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Abstract— Structured Light Illumination (SLI) systems have
been used for reliable indoor dense 3D scanning via phase
triangulation. However, mobile SLI systems for 360 degree 3D
reconstruction demand 3D point cloud registration, involving
high computational complexity. In this paper, we propose a
phase based Simultaneous Localization and Mapping (Phase-
SLAM) framework for fast and accurate SLI sensor pose
estimation and 3D object reconstruction. The novelty of this
work is threefold: (1) developing a reprojection model from
3D points to 2D phase data towards phase registration with
low computational complexity; (2) developing a local optimizer
to achieve SLI sensor pose estimation (odometry) using the
derived Jacobian matrix for the 6 DoF variables; (3) de-
veloping a compressive phase comparison method to achieve
high-efficiency loop closure detection. The whole Phase-SLAM
pipeline is then exploited using existing global pose graph
optimization techniques. We build datasets from both the unreal
simulation platform and a robotic arm based SLI system in real-
world to verify the proposed approach. The experiment results
demonstrate that the proposed Phase-SLAM outperforms other
state-of-the-art methods in terms of the efficiency and accuracy
of pose estimation and 3D reconstruction. The open-source code
is available at https://github.com/ZHENGXi-git/Phase-SLAM.

I. INTRODUCTION

The SLI technology has been widely used for high-
precision 3D scanning for many industrial applications with
the camera-projector pair. There are usually two approaches
for SLI systems to achieve 360 degree 3D reconstruction:
controlled motion based and free motion based [1]. The
former uses a servo motor to rotate the object along a
pre-defined trajectory for multiple view scanning; the latter
estimates sensor motions through local and global point
cloud registration, such as Iterative Closest Point (ICP) and
associated variants [2], [3]. The free-motion approach is
advantageous in its flexibility but incurs high computational
complexity and demands a high storage capacity.

Meanwhile, as the 2D phase data produced by SLI systems
contain 3D information [4], it is appealing to utilize the phase
to achieve high-efficiency pose estimation and loop closure
detection. However, to develop a fully functional Phase-
SLAM system has to cope with the following technological
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Fig. 1. A diagram of the proposed Phase-SLAM framework based on
the camera-projector pair, which utilizes a 3D-to-2D reprojection model
to predict the phase data for an assumed sensor pose, a local optimizer
to achieve pose estimation, and a compressive method to enable fast loop
closure detection.

challenges: (1) how to build the intrinsic relationship between
the phase and the transformation of SLI; (2) how to develop
a local optimization procedure for estimating 6 DOF motions
of the SLI sensor (odometry); (3) how to achieve sparse
representation and fast matching of phase data for loop clo-
sure detection. Our previous work [5] proposes a geometric
reference plane to model the relationship between phases
and motions of 6 DoF separately, which is complicated
and inconvenient. Besides, if the loop closure detection is
based on whole phase images, the memory footprint will
also grow quickly as the scanning view increases. This
paper presents an upgraded Phase-SLAM framework, which
utilizes a 3D point to 2D phase reprojection method to
build the model, a gradient based local optimizer to achieve
odometry functionality and a compression method to enable
efficient loop detection (Fig. 1). The main contributions of
this work include,

1) proposing a reprojection model from 3D point to 2D
phase data, which can be used to get phase estimations
and measurements;

2) constructing a local pose optimizer with the reprojec-
tion model and the analytical expression of Jacobian
matrix is derived for pose estimation;

3) developing a complete pipeline of Phase-SLAM frame-
work with a compressive loop closure detection
scheme and the pose graph optimization;

4) building simulation and real-world datasets and pro-
viding the open-source code for further development.

This paper is organized as follows. Section II introduces
the related work. Section III gives an overview of the Phase-
SLAM system pipeline. Section IV describes the proposed
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phase-based pose estimation and compressive loop detection
methods. Section V provides experiment results and discus-
sions. Section VI concludes the paper and outline the future
works. Appendix supplements the details of the Jacobian
matrix in use.

II. RELATED WORK

Most visual SLAM systems are based on either direct or
indirect schemes. Direct approaches [6], [7] sample pixels
from image regions and minimize the photometric error.
Indirect approaches [8], [9] require extra computational
resources for detecting and describing features. In contrast,
the proposed Phase-SLAM system is based on pixel-level
phase data, which contain 3D depth information and can be
extracted directly by selecting a region of interest (ROI).

A. Point Cloud Registration

SLI systems often use point cloud registration methods to
achieve large fields of view scans, either local or global. Clas-
sical local registration methods, such as Point-to-Point ICP
[2], minimizes the sum of distances between points and their
nearest neighbours. Point-to-Plane ICP [3] assumes that each
corresponding point is located on a plane, and introduces
surface normals into the objective function to achieve more
efficient data registration. Symmetrized objective function
(SymICP) have been proposed to extend the planar conver-
gence into a quadratic one at extra computational costs [10].

Local methods are limited by initial guesses, so structural
features of point clouds are used to search for transformations
globally. Point coordinates and surface normals have been
used to compute the Fast Point Feature Histograms (FPFH)
[11], and the coplanar 4-point sets have been chosen as
features for registration (Super 4PCS) [12]. Besides, Go-
ICP uses the branch-and-bound (BnB) scheme to avoid
local optima [13]. Fast Global Registration (FGR) applies a
Black-Rangarajan duality to achieve a more robust objective
function [14]. BCPD++ formulates coherent point drift in a
Bayesian setting to supervise the convergence of algorithm
[15]. Compared with above 3D point cloud registration
methods, our approach converts 3D point cloud registration
into 2D phase data registration, resulting in much reduced
computational complexity and memory footprint.

B. Loop Closure Detection

Loop closure detection can effectively eliminate the ac-
cumulating error. A plain method is randomly sampling a
number of keyframes to find loop closures [16]. Odometry
based approaches judge whether there is a loop closure at the
current position according to the calculated map [17]. Ap-
pearance based approaches determine the loop relationship
based on the similarity of two scenes [8], [9]. Bag-of-Words
(BoW) based the approach [18] uses descriptors (words) for
loop closure detection instead of whole images. In this paper,
our loop closure detection is based on compressed phase data
to reduce both computatonal complexity and storage space
without losing much detection performance.

III. SYSTEM SETUP AND PROBLEM STATEMENT

A. System Setup

The proposed Phase-SLAM pipeline is shown in Fig. 2.
Based on the SLI sensor data, correponding 3D point clouds
and the reprojection model are used to obtain phase data
(Section IV-B). Then, the local pose optimization module
(Section IV-C) is used to estimate sensor poses by minimiz-
ing errors between predictions and measurements of phase
data. Local pose graphs are updated until the compressive
loop closure detection (Section IV-E) is triggerred. The
pose graph optimizer then performs global optimization to
eliminate the cumulative errors and revise sensor poses.
Finally, poses are used to align multi-view point clouds and
achieve the overall 3D object reconstruction.

We define the notations used in this paper. The initial
position of the projector is chosen as the origin of the
world coordinate system. (·)w is the world frame, (·)c is the
camera frame, (·)p is the projector frame, and (·)k means
the k-th sensor pose. The Φ and φ stand for the phase
image and phase value at each pixel location, respectively. (̂·)
denotes the estimated value. P(x, y, z) is the 3D coordinate
of a point. The transformation between two sensor poses is
represented by vector ∆X = [δx, δy, δz, δα, δβ, δγ], Matrix
R and vector t represent rotation and translation from posek
to posek+1. R and t can be obtained for a given ∆X.

B. Problem Statement

This work aims at developing a complete SLAM system
that can estimate the SLI sensor pose transformation ∆X
through phase data registration and achieve global 360 degree
dense 3D reconstruction through pose graph optimization. At
each step, 3D points are projected into the sensor imaging
plane with initialized pose rotation and translation Rk, tk by
using

uk+1(µ, ν) = πM(RkP
w
k + tk), (1)

where the πM is the perspective transformation with the
projection matrix M, means R3 → R2 that projects a 3D
point onto the imaging plane. uk+1 is the pixel position,
which is used for obtaining phase data estimations φ̂ and
measurements φ. Obtained the φ̂ and φ, the sensor pose
transformation ∆X is estimated by

∆X∗ = arg min
∆X

F(∆X), (2)

where
F(∆X) =

1

2

∑∥∥∥φ̂− φ∥∥∥2

. (3)

Such a local optimization procedure requires computing
the Jacobian matrix iteratively until it converges. The loop
closure detection and pose graph optimization will be also
needed to reduce estimation errors.

C. SLI Scanning

In the camera-projector based SLI system, the Phase
Measuring Profilometry (PMP) method is used to calculate
the phase image, as shown in Fig. 3. The camera captures
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Fig. 2. The system diagram of the proposed Phase-SLAM. Based on the SLI phase image, 3D point clouds for each new sensor pose can be computed,
which are used for phase data prediction (Section IV-B) and local pose estimation (Section IV-C). The compressive loop closure detection is performed
to trigger the global pose graph optimizer (Section IV-E). Finally, the refined sensor poses are used to achieve 360 degree 3D point clouds of the object
under scanning.

projection PMP Triangulation

Object Phase Image Point cloud
Sine Pattern

Fig. 3. An illustration of SLI imaging system. PMP uses the images of
projection patterns to compute phase images; the 3D point clouds are then
obtained by triangulation with the calibrated camera-projector parameters.

the raw images of sine patterns deformed by the scanned
surface, given by

Icn (µ, ν) = A+B cos

Å
Φ (µ, ν)− 2πn

N

ã
, (4)

where n = 1, 2, · · ·N (the number of patterns), A and
B are the background brightness and intensity modulation,
respectively. The phase image Φ (µ, υ) can then be calculated
by [4]

Φ= arctan

ñ∑N
n=1 I

c
n sin (2πn/N)∑N

n=1 I
c
n cos (2πn/N)

ô
. (5)

IV. PROPOSED METHODS

This section investigates the geometric model among 3D
point, phase data and sensor pose. Comparing with our previ-
ous work [5], this work develops a more intuitive and simpler
model based on reprojective transformation method. After
phase data pairing, the sensor pose motion can be estimated
through least-square optimization between phase predictions
and measurements. A compressed sensing scheme is adopted
to achieve fast loop closure detection for global pose graph
optimization.

A. Phase Values under Epipoloar Constraint

In a SLI system, we regard the projector as another cam-
era, which has similar projection parameters and perspective
principles with it. As shown in the left of Fig. 4, according
to the epipoloar constraint, a phase value obtained from
the phase image can correspond to a pixel location in the
“camera” imaging plane (phase pattern), like stereo-vision
[19]. In PMP method, the phase pattern is actively projected
by the projector, so pixel locations and phase values on
pattern plane have a fixed and known relevance. As shown in
the right of Fig. 4, the phase value of each column in phase
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Fig. 4. An illustration of SLI imaging principle. The projector is regarded
as a camera with the phase pattern. The phase pair should be performed
under the epipoloar constraint. The phase values of each column of phase
pattern are linearly increased from 0 to 2π.

pattern is linearly increased from 0 to 2π and each row in
the pattern is the same. This means when we get the phase
value of a 3D point P from the phase image, we can know its
ordinate under the projector’s pattern coordinate. Vice versa,
if we knew the projective coordinate (µp, νp) (just only νp)
of a point P in the pattern, we could get its corresponding
phase value on the phase image by

φ = 2πνp/Hp, (6)

where Hp is the row height of the projector’s imaging plane.

B. Phase Pairing Based on Reprojective Transformation

As shown in the Fig. 5, a 3D point P is measured
by the SLI sensor at the posek with the coordinate
Pk = [x, y, z]>. Assuming the transformation: rotation
matrix R(δα, δβ, δγ) ∈ SO(3) and translation vector t =
[δx, δy, δz]>, the SLI move to posek+1 by it and the point
P will have a new coordinate Pk+1 = [x′, y′, z′]>, given by

Pk+1 = RPk + t. (7)

Based on the new coordinate, the point P is reprojected
into camera and projector imaging plane in posek+1 to
get two pixel locations on them: uck+1(µck+1, ν

c
k+1) and

upk+1(µpk+1, ν
p
k+1) by the transformation πM (Eq. (1)), re-

spectively. On the projector imaging plane (the phase pattern
in Fig. 4), when the reprojection ordinate of point P: νpk+1 is
known, the phase value prediction φ̂k+1 can be obtained by
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Fig. 5. An illustration of reprojection from 3D points to 2D phase data.
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camera and projector in posek+1 with a assumed rotation R and translation
t. Then the errors between the predicted and measured phase data (φ̂k+1

and φk+1) are minimized with respect to R and t.
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Fig. 6. An illustration of a simple local pose optimization process. (a) an
object raw image acquired at posek; (c) the phase image acquired at posek
with a white ROI; (d) the phase image acquired at posek+1; (b) the plot
of optimization objective cost between two phase images (within the ROI)
with respect to different sensor displacements, where the black dashed line
indicates the ground truth of the minimum.

Eq. (6). So, combining Eq. (1, 6, 7), the phase value of the
a 3D point in the phase pattern can be estimated by using

φ̂k+1 =
2π

Hp

Ç
fpy (R21x+R22y +R23z + δy)

R31x+R32y +R33z + δz
+ Cpy

å
,

(8)
where Rij is the ijth element of R, fpy , Cpy is calibration
parameter (projector’s focal length and principal point along
the row of the projector imaging plane, respectively).

On the camera imaging plane, the phase value measure-
ment φk+1 can be obtained from the phase image Φk+1 at
the pixel location (µck+1, ν

c
k+1), which can be computed by

µck+1 =
m11x

′ +m12y
′ +m13z

′

m31x′ +m32y′ +m33z′

νck+1 =
m21x

′ +m22y
′ +m23z

′

m31x′ +m32y′ +m33z′
,

(9)

where mij is the ijth element of projection matrixM. When
µck+1 and νck+1 are not integers, bilinear interpolation on
Φk+1 can be used to calculate phase data at integer indices.

C. Local Pose Optimizer

In the local optimizer, the state variables are defined as
∆X(δx, δy, δz, δα, δβ, δγ), which is equivalent to R and t.
The error e between φ̂k+1 and φk+1 are given by

e = φ̂k+1(∆X)− Φk+1(µk+1(∆X), νk+1(∆X)). (10)

The objective function is shown in

F(∆X) =
1

2

∑
〈µ,ν〉∈R

‖e‖2, (11)

the R is a ROI in phase images, (·)i is the i-th point in ROI.
e = [e1, e2, · · · , en]>.

The proposed function Eq. (11) can be solved by iterative
gradient-based methods [20]. Given the initial value ∆‹X, the
cost function can be approximated by Taylor expand about
∆‹X, and F(∆‹X + ∆) ≈ F(∆‹X) +∇F∆, where

∇F = J>e

J = ∂e/∂∆X.
(12)

J is the Jacobian matrix, the optimization increment ∆ is
computed by λ∆ = −J>e, which is the negative gradient
direction of F, λ controls the size of steps. The solution is
updated by ∆Xi+1 = ∆Xi + ∆i, where i is the iterative
index [19], [20].

Fig. 6 shows a simple example the optimization process.
Fig. 6 (a) shows an object image. (c) shows the correspond-
ing phase image with a ROI. (d) shows the phase images
acquired at a new sensor pose. (b) shows the plot of errors
between two sets of phase data (within the ROI) with respect
to the displacements of the SLI sensor. It can be seen that
such an optimization process can be converged to the local
minimum [21].

D. The Jacobian Matrix

According to Eq. (10, 12), the Jacobian matrix of ei (i =
1, 2, · · · , n) is given by

Ji =
∂ei

∂∆X
=
∂φ̂ik+1

∂∆X
−
Ç
∂Φk+1

∂µik+1

∂µik+1

∂∆X
+
∂Φk+1

∂νik+1

∂νik+1

∂∆X

å
,

(13)

where ∂Φk+1/∂µk+1 and ∂Φk+1/∂νk+1 are vertical and
horizontal gradients of Φk+1, computed by pixel difference.
More details in Eq. (13) are provided in the Appendix, and
the other term in the Eq. (12) is substituted by

J>e =

n∑
i=1

ei
∂ei

∂∆X
. (14)

E. Loop Closure Detection

The proposed Phase-SLAM utilizes the Compressive Sens-
ing (CS) technique to reduce computational complexity and
data storage space for loop closure detection. The compress-
ibility of an image is determined by its sparsity. More sparse
images will lose less information after compression and the
sparse image contains less high-frequency information [22].
A haar wavelet bases and L1 norm are used to illustrate the
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Fig. 7. An illustration of the sparsity of phase and photo images. (a,c) A
phase image and a photo image; (b,d) the corresponding wavelet coefficients
of two images; (e) the wavelet coefficient L1 norms of two types of images
within one SLAM loop.

degree of sparsity of phase images. As shown in Fig. 7, a
phase image and a photo image are projected upon wavelet
bases first. Then the L1 norms of the wavelet coefficients of
two types of images within one SLAM loop are compared
in Fig. 7 (e). It can be seen that the L1 norms of the wavelet
coefficients of phase images are much smaller than photo
images, indicating the degree of sparsity of phase images is
much smaller than photo images.

According to the CS theory [22], two signals A1 and A2

are distinguishable after compression if the matrix C satisfies

2(1− δ2s) ≤ ||CA2 −CA1||22 ≤ 2(1 + δ2s), (15)

where δ2s is a constant, and C is Gaussian matrix. The
compressed signals yn×1 = Cn×NAN×1 n < N , has quite
smaller size than the original signals. For a 2D phase image
Φ, we first reshape it into a 1D vector Φ′. The reshaped
phase data Φ′ can be recovered by the compressed signal
y = CΦ′, and the error between two compressive phase
vector is shown in

dy = ||CΦ′2 −CΦ′1||22. (16)

When dy is smaller than a threshold, the loop-closure is
detected.

F. The Pipeline of Phase-SLAM

After successful loop-closure detection, the pose graph
optimization technique [23] will be used to eliminates cu-
mulative error and refine poses. The pose sequences in our
system usually have a large interval during the scanning
process, so every estimated pose is a vertex in the pose graph
optimizer.

V. EXPERIMENT RESULTS AND DISCUSSIONS

The proposed Phase-SLAM system was evaluated with
both the Unreal Engine 4 (UE4) simulator and real-world
experiments. All experiments were implemented on a PC
with an Intel Core i7-9800K CPU @ 3.6GHz.

A. Simulation Experiments

The simulation dataset was collected with the Airsim
plugin in UE4. Different 3D models were used as targets, and
the virtual SLI device moved around the target along a radius
of 120 cm and with a rotation interval of 20 degrees. The
simulated dataset is based on three models namely David,
Elephant and Dancing girl, which contains calibration pa-
rameters, phase images and ground-truth poses. The baseline
methods include four state-of-the-art local methods, namely
Point-to-Point ICP [2], Point-to-Plant ICP [3], SymICP [10]



Gaussian matrix ( )n N

Reshape

(a) (b) (c)

Fig. 8. An illustration of the proposed compressive loop closure detection.
(a) Three phase images; (b) the Gaussian pseudo-random matrix used for
compressive projection; (c) three sets of compressed signals corresponding
to three phase images used for loop closure detection.

and FPFH [11], and two SOTA global methods, namely
FGR [14] and BCPD++ [15]. Local methods were conducted
based on Point Cloud Library (PCL) implementation [24].
Global methods were based on open-source code. The num-
bers of iterations of Point-to-Point ICP, Point-to-Plane ICP,
and SymICP were chosen as 30; FPFH was 10000. The
implementation of FGR and BCPD++ used the recommended
parameters.

The compression of phase images is shown in Fig. 8. In
simulation experiments, the resolution of phase images is
640 × 480 (Fig. 8 (a)), the size of Gaussian compressive
random matrix is chosen as 100 × 307000 (Fig. 8 (b)),
that is, the compression ratio is 3070:1 and the size of the
compressed phase signal is 100 × 1. Fig. 8 (c) shows the
compressed signals corresponding to three phase images like
Fig. 8 (a). It can be seen that the three sets of signals are
distinguishable in terms of the peaks and valleys for loop
closure detection. Furthermore, experiment results show that
the time consumption of the back-end optimization using CS
technique can be reduced by 20% than using original phase
images.

Fig. 9 (a)-(c) shows the 3D reconstruction results (top) and
ground truth (bottom) for the three simulation targets (David,
Elephant and Dancing girl) using the proposed Phase-SLAM
with loop closure. More quantified reconstruction errors
are shown in Fig. 15. Fig. 10 shows the relative pose
errors (RPE) [25] in rotation (top) and translation (bottom),
respectively by using five methods with David dataset. It can
be seen that the proposed Phase-SLAM method with loop
closure (PhaseS-Loop) outperforms other four methods. The
median RPE of Phase-SLAM is 0.81 degree and 0.94cm
in rotation and translation, respectively. Table I shows the
root mean squared error (RMSE) of absolute trajectory error
(ATE) [25] and the computation time for three different
datasets. The average RMSE of our approach is 1.06cm,
which is better than other methods. Actually, Phase-SLAM
with loop closure outperforms PhaseS by 38.5%. In simula-
tions, the average number of 3D points corresponding to the
image is around 50000. BCPD++ has the highest compuation
speed among the 6 existing methods. Our approach is still
almost two times faster than BCPD++. And the average
running time of the back-end optimization is 40.7 ms.

B. Real-World Experiments

Fig. 11 shows the experiment setup, where the SLI sensor,
consisting of a projector (DLP3000 DMD from TI) and an in-
dustrial camera (1280×1024 resolution from HIKVISION),
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Fig. 9. A comparison of global 3D point cloud registration results along with ground-truth. (a)-(c) Simulation datasets named David, Elephant and Dancing
girl; (e)-(f) real-world datasets named David-6DoF, PiKaChu and Sona. (Top Row) The ground truth (in gray) and reconstruction results (in other colors)
by using the proposed Phase-SLAM; (Bottom Row) the 3D objects.
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Fig. 10. The plot of Relative Pose Errors [25] of (top) rotation and
(bottom) translation in simulation. PhaseS-Loop denotes Phase-SLAM with
pose graph optimization.

is mounted on a UR5 robotic arm. Fig. 9 (d-f) show two
plaster statues (David, Sona) and a plush toy (PiKaChu) used
to build real-world datasets, namely David-6DoF, David-
3DoF, Sona-3DoF and PiKaChu-3DoF, where 6DoF and
3DoF stand for six and three degrees of freedom motions,
respectively. The David-6DoF dataset includes 31 random
poses; Each 3DoF dataset has 37 poses at equal intervals of
10 degrees and a radius of 60cm.

Fig. 12 shows the RPE results of five different methods

TABLE I
RMSE OF ATE (CM) / COMPUTATION TIME (S)

Method David Elephant Dancing Girl

PhaseS-Loop[ours] 1.39 / 1.52 0.72 / 1.58 1.07 / 0.82
PhaseS[ours] 2.32 / 1.49 2.40 / 1.23 2.05 / 0.76
BCPD++[15] 25.53 / 2.87 87.09 / 3.46 15.57 / 2.68
SymICP[10] 6.35 / 109.10 7.06 / 146.71 8.17 / 104.22

Point to Plane[3] 6.76 / 55.15 13.07 / 65.73 10.57 / 45.89
Point to Point[2] 17.17 / 32.56 19.35 / 44.68 40.26 / 30.75

FGR[14] 11.12 / 25.56 15.67 / 34.68 38.74 / 26.90
FPFH[11] 8.99 / 70.59 25.10 / 79.09 32.70 / 59.68

RMSE of ATE: The root mean squared error of absolute trajectory error.

Object
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Arm

SLI 

sensor

(a) (b)

Fig. 11. (a)The real-world experiment setup where a object is fixed on a
bracket and the SLI sensor is installed on a UR5 robotic arm. (b)The SLI
sensor consists of a DLP3000 projector and a HIKVISION camera.

using the David-6DoF dataset. It is clear that the proposed
method (PhaseS-Loop) has a better performance than other
four methods. Table II is the RMSE of ATE and the
computation time for four different datasets using eight
different methods. It can be seen that the proposed method
outperforms other six methods in both terms of accuracy
and computation time. The 3D object reconstruction results
using the proposed method under real-world datasets are
shown in Fig. 9 (d-f). Fig. 13 illustrates the estimated
SLI sensor trajectory and the ground truth under David-
6DoF dataset, where the total trajectory length is 3.967m.
Fig. 14 shows the pose estimation errors by using local
methods (SymICP, Point-to-Plant and Point-to-Point ICP)
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Fig. 12. The plot of Relative Pose Errors [25] of (top) rotation and (bottom)
translation in real-world experiments.

TABLE II
RMSE OF ATE (MM) / COMPUTATION TIME (S)

Method David-6DoF David-3DoF PiKaChu Sona

PhaseS-Loop 4.69/4.20 4.71/3.19 2.09/3.30 1.83/3.18
PhaseS 6.12/4.17 5.74/3.17 3.27/3.27 2.29/3.15

BCPD++ 244.41/2.79 53.01/2.93 21.72/3.72 22.39/3.81
SymICP 99.28/374.26 28.78/345.25 35.68/268.69 30.88/242.12

Point to Plane 101.5/168.53 33.66/152.13 33.97/119.23 36.65/109.15
Point to Point 170.2/118.42 89.28/101.54 70.36/81.34 84.44/77.9

FGR 282.3/238.25 224.21/213.15 231.17/302.45 149.92/191.7
FPFH 109.85/386.8 95.51/153.66 254.34/202.14 90.81/217.9

RMSE of ATE: The root mean squared error of absolute trajectory error.

and our method without global optimizaiton under different
initial values. We can see that the proposed method is least
sensitive to initial values. Fig. 15 shows a radar chart of seven
methods without global optimization for all datasets using
five performance metrics (Hausdorff distance, computation
time, translation/rotation errors, and storage space) for a
comprehensive evaluation. The Hausdorff distance is used to
describe the dissimilarity between reconstructed point clouds
and the ground-truth [26]. It is obvious that the proposed
method has the superior performance in all those metrics.

VI. CONCLUSION

This paper presents a phase based Simultaneous Localiza-
tion and Mapping (Phase-SLAM) pipeline for fast and accu-
rate SLI sensor pose estimation and 3D object reconstruction.
The proposed reprojection model and local pose optimizer
can achieve the odometry functionality with high efficiency,

Fig. 13. The plot of the estimated sensor trajectory by using the full
pipeline of the proposed Phase-SLAM on David-6DoF. The ground-truth is
obtained via the UR5 robotic arm.
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Fig. 14. The plot of registration errors of (top) translation and (bottom)
rotation with respect to different sensor pose initializations. The x-axis is
the percentage of perturbation for pose initialization with respect to the
ground-truth.
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Fig. 15. The radar chart of 5 performance metrics for 7 different algorithms.
The rotation and translation errors are measured via the Euler distances; the
Hausdorff distance is used to measure the dissimilarity between two point
clouds.



accuracy and low sensitivity to initial pose knowledge. The
proposed compressive loop closure detection technique can
reduce both the loop closure computational time and data
storage space. Even without global optimization, the pro-
posed local data registration method outperforms six other
existing 3D point cloud based methods in terms of sensor
pose estimation accuracy, storage space, computation time
and 3D reconstruction errors. The code of our framework
and the dataset in use are available online.

APPENDIX

The analytic expression of the Jacobian of e with respect
to δx, δy, δz, δα, δβ, δγ is provided in this section. The
intermediate terms are given by

gx = ∂Φk+1/∂µk+1, gy = ∂Φk+1/∂νk+1

K = Hp/(2π), sk+1 = m31x
′ +m32y

′ +m33z
′

µ1 = m11 −m31µ
c
k+1, ν1 = m21 −m31ν

c
k+1

µ2 = m12 −m32µ
c
k+1, ν2 = m22 −m32ν

c
k+1

µ3 = m13 −m33µ
c
k+1, ν3 = m23 −m33ν

c
k+1

Jxα = R13y −R12z, Jyα = R23y −R22z

Jzα = R33y −R32z

Jµα = µ1Jxα + µ2Jyα + µ3Jzα/sk+1

Jνα = ν1Jxα + ν2Jyα + ν3Jzα/sk+1

Jxβ = −xsinδβcosδγ − ysinδαcosδβcosδγ
− zcosδαcosδβcosδγ

Jyβ = −xsinδβsinδγ − ysinδαcosδβsinδγ
− zcosδαcosδβsinδγ

Jzβ = −xcosδβ − ysinδαsinδβ − zcosδαsinδβ
Jµβ = µ1Jxβ + µ2Jyβ + µ3Jzβ/sk+1

Jνβ = ν1Jxβ + ν2Jyβ + ν3Jzβ/sk+1

Jxγ = δy − y′, Jyγ = x′ − δx, Jyγ = 0

Jµγ = µ1Jxγ + µ2Jyγ + µ3Jzγ/sk+1

Jνγ = ν1Jxγ + ν2Jyγ + ν3Jzγ/sk+1

(17)

The analytic expression of Jacobian is then given by

∂e/∂δx = −(gxµ1 + gyν1)/sk+1

∂e/∂δy = fp/(Kz
′)− (gxµ2 + gyν2)/sk+1

∂e/∂δz = fpy
′/(Kz′2)− (gxµ3 + gyν3)/sk+1

∂e/∂δα = fp(Jyαz
′ − Jzαy′)/(Kz′2)− (gxJµα + gyJνα)

∂e/∂δβ = fp(Jyβz
′ − Jzβy′)/(Kz′2)− (gxJµβ + gyJνβ)

∂e/∂δγ = fp(Jyγz
′ − Jzγy′)/(Kz′2)− (gxJµγ + gyJνγ)

(18)
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