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Abstract—Visual-inertial odometry (VIO) is an important
technology for autonomous robots with power and payload
constraints. In this paper, we propose a novel approach for
VIO with stereo cameras which integrates and calibrates the
velocity-control based kinematic motion model of wheeled mobile
robots online. Including such a motion model can help to improve
the accuracy of VIO. Compared to several previous approaches
proposed to integrate wheel odometer measurements for this
purpose, our method does not require wheel encoders and can
be applied when the robot motion can be modeled with velocity-
control based kinematic motion model. We use radial basis
function (RBF) kernels to compensate for the time delay and
deviations between control commands and actual robot motion.
The motion model is calibrated online by the VIO system and
can be used as a forward model for motion control and planning.
We evaluate our approach with data obtained in variously sized
indoor environments, demonstrate improvements over a pure
VIO method, and evaluate the prediction accuracy of the online
calibrated model.

Index Terms—Vision-Based Navigation, Visual-Inertial SLAM,
Calibration and Identification.

I. INTRODUCTION

IN recent years, visual-inertial odometry has seen tremen-
dous progress (e.g. [1]–[4]), driven by the many potential

applications of such technology for augmented/virtual reality
and autonomous robots, in particular flying robots. Surpris-
ingly, for wheeled robots, VIO is not trivial to employ due to
observability limitations for planar linear motions [5]. This can
be alleviated by integrating motion model constraints into the
state estimate. A popular approach in the literature is to use
wheel odometer measurements to this end (see e.g. [5]–[7]).

In this paper, we take a conceptually different approach by
integrating a velocity-control based kinematic motion model
which does not rely on wheel encoders. By integrating the
model into the state estimate, the model parameters such
as the relative position of the sensor on the robot or the
offset between model and real robot can be calibrated online.
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Differently to wheel odometry based models, velocity-control
based models can be directly used for downstream tasks such
as model-predictive motion control and planning [8], [9], [10].
We base our method on a non-linear optimization based
approach [3] to visual-inertial odometry which optimizes state
variables such as sensor pose and velocity, IMU biases, and
keypoint map in a window of recent frames. Old frames and
IMU measurements are marginalized in a proper probabilistic
way to maintain the prior observations as prior knowledge.
The IMU measurements are preintegrated into relative motion
measurements between frames. In this framework, we include
a velocity based motion model which models the motion of a
wheeled robot in a plane based on linear forward and rotational
velocity controls. For accurate integration of the measurements
and controls, an accurate calibration of the sensor placement
with respect to the drive, the time synchronization of the
controls relative to the visual and inertial measurements, and
an identification of the effect of control commands for the
underlying low-level robot motion controller on actual exe-
cuted motion are required. To model the unknown properties
of the controller, we aggregate the raw control commands
with a kernel function. We add parameters for the kernels and
the placement (extrinsics) of the sensor on the robot to the
estimation problem. The parameters are calibrated online in
the non-linear optimization framework.

We evaluate our approach on data obtained with a mobile
robot in several sizes of environments. We demonstrate that in-
corporating the velocity-control based kinematic motion model
improves the accuracy and robustness of the VIO estimate.
Moreover, we provide results on the prediction accuracy of our
online calibrated model for reference for model-based control
and planning approaches.

In summary, our contributions are:

• We propose a novel visual-inertial odometry approach for
wheeled robots which includes a velocity-control based
kinematic motion model into the state estimate.

• The parameters of the motion model are calibrated online
with the VIO estimate.

• We demonstrate that inclusion of the motion can improve
the VIO estimate in various indoor environments of dif-
ferent sizes. We also provide evaluation of the prediction
accuracy of the calibrated model.

Our model can be an alternative to wheel-odometry based
methods when a velocity-control based model should be
directly calibrated for use in model-predictive control and
motion planning methods.
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II. RELATED WORK

Motion estimation by fusing odometry, IMU and camera
data has recently spurred significant interest by the robotics
community due to its applications for inertial navigation
systems in service robotics and autonomous driving.

A. Inertial and inertial-wheel odometry

Various recent approaches combine IMU and wheel odom-
etry. Brossard et al. [11] suggest an EKF based approach
which uses deep learning to predict the noise properties in an
EKF framework which fuses IMU measurements to predict
motion. In [12], deep kernel Gaussian Process models are
learned for the motion and observation models which are
used to fuse IMU and wheel odometry measurements in an
EKF framework. In RINS-W [13], Brossard et al. propose to
estimate the motion from IMU and odometry measurements
using an RNN which detects different motion profiles in an
EKF framework. These approaches, however, do not use the
complementary strengths of visual measurements and do not
provide a forward model.

B. Visual-inertial-wheel odometry

Cameras provide complementary information to inertial
measurement units for motion estimation. For general motions,
3-DoF linear acceleration and rotational velocity measure-
ments make roll and pitch orientation observable relative to
the gravity direction. However, double integration of the linear
acceleration requires accurate estimation of biases (offsets)
in the measurements and makes linear position estimation
prone to drift. Similarly, the yaw orientation around the gravity
direction is not observable and prone to drift due to noisy and
biased gyroscope measurements. Visual measurements provide
a reference for pose estimation to a local 3D map of the envi-
ronment which is concurrently build with the pose estimates
in VIO approaches. By this, all DoFs become observable,
while the IMU provides high frame-rate measurements which
improve the accuracy between images.

The Multi-State-Constrained Kalman Filter (MSCKF [1])
for VIO has been recently extended to incorporate wheel
odometry and overcome observability issues of monocu-
lar visual-inertial odometry on wheeled robots in VINS on
wheels [5]. The authors analyze observability of monocular
visual-inertial navigation systems on a mobile robot platform
and show that for specific motions, scale and 3-DoF rotation
become unobservable. They also show that adding wheel
encoder measurements makes scale observable. The approach
does not calibrate the motion model parameters online like our
method. In our setting, scale is already observable through the
fixed calibrated baseline of our stereo camera.

Ma et al. [6] adopt the VINS on wheels approach and
extend it with an Ackerman drive model. Jung et al. [14]
add GPS measurements directly to VINS on wheels to make
position observable. Yang and Huang [7] analyze observability
for VINS on wheels with line and plane observations. An-
other approach concurrently estimates the wheel slippage with
VIO [15]. More closely related to our method is the approach

by Lee et al. [16] which investigates online calibration of
the wheel odometry parameters and analyzes observability
of the calibration parameters for different constraint motion
scenarios. In contrast, we employ a non-linear optimization
based approach for visual-inertial odometry and incorporate
an inverse motion model for constraints.

Some approaches integrate wheel odometry into non-linear
optimization based approaches. Liu et al. [17] develop online
calibration of the extrinsics between camera, IMU and odome-
ter. Liu et at. [18] propose a novel initialization approach
which corrects the initial state estimates after the first turning
motion to handle unobservability of the calibration parameters
for straight motions. Chen et al. [19] calibrate visual-inertial-
wheel odometry offline. The approach in [20] integrates
smooth motion manifold constraints. Zheng and Liu [21]
incorporate a planar motion constraint for the mobile base
but allow small deviations from this motion in 6 DoF for the
camera-IMU system. Also, different to ours, these approaches
use wheel encoders to measure odometry. We propose a new
approach which incorporates an inverse motion model into
optimization-based visual-inertial odometry and calibrates the
model online including extrinsics and time synchronization.

C. Learning dynamics models for control

Optimal control approaches typically rely on action-
conditional dynamics models which use them as forward
models to plan towards goals. One recent example is the
approach of Williams et al. [22] which learns a dynamics
model offline from GPS. In [23] a sensor-based localization
method using LiDAR, optical speed sensors and INS is used
to provide feedback for learning deviations from an analytic
dynamics model.

In our approach, we tightly integrate a kinematic motion
model in a visual-inertial odometry which allows for calibrat-
ing the model online.

III. METHOD

We integrate a velocity-control based mobile robot mo-
tion model into visual-inertial odometry and optimize the
parameters of the motion model concurrently with the camera
trajectory and bias parameters of the IMU. The motion model
further constrains the camera motion estimate. The calibrated
motion model could be useful for model-predictive motion
control and path planning.

A. Visual-Inertial Odometry

We extend the non-linear optimization-based visual-inertial
odometry approach in [3]. The approach uses a KLT-based
keypoint tracking frontend to track the camera motion from
frame to frame. Keyframes are extracted along the cam-
era trajectory and the keypoint tracks generate landmarks
in the keyframes with corresponding point measurements.
Optimization variables are the camera poses for the frames and
keyframes, and the camera velocity and biases in the frames.
Only a set of recent keyframes and frames is optimized (3
frames and 7 keyframes in our experiments). Older frames
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Fig. 1: Weighted aggregation of effective controls and an
exemplary result of motion-constrained VIO (large-01). Top:
Time delays of controls and hardware restrictions (such as
acceleration limits) can be handled implicitly by weighting and
averaging the commands in a window with an RBF kernel.
We optimize for the mean value µ, the variance σ and the
scale s to shift the kernel and change its shape. Bottom: Our
motion-constrained VIO approach achieves smaller deviation
with respect to the ground truth. The pure VIO result is shown
in yellow, our kinematics-constraint VIO estimate in cyan,
ground truth in purple.

Factors
Reprojection
IMU
Bias random walk
Marginalization prior
Extrinsics random walk
Motion model
Plane model

Fig. 2: Factor graph of the proposed method, where Tb
i is

the extrinsic pose. The motion factor consists of frame poses,
extrinsic poses and RBF parameters prbf , and the plane factor
includes the frame poses, extrinsic poses and plane parameters
pgw.

and keyframes are marginalized from the optimization window
and their information serves as a prior. More formally, for each
frame at time t, we estimate the camera pose Tt ∈ SE(3),
the camera velocity vt, and the bias parameters bt of the
IMU. For the keyframes, their camera poses T are optimized.
The tracked keypoints become landmarks which are hosted
in the keyframe in which they have been observed for the
first time. Landmark l is parameterized by 2D coordinates
(ul, vl) which minimally represent the bearing vector to the

3D point, and the inverse distance dl. The KLT tracking
provides measurements of the landmarks in subsequent frames
and keyframes. Residuals rtl = ztl − π

(
Tt,Th(l), ul, vl, dl

)
are determined which measure the difference between the
measured 2D positions ztl in image at time t towards the
reprojection of landmark l hosted in frame h(l) into the image
using function π.

In addition to visual residuals, an IMU provides linear
acceleration and rotational velocity measurements from which
further residuals on the pose and velocity estimates are formed.
To this end, the IMU measurements are preintegrated [24]
to obtain pseudo-measurements ∆T, ∆v between successive
frames at times ti, tj with associated uncertainty Σij . The
inertial residuals are

rij,∆R = log
(
∆RR>j Ri

)
, (1)

rij,∆p = R>i (pj − pi −
1

2
g∆t2)−∆p, (2)

rij,∆v = R>i (vj − vi − g∆t)−∆v, (3)

where g is the gravity direction and ∆t = tj − ti.
The visual-inertial odometry corresponds to the non-linear

optimization problem

min EVIO =
∑

t∈K∪F

∑
l∈O(t)

r>tlΣ
−1
tl rtl+

∑
(i,j)∈C

r>ijΣ
−1
ij rij (4)

where K and F are the set of keyframes and frames, re-
spectively, O(t) is the set of landmarks observed in frame
t, and C is the set of indices of subsequent frame pairs. To
optimize the error function E efficiently, old keyframes and
frames outside an optimization window are marginalized and
only the variables inside the window are optimized.

For further details on the visual-inertial odometry method,
we refer the reader to [3].

B. Velocity-Control Based Motion Model
We use a velocity-control based motion model [25] and

assume that the robot can be controlled by a control command
u = (v, ω)> through a linear velocity v ∈ R in forward
direction and a rotational velocity ω ∈ R. The motion model
propagates the robot pose Pt ∈ SE(2) on the ground plane
with the control command, Pt′ = Pt exp

(
∆t ξ̂

)
, where

ξ = (v, 0, ω) is the twist vector, ξ̂ =

 0 −ω v
ω 0 0
0 0 0

 maps

a 3D vector to se(2), and

exp
(

∆t ξ̂
)

= Pt
t′ = cos(ω∆t) − sin(ω∆t) v

w sin(ω∆t)
sin(ω∆t) cos(ω∆t) v

w − v
w cos(ω∆t)

0 0 1

 , (5)

is the exponential map of SE(2) with time difference ∆t
between the successive time steps. The exponential map finds
the relative SE(2) motion for constant velocities ξ over time
duration ∆t. The logarithm map ξ̂ = log(P) of SE(2) is
the inverse of the exponential map and maps relative poses
P ∈ SE(2) to Lie algebra elements in ξ̂ ∈ se(2). The operator
·̂ maps 3D twist coordinate vectors to twists in se(2).
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C. Motion Model Residuals

We incorporate the velocity-control motion model into the
visual-inertial odometry framework in order to calibrate the
parameters of the model and improve the robustness of the
VIO. There are basically two choices to form residuals with
a motion model: relative pose constraint (forward) or velocity
constraint (inverse). Mathematically the forward and inverse
model residuals are equivalent to each other. Both kinds of
residuals achieve similar results, while the Jacobian matrix
of the forward model is computationally more expensive
(see appendix). For our motion constraint, we treat the velocity
controls as measurement and assume the measurement noise
comes from the velocity controls. In this case, using the inverse
model residuals is simpler while using the forward model
residuals requires error propagation with linear approximation
of the exponential mapping.

Velocity commands are executed by the robot in the robot
base frame whose pose relative to the world frame is denoted
by Tw

b ∈ SE(3) (transforming coordinates from base b to
world frame w). In the base frame, the x-axis points in
forward driving direction, while the z-axis points upwards and
is the axis of rotational robot motion. The VIO provides pose
estimates of the body frame of the IMU-camera sensor in the
world frame, i.e. Tw

i ∈ SE(3). The sensor is placed rigidly
on the robot at a relative pose Tb

i ∈ SE(3) to the robot base
frame. To quantify the relative motion Tb,t

b,t′ of the robot base
frame from times t to t′ of subsequent image frames, we can

hence determine Tb,t
b,t′ = Tb,t

i,t

(
Tw
i,t

)−1
Tw
i,t′

(
Tb,t′

i,t′

)−1

. The
rotation ∆θ around the z-axis of the base frame is calculated
from the relative rotation Rb,t

b,t′ in Tb,t
b,t′ as the z-component of

log
(
Rb,t
b,t′

)
. The translational motion (∆x,∆y)> in the x-y-

plane is determined from the corresponding entries of Tb,t
b,t′ .

The estimated twist is

ζ =
1

∆t
log

 cos(∆θ) − sin(∆θ) ∆x
sin(∆θ) cos(∆θ) ∆y

0 0 1

 , (6)

where ∆t = t′ − t. We add residuals of the form rξ = ζ −
ξ̄ which implicitly measure the difference between the state
estimates and the motion model prediction.

D. Effective Control Command

In practice, the real action of the robots differs from the
received control commands due to effects such as time offsets
and properties of low-level controllers.

Typically, control inputs and image frames are not synchro-
nized but run asynchronously and often also at different rates.
In our experiments, the control rate is 15 Hz and is lower
than the 30 Hz image frame rate which is also used to update
the VIO estimate. Moreover in the real world, a delay exists
between the control command sent by the controller and the
control command executed by the robot.

The robot physical hardware acceleration limits and internal
controllers also prevent the robot from directly executing the
control command even if the delay is known. To mitigate this
difference and build a meaningful residual, we estimate an

effective control ξ̄t at arbitrary time t, e.g. at the time of an
image frame, from a window of most recent commands. We
average a window of recent control commands with weights
determined by a RBF kernel (see Fig. 1) for the translational
and rotational parts separately:

ξ̄t =


slin

∑
τ∈Wt

exp

(
−‖dτ−µlin‖

2

2σ2
lin

)
vτ∑

τ∈Wt
exp

(
−‖dτ−µlin‖

2

2σ2
lin

)
0

sang

∑
τ∈Wt

exp

(
−‖dτ−µang‖

2

2σ2ang

)
wτ∑

τ∈Wt
exp

(
−‖dτ−µang‖

2

2σ2ang

)


. (7)

HereWt is a window of N control commands indexed by their
times τ at or before time t and dτ := t − τ . For an image
frame at time t, the window typically spans the N control
commands that have occurred before the frame. We optimize
for µ and σ and scale factor s of both linear and angular parts
as global parameters together with the VIO states. The RBF
parameters are summarized in the state variables prbf ,t at time
t. In the experiments we demonstrate that the optimized RBF
kernel can be used for motion prediction.

E. Motion-Model-Based Error Function Terms

The robot body can vibrate during operation, the extrinsic
pose Tb

i is thus modeled as a time-variant state that is affected
by white noise. For k factors within the optimization window
this kinematics-based error can be summarized as

Ekin =
∑
k

r>ξ,kΣ
−1
ξ,krξ,k +

∑
k

r>extr ,kΣ
−1
extr ,krextr ,k, (8)

where Σξ,k is the diagonal weight matrix for the velocity
residuals, rextr ,k is the difference between two adjacent extrin-
sic pose estimates and Σextr ,k is the diagonal weight matrix
that reflects the white noise.

The VIO system takes the image frame at time t′ and the
raw controls up to the time t of the previous frame as input for
the optimization which also calibrates the RBF parameters for
the motion model. The controls can be generated by manual
control or an automatic high-level controller such as model
predictive control for path tracking. In our experiments we
use manual control commands as input and calibrate the RBF
parameters online. A high-level controller would potentially
require extrapolation of the last state estimate at the image
rate to the current control time using the previous controls
and the motion model.

F. Plane Motion Constraint

We exploit prior knowledge that our robot moves on flat
ground in indoor environments and add a stochastic plane con-
straint [5] for the robot pose. The plane can be parameterized
as a 2 degree-of-freedom quaternion qgw and a scalar dgw which
represents the distance between the ground plane to the world
frame origin. The residual is

rp =

( (
R(qgw)Rw

i (Rb
i )
>e3

)
1,2

dgw + e>3 R(qgw)(twi −Rw
i Rb

i
>

tbi )

)
, (9)
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TABLE I: Trajectory accuracy in RPE and ATE of our proposed approach (kin-vio) and a pure VIO method (vio).

transl. RMSE RPE in m rot. RMSE RPE in deg transl. RMSE ATE in m rot. RMSE ATE in deg

dataset vio kin-vio (ours) vio kin-vio (ours) vio kin-vio (ours) vio kin-vio (ours)

small-01 0.035 0.021 0.659 0.597 0.037 0.014 0.713 0.463
small-02 0.120 0.106 0.664 0.756 0.097 0.077 0.656 0.622
small-03 0.042 0.027 0.832 0.693 0.037 0.019 1.060 0.561
mid-01 0.232 0.197 1.439 1.242 0.190 0.153 0.978 0.957
mid-02 0.195 0.158 1.171 1.100 0.150 0.108 0.807 0.739
mid-03 0.342 0.271 1.490 1.257 0.150 0.088 1.674 1.224
large-01 0.828 0.402 2.278 1.253 0.512 0.179 2.360 0.907
large-02 0.467 0.381 1.495 1.001 0.237 0.216 1.032 0.749
large-03 1.275 0.972 3.501 2.480 0.953 0.735 2.861 2.101

with e3 =
(
0 0 1

)>
. The plane motion error term becomes

Eplane =
∑
l r
>
plane,lΣ

−1
plane,lrplane,k with covariance matrix

Σplane. The stochasticity of the constraint allows for handling
vibrations of the robot.

G. Visual-Inertial Odometry with Motion Model Constraints

We integrate the above introduced calibration parameters
of the constraints as additional variables into the visual-
inertial odometry. The state of each frame in our optimization
framework comprises the sensor pose Tw

i , linear velocity
vt, acceleration and gyroscope biases bacc, bgyro, landmark
parameters (ul, vl, dl) of hosted keypoints, base frame to
sensor frame extrinsics Tb

i , and the global variables including
the RBF parameters µ, σ, s and the plane parameters qgw
and dgw. The optimized error function can be summarized as
E = EVIO +Ekin +Eplane . During optimization the extrinsic
poses will be marginalized like linear velocity and IMU biases
while the global variables are kept and their linearization
point is fixed once the first connected state is marginalized.
A discussion of the observability of our model is provided in
appendix.

IV. EXPERIMENTS

We evaluate the proposed kinematics-constraint VIO on a
differential drive robot with a fisheye-stereo camera and IMU
(see Figs. 3) in indoor environments. Similar as in [16] and [5],
global offline optimization results are used as ground truth.
To make sure enough loops can be found and the global
optimization is accurate, the robot travels to the same location
for several times in each recorded sequence. We evaluate
the accuracy of the estimate in terms of absolute trajectory
(ATE), relative pose error (RPE) [26] and the error of the
effective control velocity with the ground truth velocity. The
RPE is computed by averaging the errors over 10, 20, ..., 50%
sequence lengths of the full trajectory. We also validate the
prediction accuracy of the learned RBF kernel for different
time horizons.

Three groups of data with different environment scales are
collected and each group consists of three different sequences.
In the sequences, the robot starts from a static pose and then
approximately drives at its maximum speed of 0.5 m/s. The
robot traveled over wooden floor, concrete and tiles, which
also cause vibrations on the robot. The average lengths are

Kobuki

T265

X
Y

Z

X

Y

Z

Fig. 3: Robot platform used in our experiments. The robot
is built on a Kobuki mobile base with differential drive and
is equipped with a Realsense T265 fisheye-stereo camera
with IMU. The other sensor elements are not used in the
experiment.

57.2 m (small scale), 222.3 m (middle scale), and 413.3 m
(large scale). The ground truth for trajectory evaluation is
computed using the global bundle adjustment layer of [3].
The method uses non-linear factor recovery to bound the
computational and memory complexity of bundle adjustment
using keyframes and to transfer information accumulated from
intermediate frames and IMU measurements during VIO. For
calculating the effective control velocity error and prediction
results, we use the dense global mapping result as ground truth
where we set every frame as a keyframe and optimize them
globally. The image rate is 30 Hz, the IMU rate is 200 Hz
and the linear and angular commands are sent at the rate
of 15 Hz. The RBF parameters µ, σ and s are initialized to
0, 0.5 and 1 for both linear and angular velocity commands. A
small command window can not collect enough information,
while a large command window includes the commands that
are far away from the current frame. We empirically choose a
command window size of 3. The extrinsic parameters between
base and sensor frame are initialized with values from the
robot CAD model.

A. Tracking Evaluation

Table I summarizes the RPE and ATE evaluation results.
By integrating the kinematics motion constraint and the plane
constraint (kin-vio) both ATE and RPE are reduced over
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TABLE II: Average trajectory accuracy in RPE and ATE and velocity error for different constraints over all sequences.

avg. transl. RMSE in m avg. rot. RMSE in deg

kin-vio
ours: rbf

(w/o plane)

kin-vio
rbf w/o opt
(w/o plane)

kin-vio
avg

(w/o plane)

kin-vio
raw

(w/o plane)

kin-vio
only plane

kin-vio
ours: rbf

(w/o plane)

kin-vio
rbf w/o opt
(w/o plane)

kin-vio
avg

(w/o plane)

kin-vio
raw

(w/o plane)

kin-vio
only plane

RPE 0.282 0.324 0.336 0.337 0.296 1.153 1.180 1.183 1.184 1.164
(0.393) (0.441) (0.452) (0.452) (1.507) (1.592) (1.600) (1.601)

ATE 0.177 0.210 0.219 0.220 0.190 0.925 0.947 0.948 0.950 0.935
(0.270) (0.303) (0.311) (0.311) (1.356) (1.413) (1.418) (1.418)

avg. RMSE of linear velocity in m/s avg. RMSE of angular velocity in deg/s

vel. error 0.025 0.034 0.036 0.036 0.031 0.062 0.064 0.067
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(b) Prediction on dataset mid-01
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(c) Prediction on dataset large-01

Fig. 4: Prediction error on small-01, mid-01 and large-01. Our approach consistently has smallest prediction error.

pure VIO (vio). Fig. 1 illustrates and compares the results
of data sequence big 01 estimated with purely VIO and our
kinematics-constraint VIO. As can be seen, with the proposed
method the deviation is decreased, especially in those parts of
the trajectory with larger rotational motion.

In an ablation study, we compare the estimation accuracy of
using RBF kernel weighting (kin-vio rbf) with other different
weighting methods including RBF kernel with fixed initial
parameters (kin-vio rbf w/o opt), non-weighted averaging
of the command window (kin-vio avg), and using the last
command that comes before the first frame of each frame
pair (kin-vio raw). In addition, we also evaluate the estimate
with only the plane motion constraint in addition to the
VIO constraints. The error values are averaged over all data
sequences and summarized in Tab. II. in which our combined
method (kin-vio) consistently outperforms the others. The
motion model can improve the tracking accuracy while the
parameters are calibrated together with VIO. This can be
attributed to the regularization by the parametric motion model
whose parameters are adapted for a range of positive and
negative velocity commands.

B. Prediction Evaluation
We also evaluate the performance of our method for forward

motion prediction. Results for online prediction on data se-
quence small-01, mid-01 and large-01 are shown in Fig. 4. For
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Fig. 5: Predicted trajectories from start (square) to end (cir-
cle) on small-02. Our approach (rbf) follows the kinematics-
constrained VIO result (kin-vio) closer.

this evaluation, we compute the prediction from each frame
in the trajectory with different horizon lengths starting from
the current estimate of the parameters. The command window
is shifted along the future trajectory with the prediction step.
We also compare the prediction accuracy with three alternative



LI et al.: VISUAL-INERTIAL ODOMETRY WITH ONLINE CALIBRATION OF VELOCITY-CONTROL BASED KINEMATIC MOTION MODELS 7

calibration methods. The first method uses the RBF model
with constant initial parameters (rbf w/o opt). The second
method uses the unweighted average value of the commands
in the command window (avg). The third method calculates
the prediction with the latest command (raw). Our proposed
approach with calibrated RBF kernel parameters is denoted as
”rbf”.

It can be observed that the RBF kernel with optimized
parameters has the smallest prediction error especially for
longer prediction horizons. During the experiment we noticed
that the improvement of the prediction accuracy is relatively
smaller on the longer data sequences. This is because the
rotations introduce larger errors and in the longer data se-
quences the robot mostly performs translational motion along
the corridors with constant speed. Fig. 5 illustrates a prediction
result on data sequence small-02 from beginning to the end of
the trajectory with the final optimized RBF parameters. Our
approach shows the smallest deviation compared with other
methods.

C. Computation Time

We compare the run-time of our approach with the base
VIO on our dataset using one Intel Xeon Silver 4112
CPU@2.60GHz with 8 cores. On average the computation
time increases by 34.14% from 14.79 ms to 19.84 ms for
processing one frame, the maximum time stays similar with
60.05 ms at rare peaks, the minimum time is 3.90 ms. The
approach can still process faster than real-time.

D. Discussion and Limitations

A potential limitation of our approach can be estimation
bias in the VIO in settings such as texture-less scenes or
biased camera intrinsics. In our work, we assume that the VIO
result is sufficiently accurate with negligible systematic offsets
so it can be used to calibrate the effective control. In future
work, we could additionally integrate other types of sensors
like GPS. Outlier measurements can be handled with robust
norms in the VIO. One could also only activate the motion
model when state variables like IMU bias are converged and
indicate an accurate VIO.

Integrating wheel encoder information can also improve
VIO accuracy, as it measures the actual rotation of the wheels
at high frequency. To convert the wheel encoder information
to body velocity or relative pose, one needs to consider the
type of the vehicle. Our approach is simpler to integrate for
robots whose motion can be modeled with our model (such as
differential or Ackerman drives [25]). Moreover, our calibrated
model could be used for downstream tasks such as model-
predictive control based path tracking. In future work, we
are also interested in combining wheel encoder measurements
with our method.

V. CONCLUSIONS

In this paper we present a VIO approach based on non-
linear windowed optimization that includes velocity-control
based kinematic motion model constraints. The motion model

is integrated as a new factor between each image pair. We
compute the 2D robot velocity between two consecutive im-
ages from the state estimate and compare it against the control
command sent to the robot. To compensate the difference
between the control command and the real robot action, we use
RBF kernels along the time domain to determine an effective
control command from the raw commands and calibrate the
RBF parameters online in the VIO system. Our experiments
demonstrate that by using this motion constraint in addition to
a planar motion constraint not only the accuracy of the VIO
is improved but the learned motion model can also predict the
robot motion more accurately. In future work, more complex
motion models or including other sensors like GPS or wheel
odometry could be investigated.

APPENDIX

A. Inverse vs. Forward Model Residuals

Given the relative pose between two frames Tb,t
b,t′ , the corre-

sponding SE(2) pose Pb,t
b,t′ in the horizontal plane consisting

of rotational part Qb,t
b,t′ and translational part pb,tb,t′ , the effective

control input ξ = (v, 0, w)> with linear and angular velocity,
and P̄b,t

b,t′ = exp(∆tξ), the forward model can be written as

rforw = f(Pb,t
b,t′ , P̄

b,t
b,t′) =

[
pb,tb,t′ − p̄b,tb,t′

logso2 (Qb,t
b,t′)− w∆t

]
, (10)

with derivatives ∂rforw

∂Pb,t
b,t′

= ∂f(.)

∂Pb,t
b,t′

and ∂rforw
∂prbf

=

∂f(.)

∂P̄b,t
b,t′

∂P̄b,t
b,t′

∂ξ
∂ξ
∂prbf

, while the inverse model is

rinv = logse2 (Pb,t
b,t′)−∆tξ =

[
logse2 (Pb,t

b,t′)x,y − v∆t

logso2 (Qb,t
b,t′)− w∆t

]
,

(11)
with derivatives ∂rinv

∂Pb,t
b,t′

= ∂logse2 (.)

∂Pb,t
b,t′

and ∂rinv
∂prbf

= − ∂ξ
∂prbf

∆t.

B. Observability

As in [5], the observability of the state variables can be
analyzed based on the underlying state-space model irre-
spective of the implementation of the estimator. We discuss
the observability properties of the state variables such as
pose, plane parameters and RBF parameters for our model.
A detailed analysis can be found in [27]. We follow the
derivation in [5]. In general, the observability properties of
the pose variables are the same for forward and inverse
model. While in the forward model the derivative wrt. pb,tb,t′
is an identity matrix, the derivative in the inverse model is
Jlogse2

. Because Jlogse2
is an invertible matrix by definition,

when we compute the observability matrix by multiplying this
Jacobian matrix and the transition matrix, the rank of the
observability matrix remains the same based on Sylvester’s
inequality. Note that we use a stereo camera and hence scale
becomes directly observable. We follow the proof scheme
in [5] and show that the global orientation becomes observable
by using the plane constraint and a set of priors in the initial
frames. As in [5], the state transition is given by the IMU
propagation model. The constraint from the velocity-based
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kinematic motion model is treated as an observation. The
linearized transition matrix Φk,1 from time-step 1 to k for the
IMU propagation is derived in [28]. By including the transition
of the RBF parameters as a constant propagation model, the

transition matrix of our model becomes: Φ̄k,1 =

[
Φk,1 0

0 I

]
with the augmented state vector including plane parameters
qgw, dgw between ground g and world frame w, extrinsic
parameters qbi , tbi between robot base and IMU frame and RBF
parameters prbf , x̄ =

[
x> qgw dgw qbi tbi prbf

]>
.

As shown in [5], the plane distance dgw is observable.
Following the derivation in [5], the global orientation of the
plane can be shown to be unobservable. Since our robot starts
from still state, we use the initial accelerator measurement
to initialize the plane angle. By adding this information as
a Gaussian initial prior on the plane angle qgw, the global
orientation becomes observable. As shown in [16] the extrinsic
parameters are also unobservable under specific motions. We
used the extrinsics derived from the CAD model as an initial
Gaussian prior to counteract this problem. We prove the
observability of the RBF parameters (slin, µlin, σlin) for the
translational velocity. The parameters for the angular velocity
have the same observability. We denote exp

(
−‖dτi−µlin‖

2

2σ2
lin

)
as exp(.), where dτi is the time difference between control
command at ti and image frame at t. The Jacobian matrix is
Hrbf =

[
. . . − v̄s A B

]
,

v̄ := s

∑N
i=1 exp(.)vti∑N
i=1 exp(.)

, (12)

A :=
v̄
∑N
i=1 exp(.)dτi−µσ2 − s∑N

i=1 vi exp(.)dτi−µσ2∑N
i=1 exp(.)

, (13)

B :=
v̄
∑N
i=1 exp(.) (dτi−µ)2

σ3 − s∑N
i=1 vi exp(.) (dτi−µ)2

σ3∑N
i=1 exp(.)

.

(14)

The nullspace for the RBF parameters Nrbf is Nrbf =[
0 . . . 0 I3×3

]>
. The corresponding 3 × 3 bottom right

block of the observability matrix for our inverse motion model

is Mrbf =

− v̄s 0 0
0 A 0
0 0 B

. The product of the motion model

observability matrix and the nullspace Nrbf is equal to Mrbf

as the other terms cancel out by multiplication with the 0
components in Nrbf . The RBF parameters are unobservable
if the velocities vi in the window are constant, which can
happen especially at the beginning of the datasets when
the robot stands still. We placed a weak Gaussian prior on
the initial values of the RBF parameter estimates. Due to
the marginalization prior, the RBF parameters will remain
observable even if they become temporarily unobservable in
the window.
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