end-effector) space, using
the high-level control interface provided by Kinova. The left
side of Figure 4 illustrates our workspace.

To evaluate the performance of our approach and base-
lines, we measure alignment between the motion of the real
and simulated deformable object. To localize the deformable
objects in the scene we construct masks based on color filters
defined in HSV space. The mask extracted for the real object
constitutes the ‘ground truth’ region. Note that this ‘ground
truth’ (GT) is only used for evaluation purposes and is not
given to any of the algorithms we compare which only use
keypoints as input. We construct a mask for the simulated
object as well, then compare the two masks. To compare
the two masks, we use a bidirectional Chamfer distance,
which is a common metric for measuring differences between
unordered point clouds. To obtain trajectories for evaluation,
we command the same trajectory on the real robot and in
simulation, obtain the frames from the real and simulated
cameras, then compute the Chamfer distance. The mean of
this distance across all timesteps constitutes our evaluation
metric that quantifies alignment between the real and simu-
lated deformable object. On the y axis in our plots, we refer
to this metric as the “distance to ‘ground truth’ state”.

C. Hardware Results for Real-to-sim

For evaluation we compare the following 6 methods:
BayesSim-MDNN is the original BayesSim method in [7].
BayesSim-MDRFF extracts RFF features from trajectories

before passing the data to the mixture density network for
training. This variant has been used in experiments with
inferring material properties of granular media [34] and
showed strong performance on that challenging task. One
key aspect to note is that [34] domain-specific features, as
we described in the background in Section II. We aim to
avoid designing domain-specific features for manipulation
with deformables, since it is not plausible to presuppose
that a single feature extraction technique could perform well

Fig. 5. Hardware results for the wiping task. Left: using unsupervised
keypoints. Right: using supervised keypoints.

across various scenarios/tasks and various kinds of objects
and deformation types.

BayesSim-RKHS is the method we propose in Section III.
BayesZoom-RKHS is a variation of our method, which we

test to verify that our distributional embedding of keypoints
can still work with a simpler variant of BayesSim. This
variant uses a 3-layer fully-connected neural network instead
of the mixture density network. The network learns to predict
the mean of a unimodal Gaussian posterior. We use the L1
error on the validation set as a way to compute an estimate
of the square root of the variance. We refer to this method
as BayesZoom, since it retains the core idea of shifting the
posterior to re-sample simulated trajectories from the more
promising regions of the search space (i.e. it ‘zooms’ in on
the useful parts of the space). BayesZoom-RKHS incorporates
our idea of using distributional embedding for keypoints.

All of the above algorithms are sequential: they shift
the posterior after each iteration, then sample simulation
data from the new posterior on the subsequent iteration.
We collect 100 simulation trajectories on each iteration, and
retain all the data from the previous iterations for training.
Hence, after 15 iterations these algorithms would collect a
total of 1.5K simulation trajectories overall. To compare this
sequential vs batch/bulk training, we test the following two
‘bulk’ algorithms that collect 1.5K trajectories sampled from
the uniform prior, then train on this dataset.

NN-bulk-1.5k is a batch method that trains a fully con-
nected neural network on 1.5K simulated trajectories.

GP-bulk-1.5k performs batch Gaussian process regression.
In all NN-based algorithms, we use 3-layer fully connected

neural networks as the ‘backbone’ with 1024 units in each
layer. We use Adam optimizer with a learning rate of
1e-6. In our experience, the small learning rate helps NN-
based approaches to learn from noisy data. For Gaussian
process regression we use GPyTorch+BOTorch with auto-
matic hyperparameter optimization. For keypoint extraction,
we experimented with using 8 and 4 keypoints with the
unsupervised method. For the supervised approach we used
4 keypoints to minimize the time spent on labeling the data.



Fig. 6. Hardware results for the winding task. Left: using unsupervised
keypoints. Right: using supervised keypoints.

Figures 5, 6, 8 show plots for results on all the scenarios.
In these plots, the lines show mean distance to ‘ground
truth’ (mean over a set of 30 evaluation trajectories), shaded
regions indicate one standard deviation. The top of each plot
includes an example visualization of the keypoints. Results
for the ‘bulk’ baselines are shown on the right side in each
figure. We let these methods use the supervised keypoints,
since these are less noisy. BayesSim-RKHS and BayesZoom-
RKHS outperform all other approaches, showing the largest
improvement on the winding task. This result is intuitive,
since the keypoints in this scenario move around the length
of the rope without settling on consistent locations. Hence,
the distributional embedding for keypoints is most useful.
The unsupervised keypoints extracted in wiping and fling
scenarios are sometimes placed on the robot. This can be
resolved by modeling the robot in simulation instead of
masking it out in reality; we will address this in future work.

V. DISCUSSION AND CONCLUSION

In this work, we introduced the concept of distributional
embedding to represent deformable object state. We showed
that this idea allows us to conduct Bayesian parameter
inference of material properties on noisy real-world data

Fig. 7. Examples of 2D slices of 4D posteriors found after 15 iterations of
BayesSim-RKHS. The mixture posterior is comprised of 4 full-covariance
Gaussian components, blue crosses show their means. The high-likelihood
regions are denoted in magenta (blue crosses outside high-likelihood regions
indicate that the mixture component’s weight is low). Scale and friction tend
to be the easier parameters to estimate, with posteriors becoming peaked.
Bending and elastic stiffness are more difficult to infer. The middle plot
shows an example where the posterior has shifted only slightly.

Fig. 8. Hardware results for the fling task. Left: using unsupervised
keypoints. Right: using supervised keypoints.

from vision systems. Using random Fourier features approx-
imation enabled this embedding to be computed efficiently.

Previous works, including existing BayesSim variants,
explored using RFF features to transform the inputs to the
neural networks before training. Computer vision works,
such as [46], also employed RFFs and showed favorable
results in some cases, for example – improving recovery
of high-frequency signals in images. In contrast to previous
results for direct application of RFFs, we show that simply
using RFF features yields BayesSim-MDRFF method, which
is unable to produce informative parameter posteriors for
deformable objects.

Our approach benefits from the favorable theoretical prop-
erties of RFFs, but applies them in a different context: to em-
bed distributions representing the state of a deformable object
in an RKHS. We specifically address the challenges of han-
dling approximate and noisy representations that frequently
arise when dealing with deformable objects. Furthermore,
our approach aims to enable modularity and data efficiency
when applying Bayesian parameter inference methods to
the challenges of learning from data with deformables. We
demonstrate how to successfully use existing state represen-
tation learning methods, despite the lack of consistency and
challenges with non-identifiability in these representations.
Instead of requiring large-scale data collection, we focus on
utilizing the data efficiently. The keypoint extraction models
are trained from ≈1 minute of real data, hence output ap-
proximate and noisy results. Our method allows to interpret
the output of these methods as samples from an underlying
state distribution and create embeddings of these distributions
with minimal loss of information. The RKHS-net layer we
propose offers a fully automated way to construct such
embeddings, without the need for hyperparameter tuning,
since all variables and parameters are learned from data via
gradient descent.
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