
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2022 1

DefGraspSim: Physics-based simulation of grasp
outcomes for 3D deformable objects
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Abstract—Robotic grasping of 3D deformable objects (e.g.,
fruits/vegetables, internal organs, bottles/boxes) is critical for
real-world applications such as food processing, robotic surgery,
and household automation. However, developing grasp strategies
for such objects is uniquely challenging. Unlike rigid objects,
deformable objects have infinite degrees of freedom and require
field quantities (e.g., deformation, stress) to fully define their
state. As these quantities are not easily accessible in the real
world, we propose studying interaction with deformable objects
through physics-based simulation. As such, we simulate grasps
on a wide range of 3D deformable objects using a GPU-based im-
plementation of the corotational finite element method (FEM). To
facilitate future research, we open-source our simulated dataset
(34 objects, 1e5 Pa elasticity range, 6800 grasp evaluations,
1.1M grasp measurements), as well as a code repository that
allows researchers to run our full FEM-based grasp evaluation
pipeline on arbitrary 3D object models of their choice. Finally,
we demonstrate good correspondence between grasp outcomes
on simulated objects and their real counterparts.

Index Terms—Grasping, simulation and animation, software
tools for benchmarking and reproducibility.

I. INTRODUCTION

FROM clothing, to plastic bottles, to humans, deformable
objects are omnipresent in our world. A large subset

of these are 3D deformable objects (e.g., fruits, internal
organs, and flexible containers), for which dimensions along
all 3 spatial axes are of similar magnitude, and significant
deformations can occur along any of them. Robotic grasping of
3D deformables is underexplored relative to rope and cloth, but
remains critical for applications like food handling [1], robotic
surgery [2], and domestic tasks [3]. Compared to rigid objects,
grasping 3D deformable objects faces 4 major challenges to
which we respond with 4 key contributions.

First, classical analytical metrics for grasping rigid objects
(e.g., force/form closure) do not typically consider deformation
of the object during the grasp [3]. Yet, deformations signif-
icantly impact the contact surface and object dynamics. For
example, one can grasp a soft toy haphazardly; however, if
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Fig. 1: (A) For a broad set of candidate grasps on a deformable object,
(B) we simulate the object’s response with FEM, (C) measure perfor-
mance metrics (e.g., stress, deformation, controllability, instability),
and (D) identify pre-pickup grasp features that are correlated with
the metrics. Our simulated dataset contains 34 objects, 6800 grasp
experiments, and 1.1M unique measurements.

the toy were rigid, it would no longer conform to one’s hands,
and many grasps would become unstable. Conversely, one can
grasp a rigid container haphazardly; however, if the container
were flexible, grasps along its faces would crush its contents.
Unlike for rigid objects, the success of a 3D deformable grasp
depends on properties such as compliance. We thus propose
a set of diverse performance metrics that quantify deformable
grasp outcomes (Sec. V), such as stability, deformation, and
stress. Performance metrics may also compete (e.g., a stable
grasp may induce high deformation).

Second, performance metrics may be partially or fully un-
observable (e.g., volumetric stress fields), requiring estimators
in the real world. Previous works have addressed this by
formulating quality metrics, which we refer to as grasp fea-
tures: simple quantities a robot can measure before pickup that
can predict performance metrics. Whereas grasp features have
predominantly been designed for rigid objects, we propose a
set of grasp features compatible with deformables (Sec. VI).

Third, there exists neither a general framework to evaluate
arbitrary deformable grasps (i.e., via performance metrics
and grasp features), nor an exhaustive dataset of deformable
grasp experiments. We thus release DefGraspSim, a codebase
that allows users to automatically perform an exhaustive set
of FEM-based grasp evaluations on arbitrary 3D objects.1

Simulation offers multiple advantages: it extends classical
analytical methods through accurate modeling of object defor-
mation, enables safe execution of experiments, and provides
full observability of performance metrics. We also conduct
a large-scale simulation-based study of 3D deformable object

1https://sites.google.com/nvidia.com/defgraspsim
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TABLE I: Comparisons between Isaac Gym and other robotics simulators that support both 3D deformable bodies and actuator interactions.

Simulator Interactions 3D geometries Materials Underlying model Observable states Processor

MuJoCo [4] soft-rigid,
rigid-rigid

Boxes, cylinders,
ellipsoids

Homogeneous
isotropic elastic

Mass-spring with sur-
face nodes

Nodal positions CPU

PyBullet 3 [5] soft-rigid,
soft-soft,
rigid-rigid

Arbitrary geome-
tries

Homogeneous
isotropic elas-
tic/hyperelastic

Mass-spring or Neo-
Hookean volumetric
FEM

Nodal positions, contact points &
forces

CPU

IPC-GraspSim [6] soft-soft Arbitrary geome-
tries

Homogeneous
isotropic elastic

Incremental potential
contact model

Nodal positions, velocities, and ac-
celerations

CPU

Isaac Gym [7] soft-rigid,
rigid-rigid

Arbitrary geome-
tries

Homogeneous
isotropic elastic

Co-rotational linear
volumetric FEM

Nodal positions & velocities, con-
tact points & forces, element stress
tensors

GPU

grasping on 3D deformables varying in geometry and elasticity
(Fig. 1), and provide this live dataset of 34 objects, 6800 grasp
evaluations, and 1.1M corresponding measurements. This is
the largest deformable object grasping dataset in existence.

Fourth, simulation studies do not necessarily correspond to
real-world behavior. To address this gap, we perform a pilot
sim-to-real study on results generated by DefGraspSim, and
demonstrate that simulated results show reliable correspon-
dence with real-world experiments (Sec. VIII).

We believe these 4 main contributions are an important
milestone towards developing a complete learning and plan-
ning framework for grasping 3D deformables.

II. RELATED WORK

Modeling techniques. With over three decades of devel-
opment, methods in rigid-object grasp planning range from
model-based approaches using exact geometries [8], [9], [10]
to data-driven approaches without full models [11], [12],
[13], [14], [15], [16]. Rigid-body grasping simulators such
as GraspIt! [17] and OpenGRASP [18] have been used to
develop many of these algorithms. For 3D deformable objects,
rigid-body approximations can lead to efficient simulations
[19]; however, continuum models are preferred, as they can
represent large deformations and allow consistent material
parameters without an explicit model-fitting stage [20]. 3D
continuum models include Kelvin-Voigt elements governed
by nonlinear PDEs [21], mass-spring models [22], 2D FEM
for planar and ring-like objects [23], and gold-standard 3D
FEM [24]. However, many powerful FEM simulators used
in engineering and graphics (e.g., Vega [25]) do not feature
infrastructure for robotic control, such as built-in joint con-
trol. For comprehensive reviews of 3D deformable modeling
techniques, please refer to [26], [27]. In this work, we use
the GPU-accelerated Isaac Gym simulator to analyze grasp
interactions with deformable objects. In Table I, we compare
Isaac Gym to other robotics simulators, including MuJoCo [4]
and PyBullet [5], which have successfully modeled deformable
ropes and cloths using rigid-body networks with compliant
constraints [28], [29], [30], [31], but have recently started to
support 3D deformable objects as well.
Performance metrics. Prior works have evaluated 3D
deformable-object grasps using performance metrics based
on pickup success, strain energy, deformation, and stress.
Success-based metrics include the minimum force required
by a particular grasp, which is calculated via real-world

Fig. 2: The 34 evaluated objects grouped by geometry and dimension
(shown to scale). Objects in blue are self-designed primitives; those
in gray are scaled models from open datasets [39], [40], [41], [42].

iterative search [21] and FEM [22], [24]. Success depends
on both object geometry and stiffness (e.g., a cone can be
picked up only when it can deform to the gripper) [24].
Metrics based on strain energy (i.e., elastic potential energy
in the object) have served as proxies for an object’s stability
against external wrenches. In 2D the deform closure metric
generalizes rigid form closure [32] and quantifies the positive
work required to release an object from a grasp [33]. It is op-
timized by maximizing strain energy without inducing plastic
deformation. Similarly, for thin and planar 2.5D objects, grasps
have been selected to maximize strain energy under a fixed
squeezing distance [23]. Deformation-based metrics have also
been proposed for cups and bottles to detect whether contents
are dislodged during lifting and rotation [34]. Finally, stress-
based metrics have been proposed to avoid material fracture,
but were evaluated only on rigid objects [35].
Grasp features. Many grasp features to predict grasp per-
formance have been previously investigated on rigid objects.
Features include force and form closure [9] and grasp polygon
area [36], and their predictive accuracy has been tested under
different classification models [37]. A thorough survey on rigid
grasping features can be found in [38]. However, grasp features
for deformables have only been explored in one study, which
measured the work performed on containers during grasping
to predict whether its liquid contents would be displaced [34].

III. GRASP SIMULATOR

We use the FEM-based simulator Isaac Gym [7] to simu-
late grasps on 3D deformable objects. FEM is a variational
numerical technique that divides complex geometrical do-
mains into simple subregions and solves the weak form of
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Fig. 3: Young’s modulus E for various materials (adapted from [43]). (Top): real-world objects and their typical E. (Bottom): Stress
distributions of an ellipsoid under 1 N of grasp force. Soft ellipsoids undergo large deformations; rigid ones have high-stress regions.

the governing partial differential equations over each region.
In FEM simulation, a deformable object is represented by
a volumetric mesh of elements; the object’s configuration
is described by the element vertices, known as nodes. We
use Isaac Gym’s [7] co-rotational linear constitutive model
of the object’s internal dynamics coupled to a rigid-body
representation of the robotic gripper via an isotropic Coulomb
contact model [44]. A GPU-based Newton method performs
implicit integration by solving a nonlinear complementarity
problem [45]. At each timestep, the simulator returns element
stress tensors and nodal positions, which are used to calculate
grasp metrics. With sufficiently small timesteps and high
mesh density, FEM predictions for deformable solids can be
extremely accurate [46], [47]. We simulate at a frequency of
1500Hz. The simulator executes at 5-10 fps, and each grasp
experiment (Sec. IV) requires around 2 to 7 minutes to run.

We evaluate a set of 34 3D deformable objects comprising
both simple object primitives and complex real-world models,
categorized by geometry and dimension (Fig. 2). We process
object surface meshes in Blender to smooth sharp edges to
avoid stress singularities, and reduce node count where possi-
ble to optimize speed. We then convert these into tetrahedral
meshes using fTetWild [48].

For all experiments our objects have density ρ = 1000 kgm3 ,
Poisson’s ratio ν = 0.3, coefficient of friction µ = 0.7, and
Young’s modulus E ∈ E = {2e4, 2e5, 2e6, 2e9}Pa. E covers
a wide range of real materials, from human skin (∼104Pa)
to ABS plastic (∼109Pa) (Fig. 3). The target squeezing force
on an object is Fp = 1.3 × mg

µ (where m is mass and g is
gravity), which is the force required to support the object’s
weight with a factor of safety. For a fixed E, increasing µ
decreases Fp as well as the induced deformation. This effect
is essentially the same as if µ is fixed while E is increased,
since an elastically stiffer object will also deform less for the
same Fp applied. Thus, we fix µ and vary E.

IV. GRASP EXPERIMENTS

We perform simulated grasping experiments within Isaac
Gym on 34 objects using the widely used Franka parallel-
jaw gripper. To generalize to other parallel-jaw grippers we
remove all specialized gripper features. For each object, we
generate a diverse set of 50 candidate grasps with an antipodal
sampler [49]. Each object initially rests atop a horizontal
plane; we disable gripper collisions with the plane to test
the full spatial distribution of grasps by allowing grasps to

come from underneath. Prior to grasping, the pre-contact nodal
positions and element stresses of the object are recorded. The
gripper is initialized at a candidate grasp pose, then squeezes
using a force-based torque controller to achieve the target
grasp force, Fp. Once Fp converges, the grasp features are
measured. Then, one of the following experiments (Fig. 4)
is executed: pickup, reorientation, linear acceleration, and
angular acceleration.
1) Pickup. The platform lowers to apply incremental gravita-
tional loading to the object. Pickup is a success if the gripper
maintains contact with the object for 5 seconds. If so, stress
and deformation fields are recorded, and stress, deformation,
and strain energy performance metrics are computed.
2) Reorientation. The grasp force is increased from Fp to
Fslip, the minimum force required to counteract rotational slip.
The platform is lowered until the object is picked up. The
gripper rotates the object to 64 unique reorientation states.
We record stress and deformation fields at each state, and
compute deformation controllability as the maximum defor-
mation over all states. Fslip is estimated by approximating
each gripper contact patch as 2 point-contacts that oppose
the gravitational moment. The gripper rotates the object about
each of 16 vectors regularly spaced in a unit 2-sphere at angles
kπ/4, k ∈ [1..4] for a total of 64 unique reorientation states.
3) Linear acceleration. The gripper linearly accelerates along
each of 16 unique direction vectors as in the reorientation
experiment. Each vector has a complement pointing in the
opposite direction; thus, this method generalizes the cyclic
shaking tests from previous works [49]. The acceleration is
recorded at which at least one finger loses contact with the
object. Linear instability is computed as the average loss-of-
contact acceleration over all directions. The robot moves at
1000ms

3 jerk in a gravity-free environment, corresponding to
a linearly increasing acceleration. We impose a realistic upper
acceleration limit of 50ms

2 (≈ 5g).
4) Angular acceleration. The gripper rotationally accelerates
about 16 unique axes. Angular instability is computed as the
average loss-of-contact acceleration over all axes. The robot
accelerates at 2500 rads

3
jerk; to mitigate undesired linear

acceleration, the midpoint between the fingers is the center
of rotation. The angular loss-of-contact threshold is limited
to 1000 rads

2
(i.e., the linear acceleration limit, scaled by the

0.04m max. finger displacement, a reference moment arm).
Controller Details. A contact force-based torque controller is
used to achieve the desired grasp forces. A low-pass filter is
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Fig. 4: Example frames from the execution of four different ex-
periments per grasp on a banana: pickup, reorient, twist (angular
acceleration), and shake (linear acceleration).

Fig. 5: Software flow diagram of the DefGraspSim codebase.

first applied to the contact force signals due to high frequency
noise that prevails from small numerical fluctuations in po-
sition, especially at higher moduli. For the three experiments
involving post-pickup manipulation, the finger joints are frozen
immediately after pickup to maintain the gripper separation.
Codebase. We release the code to replicate our experiments
on arbitrary objects,2 and a full software flow diagram is
shown in Fig. 5. Candidate grasps can either be user-defined
or generated using our grasp sampling module. We also
encourage the use of external software such as Blender to
preprocess object models (e.g., mesh simplification and edge
filleting) to improve simulation speed and convergence.

2https://github.com/NVlabs/DefGraspSim

V. GRASP PERFORMANCE METRICS

During the preceding experiments, we measure the follow-
ing 7 performance metrics to comprehensively evaluate grasp
outcomes. These metrics include high-dimensional field quan-
tities (e.g., stress fields), which are unexplored in rigid object
modeling. Note that linear and angular instability are separate
metrics. During each grasp experiment, we also measure a set
of grasp features (Sec. VI), which capture low-dimensional
state information about the grasp and have potential to be used
as predictors of the final performance metrics.
Pickup success: A binary metric measuring whether an object
is lifted from a support plane.
Stress: The element-wise stress field of an object when
picked up. Exceeding material thresholds (e.g., yield stress,
ultimate stress) leads to permanent deformation, damage, or
fracture; examples include creasing of boxes, bruising of fruit,
and perforation of organs. We convert each element’s stress
tensor into von Mises stress, a scalar quantity that quantifies
whether an element has exceeded its yield threshold. We then
measure the maximum stress over all elements, since real-
world applications typically aim to avoid damage at any point.
Deformation: The node-wise displacement field of the object
from pre- to post-pickup, neglecting rigid-body transforma-
tions. Deformation must often be minimized (e.g., on flexible
containers with contents that can be damaged or dislodged).
To compute this field, the difference between the pre- and
post-pickup nodal positions is calculated, the closest rigid
transform is determined [50], and the transform is subtracted.
We compute the `2 norm of each node’s displacement and
measure the maximum value over all nodes.
Strain energy: The elastic potential energy stored in the object
(analogous to a Hookean spring). Conveniently, this metric
penalizes both stress and deformation. The strain energy is
given by Ue =

∫
V
σT εdV , where σ, ε, and V are the stress

tensor, strain tensor, and volume, respectively.
Linear and angular instability: We define instability as the
minimum acceleration applied to the gripper (along or about
a vector for linear and angular instability, respectively) at
which the object loses contact (i.e., separates along the gripper
normal, or slides out of the gripper). This measures how easily
an object is displaced from the grasp under external forces.
Deformation controllability: We define deformation control-
lability as the maximum deformation when the object is re-
oriented under gravity. (An example of shape change induced
during reorientation is shown in Fig. 6.) Depending on the task,
it may be useful to either minimize or maximize deformation
controllability. For example, to reduce the effects of post-grasp
reorientation on deformation, minimizing this metric allows
the object to behave rigidly after pickup. Alternatively, to
augment the effects of post-grasp reorientation (e.g., during
insertion of endoscopes), we may maximize it instead. Our
notion of deformation controllability is different from the
classical notion (i.e., the ability to achieve any robot state in
finite time). Here, we are not modifying robot controllability
by changing actuation, but modifying object controllability by
changing the number of possible deformation states.

https://github.com/NVlabs/DefGraspSim
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TABLE II: Grasp features, their descriptions, and existing works from which they are derived.

Feature Abbreviation Definition and Relevance Usage in Literature

Contact patch distance to centroid pure dist Distance from the center of each finger’s contact patch to the object’s center
of mass (COM) (Fig. 7a), averaged over the two fingers.

[37], [51]

Contact patch perpendicular dis-
tance to centroid

perp dist Perpendicular distance from the center of each finger’s contact patch to the
object’s COM (Fig. 7a), averaged over the two fingers; quantifies distance
from lines of action of squeezing force.

[52]

Number of contact points num contacts Number of contact points on each finger, averaged over the fingers;
quantifies amount of contact made.

[37], [51]

Contact patch distance to finger
edge

edge dist Distance from each finger’s distal edge to the center of its contact patch
(Fig. 7b), averaged over the two fingers.

[53]

Gripper squeezing distance squeeze dist Change in finger separation from initial contact to the point at which Fp

is achieved; quantifies local deformation applied to the object.
[34]

Gripper separation gripper sep Finger separation upon achieving Fp; quantifies the thickness of material
between the fingers at grasp.

[37]

Alignment with gravity grav align Angle between the finger normal and the global vertical; grounds the grasp
pose to a fixed frame (Fig. 7b).

[54]

Fig. 6: Illustration of deformation controllability. A soft banana-
shaped object under pickup (left); the union of all shape configura-
tions achieved under reorientation, superimposed in light blue (right).

(a) (b)

Fig. 7: Four grasp features illustrated on a Franka gripper.

VI. GRASP FEATURES

The 7 grasp features are recorded after applying the grasping
force Fp, but before loading (Fig. 5). All can be measured
by common real-world sensors (e.g., encoders, cameras, and
tactile arrays) and are summarized in Table II and Fig. 7, along
with references to existing works from which they are derived.
See [38] for a full review of grasp features on rigid objects.

VII. EXAMPLE SIMULATION RESULTS

To demonstrate the utility of DefGraspSim, we simulate
grasps on 5 real object models with realistic material pa-
rameters (Fig. 3, top) and visualize the resulting performance
metrics of stress, deformation, and linear stability (Fig. 8). The
results are well-aligned with established mechanics principles.
On the heart and wine glass (Fig. 8a), regions of high stress
arise with reduced contact areas (e.g., at heart nodules and
the stem of the glass) and curvature discontinuities (e.g., at
the lip of the glass). On a mustard bottle and plastic cup
(Fig. 8b), high deformations occur when contacting regions of
low geometric stiffness (e.g., at the main face of the bottle and
lip of the cup) and vice versa (e.g. at the base of the bottle and
cup). On a banana (Fig. 8c), stability increases with friction µ
under the same grasp pose and force. When µ is fixed, grasps
closest to the ends of the fruit are least stable.

VIII. SIM-TO-REAL ACCURACY

Although simulation is the primary focus of this work,
we also investigate whether grasp outcomes predicted by
DefGraspSim are faithful to the real world.
Tofu blocks. First, we test 3 grasps on real blocks of tofu
under 1 and 2 N of applied force (Fig. 9). Simulated and
real-world deformations exhibit strong similarities, and grasps
achieve anticipated performance (e.g., grasps A and C, re-
spectively, minimize and maximize sagging under the 2 force
conditions). Also, permanent damage on the real-world tofu
occurs under 2 N of applied force, with fracture occurring
in grasps B and C. Although standard FEM cannot simulate
fracture, simulated stresses for these grasps lie within the
literature-reported range of breaking stress for tofu, around
3 kPa [55]. Moreover, fracture lines on the real tofu coincide
with regions of stress higher than this threshold (i.e., along
gripper edge under Grasp B; at tofu ends under Grasp C).
Latex tubes. Next, we perform 3 grasps on latex tubes of
different geometry (Fig. 10). Again, simulated and real-world
deformations are highly similar, including indentations and
bulges localized to regions of contact; moreover, the vertical
distance between the highest and lowest points of the tubes
closely match. We also test the deformation controllability
between grasp D (a middle grasp) and grasp F (an end grasp)
on the thin tube (Fig. 11) by rotating the gripper by 90 degrees
under each grasp. Deformation controllability is higher in
grasp F, as the resulting angle swept out by the tube tip is
only 47◦ (compared to 83◦ under grasp D), which indicates
that more shape change is induced. These angle values also
closely match those predicted by simulation.
Bleach bottle. We also evaluate five grasps on a real bleach
bottle (Fig. 12), which are ordered from G to K in ascending
order of deformation imparted on the simulated version of
the bleach bottle. Since deformation fields on the bottle are
not readily accessible in the real world, we instead measure
the volume of the bottle. After applying a fixed grasp force,
the bottle is filled with rice, and the weight is recorded
and divided by density. The resulting volume change of the
real-world grasps is similar to simulated results, except that
simulation incorrectly predicts that grasp H would impart
more deformation than grasp G (Fig. 13). Cutting open the
bottle reveals that material at the neck of the bottle is thicker
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(a) Simulated stress fields after pickup
for various grasps on a (top) heart and
(bottom) wine glass. Objects are colored
by the von Mises stress field.

(b) Simulated deformation fields after
pickup for various grasps on a (top) mus-
tard bottle and (bottom) plastic cup. Ob-
jects are colored by the l2-norm of the
deformation field.

(c) Linear stability of grasps on a banana at 4 N of grasp
force under (top) the same grasp but variable friction µ, and
(bottom) the same µ but variable grasps. Arrows are colored by
the maximum acceleration in that direction before loss of contact.
Number indicates the average acceleration at failure over all 16
directions.

Fig. 8: Examples of simulated grasp outcomes on 5 objects, with visualizations of (a) stress, (b) deformation, and (c) linear stability.

Fig. 9: Three grasps tested on blocks of tofu (1 and 2 N of squeezing
force) show similar outcomes in simulation and the real world. Real
areas of fracture correspond to simulated stress greater than 3 kPa,
the estimated breaking stress (denoted on color bar by black arrow).

(1 mm) than at the bottom (0.85 mm), whereas a uniform
wall thickness is assumed in simulation. Thus, local stiffness
higher on the bottle (including the contact region under grasp
H) may be underestimated. This discrepancy in wall thickness
also explains why the simulated grasps J and K predicted
significantly more change in volume than in real life, as the
geometric stiffness was underestimated within simulation.
Plastic cup. We test 4 grasps on a plastic cup for stability.
In simulation, we run the linear acceleration experiment in
the upward direction; in the real world, the cup is gradually
filled with metal balls until contact is lost. Since the real
Franka has no precise force controller, the actual gripper forces
on the cup are unknown (unlike the prismatic tofu, the cup
has complex geometry that makes force hard to analytically
estimate from position inputs). Thus, while the ordering of

Fig. 10: Three grasps tested on 2 real and simulated latex tubes under
15 N of gripper force. The vertical distance between the highest and
lowest points of the tube is annotated. Localized deformation due to
compression at the grippers is replicated in simulation.

Fig. 11: A middle grasp (grasp D) and end grasp (grasp F) under a
counterclockwise 90◦ rotation of the gripper in the real world and in
simulation. The angles swept out by the tube tip are marked in red.

Fig. 12: Five tested grasps on a real bleach bottle. Grasps are also
repeated in simulation.
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Fig. 13: Percent volume change pre- and post-grasp for the real and
simulated bleach bottles under grasps G to K.

Fig. 14: Under four grasps on a plastic cup, the maximum weight
withstood before loss of contact is annotated for both the real world
(black) and in simulation (blue).

grasps with respect to stability is consistent between real world
and simulation, the weight values at failure are not (Fig. 14).

IX. CONCLUSIONS AND FUTURE APPLICATIONS

We propose and motivate performance metrics to describe
deformable grasping outcomes as well as grasp features to
serve as potential predictors of metrics. We then measure these
quantities by conducting a battery of grasp simulations on 3D
deformable objects and release our dataset of 6800 grasps and
1.1M measurements for further study, along with software
that executes our experiments on arbitrary objects and material
parameters. Finally, our simulated results are also shown to
have good correspondence with real-world grasp outcomes.
We envision DefGraspSim to be a useful research tool for
the community working towards grasping deformable objects,
with direct applications to:

• Learning representations of new high-dimensional fea-
tures and metrics (e.g., for object and contact geometry,
field quantities, etc.) for memory-efficient grasp planning

• Customizing grasping experiments to create task-oriented
planners (e.g., to minimize food deformation)

• Performing rigorous, direct comparisons between simu-
lation and reality on custom deformables of interest (e.g.,
on organs for robotic surgery)

• Generating training data for real-world system identifica-
tion (e.g., tactile probing on unknown materials)

• Generating data for neural network-based grasp simula-
tion for real-time grasp planning

• Improving grasp planning robustness to uncertainty in ob-
ject material properties (e.g., via domain randomization)
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