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Abstract— The vision-based relative localization can provide
effective feedback for the cooperation of aerial swarm and has
been widely investigated in previous works. However, the limited
field of view (FOV) inherently restricts its performance. To cope
with this issue, this letter proposes a novel distributed active
vision-based relative localization framework and apply it to
formation control in aerial swarms. Inspired by bird flocks
in nature, we devise graph-based attention planning (GAP)
to improve the observation quality of the active vision in the
swarm. Then active detection results are fused with onboard
measurements from Ultra-WideBand (UWB) and visual-inertial
odometry (VIO) to obtain real-time relative positions, which
further improve the formation control performance of the
swarm. Simulations and experiments demonstrate that the
proposed active vision system outperforms the fixed vision
system in terms of estimation and formation accuracy.

Index Terms— Aerial swarm, relative localization, formation
control, active vision.

I. INTRODUCTION

Aerial swarms have gained an increasing research focus
in recent years, owing to their promising applications in
cooperative missions, such as exploration, inspection, search
and rescue [1]. The swarms outperform an individual flying
robot in terms of capability, flexibility and survivability [2].
To fully realize collaboration in a swarm, relative localization
is a fundamental part [3]. Such localization provides a basis
for collision avoidance, formation control and other swarm
behaviors [4].

The scalability and independence on communication make
vision an ideal candidate for relative localization of dis-
tributed aerial swarms [10]. Therefore, visual sensors have
been widely adopted to obtain relative positions in previous
works [5]–[11]. However, the vision-based approach is inher-
ently restricted by limited field of view (FOV). To overcome
this limitation, it is intuitive to realize omnidirectional vision
detection. Attempts in the literature include fisheye camera
[6], [11] and camera array [12]. Nevertheless, the fisheye
camera requires additional computational resources to rectify
distortion and an array of visual sensors makes the system
bulky.
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(a) The aerial platform with
active vision system.

(b) Outdoor formation with 4 drones.

Fig. 1. Drone flocking enhanced with active vision. Each drone actively
observes the other drones to improve formation accuracy.

Flocks in nature shed light on the design of an efficient
omnidirectional vision detection. Vision is a critical compo-
nent for birds to respond to their neighbors’ motion when
flying in flocks [13], [14]. The eyeballs or body movement
enable a bird to observe its surroundings better [15]. In a
similar notion, active vision leverages the physical motion
of the camera to dynamically gather more information about
surroundings [16]. Compared with fixed vision, active vision
overcomes the restriction of FOV without adding extra visual
devices. Active vision has been successfully applied to aerial
swarm missions, such as human detection of marine search
and rescue [17] and target tracking with optimal view-point
configurations [18], outdoor motion capture for human pose
estimation [19]. Applying active vision to aerial swarms
requires decentralized planning of temporal and spatial dis-
tribution of the camera’s attention, i.e., planning when and
where the camera observes so that all drones can cooperate
and achieve accurate and agile flight.

To the best of our knowledge, there lacks an active vision-
based approach to tackle restricted FOV for relative localiza-
tion in aerial swarms. Therefore, in this letter, we propose
a fully distributed active vision-based framework for real-
time relative localization of aerial swarms. This framework is
infrastructure-free, i.e., eliminating requirements for external
devices such as global positioning system (GPS) and the
motion capture system. An independent rotational degree of
freedom (DOF) is introduced to the camera to achieve the
active vision. We also take advantage of the fusion scheme,
which utilizes measurements from Ultra-WideBand (UWB),
visual-inertial odometry (VIO) and active vision detection
to realize the robust omnidirectional relative estimation. The
estimation is then applied to agile formation control tasks.

The main contributions of this article are as follows: 1)
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A novel active vision-based relative localization framework,
which overcomes limited FOV and achieves centimeter-
level accuracy. 2) A graph-based attention planning (GAP)
algorithm, which is coupled with the swarm formation and
provides optimal active observation planning for the swarm.

II. RELATED WORKS

Relative localization is a prerequisite for the cooperation
of aerial swarms [7]. External devices, such as GPS, motion
capture system and UWB positioning system with anchors,
are adopted to obtain absolute positions and deduce the
relative positions between agents. The dependence on the
external infrastructure of this approach restricts the deploy-
ment of the system to unknown environments [20]. Also, it
is based on a centralized framework, so it cannot meet the
requirements in fully distributed control of swarms [11].

To tackle this issue, methods relying on onboard devices
in the distributed framework are proposed. A straightfor-
ward way is relying on ego-state estimations. This approach
utilizes onboard local ego-state estimation to obtain the
relative localization in the common reference frame. This
estimation comes from onboard computation, such as VIO
[21], simultaneous localization and mapping (SLAM) [22].
This approach requires a known initial position of each
agent due to indirect measurement, and suffers from the
drift issue [8], potentially leading to formation failure or
even collisions [23]. Moreover, the requirement to share ego-
positions between robots makes the system unfeasible to
cope with highly dynamic environments with high commu-
nication throughput [5].

Another solution is to rely on distance sensors. Distance
sensors have the ability to measure distance between in-
dividuals in an omnidirectional way directly. UWB, one
popular distance sensor, has been adopted widely in the
literature. External UWB position system based on fixed
anchors can estimate positions of agents in the common
reference frame [20], but the requirement of the previous
deployment of anchors means the framework can hardly
be adopted in the unknown environment [8]. Efforts have
been made to design an anchor-free UWB position scheme,
such as UWB-IMU coupled approach [24], [25]. However,
the accuracy of relative localization relying barely on UWB
is not satisfactory [24], [25]. To achieve better estimation,
UWB measurements are fused together with measurements
from other sensors, such as VIO [20], wheel encoder [26],
and optical flow [27], [28].

Unlike distance sensors, visual sensors can provide 3-D
position estimations of targets. The vision-based approach
detects the relative positions of other agents using onboard
cameras. The detection can be achieved by pre-known
markers attached to agents [6], [7], or by a pre-trained
convolutional neural network (CNN) detection algorithm [8],
[9]. Despite the scalability of the vision-based approach [10],
estimation accuracy will deteriorate in the non-line-of-sight
case due to restricted FOV [11]. To overcome this limitation,
attempts have been made to enlarge the FOV of visual detec-
tion in the literature. In [11], distortion-free images extracted

from the fisheye camera are used to detect other drones. In
[10], four cameras are installed to provide omnidirectional
visual inputs. Nevertheless, addressing limited FOV with the
fisheye camera or camera array is at the cost of additional
mass, size, and computing power, which in turn brings new
burdens [3]. There is still room for improvement in omnidi-
rectional vision detection to overcome FOV restriction.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. System Overview

Active vision aims to improve the detection performance
of cameras limited by FOV and provide reliable and abundant
position data of other agents for the estimator. To overcome
the FOV limitation, we design a flexible structure to achieve
the active vision as shown in Fig.1(a). This structure consists
of a servo motor and a camera. They are mounted on a
quadrotor’s upper platform so that the motor can drive the
camera in all directions to observe environments. Although
active vision can also be implemented by moving the yaw
angle of the drone, our approach benefits the control of the
quadrotor. Due to the lightweight of the camera compared
with the body of the quadrotor, this implementation brings
negligible influence to the control of the original system
while providing a flexible view field [29].

B. Problem Formulation

For an aerial swarm system that contains N drones, the
visual observations between drones can be represented by
graph Go = (V, E), where the vertice set V represents N
drones and an edge ei = {vj , vk} in the edge set E represents
that drone Nk is observed by Nj . We introduce M × N
incidence matrix D(Go) to represent the visual connection,
which is defined as

D (Go) = [dij ] ,where dij =

 −1 vj is the tail of ei

1 vj is the head of ei

0 otherwise
(1)

Then the problem of optimal observation of active vision
can be described as:

arg min
D(Go)

Ψ(V, E). (2)

Ψ(V, E) is an evaluation function to determine the quality
of visual observations of the swarm.

IV. METHOD

In this section, we first discuss a solution to the prob-
lem mentioned above by providing graph-based attention
planning. Later, the optimization-based relative localization
fusing three kinds of measurements is explained. After that,
the initialization of swarm positions by the estimator is
addressed. Finally, the design of the formation control law
is stressed, utilizing the results of relative localization.



A. Graph-based Attention Planning

Building on the graph D(Go) mentioned above, we in-
troduce graph-based attention planning, which aims to find
an active observation plan with minimal cost. In order to
evaluate the attention of the active vision and improve
the visual detection quality within the swarm, two main
factors are considered: the observation distance and the
flight direction of the drone. First, according to the feature
of visual detection, the measurement errors increase with
distance from the observer [10]. Hence, a smaller observation
distance is preferred. Since the relative localization problem
is integrated with the formation control task in our system,
the planning computes observation distance according to the
desired formation, which improves computing efficiency and
makes offline pre-planning possible. Second, more observa-
tion in the flight direction of the drone can help preclude
collisions with neighbors and thus should be concerned.

Let v and x represent the velocities and positions
of drones respectively in the global frame, i.e., v =[
v1,v2 , · · · vN

]T
, x =

[
x1,x2 , · · · xN

]T
.

Let Do(t) represent the incidence matrix D(Go) at time t,
and graph Laplacian of Go is Lo(t) = Do(t)

TDo(t). Then
the cost function of the GAP is described as

min
Do(t)

f = γ1 (Do(t)x)
T Do(t)x− γ2vTDo(t)x

s.t. Do(t) · 1N×1 = 0N×1

λ1(Lo(t)) = 0, λk(Lo(t)) > 0

min
1≤j≤N

M∑
i=1

|dij | ≥ 2

(3)

where k = 2, 3, ..., N and γ1 and γ2 are positive weights. The
first term in the cost function (3) is the sum of observation
distances in the swarm at time t. A smaller sum of distances
is desired, making a drone prefer to observe another near
drone in the formation and thus improving visual detection
quality. The second term means the inner product of each
pair of velocity and observation direction. According to the
nature of the inner product, the more consistent the direction
of velocity and the observation, the smaller the cost function
is.

To find the optimal solution, we make two simplifying
assumptions according to our scenario:

1) Do(t)T · 1M×1 = 0M×1
2) min1≤j≤N

∑M
i=1 |dij | = 2

The first assumption means a drone generally could ob-
serve one neighbor at a time in most cases because drones in
the aerial swarm are sparsely distributed in space. As a result,
the target will be placed at the center of the camera’s FOV
for better tracking and observation. The second assumption
means each drone will be observed so that the detection
results could be shared among the swarm for distributed
estimation. Based on our assumptions, the possible number
of connections is reduced from (N − 1)N to (N − 1)!. Take
the formation of 4 drones in our experiments as an example.
There are 81 and 6 possible connections before and after

pruning, respectively. Searching for the optimal solution of
GAP becomes acceptable after pruning. The flow of GAP
for 3 drone connection planning is shown in Fig.2.

Fig. 2. The flow of GAP.

After the assignment of the detection target by GAP, the
rotation angle of the camera can be determined according to
the relative position of the observation target in the drone’s
body frame. Since drones fly at nearly the same altitude and
the camera only has one rotational DOF along the Z-axis, the
relative position is calculated based on the horizontal plane.

B. Relative Localization

Although active vision detection can provide relative
positions, some drones may be invisible due to occlusion
or beyond visual range. Moreover, estimations from vision
can be intermittent due to misdetection [30]. Hence, ac-
tive vision measurements could be complemented by other
sensors so that we can obtain robust and continuous esti-
mations. Inspired by the efficacy of the fusion scheme in
[8], measurements from UWB and VIO are also adopted. In
this subsection, we first discuss the details of active vision
and the other two measurements. Then we introduce the
implementation of optimization-based relative localization.
The framework of our approach is shown in Fig.3.
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Fig. 3. The framework of active vision-based relative localization. The
measurements from active vision, VIO and UWB are fused to obtain
robust and real-time estimations. Then these estimations are integrated with
formation task.



1) Active Vision Measurement: The active vision system
of the drone includes a servo motor that drives the camera in
all directions to observe environments. In order to detect and
identify other drones, ArUco markers are adopted. To realize
omnidirectional detection, the placement of markers should
be visible from any direction. Considering the constraints of
space of an aerial platform and the fact that these platforms
are often deployed at similar altitudes, we attach four markers
around each aerial platform as Fig.4 shows. The four markers
have the same ID number and each aerial platform has a
unique ID number so that aerial platforms can be identi-
fied directly through marker ID. Compared to CNN-based
approach, our approach does not require pre-training and
labeling. Also, real-time detection can be realized without
GPU. These benefits make the deployment of our active
vision system convenient.

2) Visual-Inertial Measurement: The data from the com-
mercial Intel RealSense T265 tracking module is regarded
as visual-inertial odometry measurement. Basically, the VIO
serves as an ego-state estimator for the flight controller and
formation controller. Because the VIO provides the position
of a drone in the local frame, knowing the swarm’s initial
positions is the prerequisite to utilize the VIO measurement.
The initialization is discussed in IV-C. After that, the relative
positions can be deduced from VIO displacement based on
initial positions.

3) UWB Measurement: Each drone in the aerial swarm is
equipped with a UWB module. Direct inter-agent distances
can be obtained from each pair of UWB nodes. Because
UWB measurement may yield significant outliers due to
interferences, the Savitzky Golay filter is adopted to process
UWB measurements.

To fuse the measurements from active vision detection,
VIO and UWB, an optimization-based algorithm is adopted.
For drone Ni in the aerial swarm, 3×(N−1) variables need
to be estimated at time frame k. These variables represent the
relative positions in three-dimensional space between drone
Ni and the other N − 1 drones in drone Ni’s local frame.
The optimization function is expressed as the following
formulation:

min
x̂k

ij

J =
∑∥∥∥pk

ij − x̂k
ij

∥∥∥
2

+
∑∥∥∥pk

ji + x̂k
ij

∥∥∥
2

+∑∣∣∣∥∥∥x̂k
ij

∥∥∥
2
− dkij

∣∣∣+∑∥∥∥xk
V IO,j − xk

V IO,i − x̂k
ij

∥∥∥
2

+∑∥∥∥x̂k−1
ij +

(
vk
j − vk

i

)
δt− x̂k

ij

∥∥∥
2

(4)

where x̂k
ij refers to an estimation of the relative position

between drone Ni and drone Nj at time frame k. The
first term is composed of two possible residuals of active
vision detection measurements; pk

ij means the pair of valid
detection of drone Nj detected by drone Ni; pk

ji means the
pair of valid detection of drone Ni detected by drone Nj ,
obtaining through communication;

∣∣∣∥∥∥x̂k
ij

∥∥∥
2
− dkij

∣∣∣ represents

the residual of UWB distance measurements; xk
V IO,j and

xk
V IO,i represents the VIO measurements from drone Nj and

drone Ni at time frame k in global frame respectively. To
leverage the dynamic of the system, the first order expecta-
tion is introduced in the last term; vk

j −vk
i represents relative

velocity between drone Nj and drone Ni; δt represents time
interval between time frame k−1 and k; x̂k−1

ij +
(
vk
j − vk

i

)
δt

represents expected relative position at time frame k based
on time frame k − 1.

The estimation is implemented in a distributed manner.
Each drone runs its estimator by leveraging information
it collects or interchanges with other drones. Due to the
asynchronous communication of UWB modules in the aerial
swarm, drone Ni may not obtain information of all other
drones at time frame k. In this case, specific terms in the
(4) will be omitted due to incomplete data. We adopt the
Ceres-solver to solve this non-linear least-squares optimiza-
tion problem. Considering the movements of drones are
continuous, we set the initial values of the solver as values
of the last time frame k− 1, which brings the benefit of the
faster convergence of the solver.

C. Initialization of Relative Positions

Since the VIO measurement is in a drone’s local frame,
it is required to know drones’ initial positions to determine
their relative positions. The initialization of relative positions
is implemented by fusing the results of active detection and
UWB measurement. For convenience, the drones in the aerial
swarm face the same directions by aligning their compasses
and there is no rotation between the local frame and global
frame during the initialization stage. The framework of
initialization is similar to that of the above section, which
is described as:

min
x̂0

ij

J =
∑
k∈T

∥∥pk
ij − x̂0

ij

∥∥
2

+
∑
k∈T

∥∥pk
ji + x̂0

ij

∥∥
2

+∑
k∈T

∣∣∣∥∥x̂0
ij

∥∥
2
− dkij

∣∣∣ (5)

where x̂0
ij represents the estimated initial relative position

between drone Ni and drone Nj . T represents the period
when the initialization program collects data. Because all
drones are static, their relative positions are regarded as
constant and thus time-invariant. The initialization algorithm
will utilize measurements of active detection and UWB
within a short period. After initialization, the optimization
algorithm will have access to VIO measurements to estimate
relative localization.

D. Formation Control

In this subsection, we aim to apply the proposed relative
localization framework to a consensus-based formation con-
trol task. We first consider the second-order system of the
drone. Then we propose a formation control law.

In a multi-robot system, the outer-loop dynamics of drone
Ni can be approximately described by



{
ẋi(t) = vi(t)
v̇i(t) = ui(t)

(6)

where xi(t) ∈ R3, vi(t) ∈ R3 and ui(t) ∈ R3 denote the
position, velocity and control input vectors respectively.

The formation controller adopts a forward feedback
scheme. Let r(t) =

[
x1,x2 , · · · xN

]T
, then the

control law of the swarm is described by:

u(t) =r̈∗(t) + φ(ṙ∗(t), ṙ(t), r∗(t), r(t)) + Lo(t)r(t)
(7)

where r̈∗(t), ṙ∗(t) and r∗(t) are expected acceleration,
velocity and position of the swarm respectively. The second
term denotes the control value caused by the position and
velocity errors; the last denotes the control value caused by
swarm formation. The last term utilizes the results of relative
localization and ensures the formation accuracy of the aerial
swarm.

V. EXPERIMENT

A. Experiment Setup

A distributed aerial swarm consisting of four aerial plat-
forms is designed to verify the relative localization frame-
work and the performance of the formation controller. Both
hardware and software are developed for the experiments.

We design a quad-rotor drone as the aerial platform
(Fig.4). This platform is equipped with a PixRacer flight
controller running PX4 firmware. A camera and a servo
motor are combined to achieve active vision detection. The
camera is a monochrome camera with a horizontal view
field of 150◦ and 800×600 resolution. The servo motor has
an encoder providing 300 degrees rotation range. An Intel
RealSense T265 tracking camera module is used for ego-state
estimation. A UP Core plus computing board running ROS
was adopted as the onboard computer. The mounted CPU
was Intel Atom x7 (four cores, 1.8 GHz). A Nooploop UWB
module is adopted for both inter-agent distance measurement
and communication. The UWB module provides up to 25
Hz broadcasting frequency. Besides, four ArUco markers are
attached to the drone to facilitate the identification.

Fig. 4. The aerial platform utilized in our experiments. This platform is
equipped with a PixRacer flight controller, a monochrome camera, a servo
motor, an Intel RealSense T265 tracking module, a Nooploop UWB module
and a Up Core Plus on-board computer. Four ArUco markers are attached
around the platform for identification.

The onboard computer runs Ubuntu 18.04, and all algo-
rithms running on it are built under the ROS framework.

We rotate the camera to capture the images and leverage
OpenCV ArUco library to detect markers. The position data
of markers is transformed to the local frame according to the
drone’s current pose and the current angle of the servo. The
position data from the T265 tracking module, which is re-
garded as VIO measurement, is first transformed to the local
frame and then is fused with visual detection measurements
and UWB distance measurements for relative localization.
The flight controller performs the basic attitude control while
other computations are performed on the onboard computer.

The experiments are conducted in both indoor and outdoor
scenarios. In indoor environments, the results of the VICON
motion capture system are regarded as ground truth to
compare with data from relative localization. In outdoor
experiments, we only verify the swarm’s ability to maintain
formation without comparing with ground truth due to the
lack of an external positioning system as the reference. In
both indoor and outdoor environments, the aerial swarm
utilizes the results of relative localization and performs
formation control tasks.

B. Experiment Result
We first present the optimal observation planning obtained

by GAP in the simulation. Then we report the results of
extensive indoor experiments with the swarm of 4 drones
and compare the performance of the proposed active vision
with fixed vision in terms of relative localization accuracy,
formation accuracy at different velocities.

First of all, we design a simulation program in MATLAB
to utilize graph-based attention planning to obtain the optimal
observation offline. Simulation examples with 10 drones at
two different velocity settings are shown in Fig.5. We also
present the relationship between computing time and drone
number in the swarm in circular formation based on 100
repeated simulations in Tab.I. The GAP could be regarded
as real-time when the drone number is small (under 8) while
optimization time is too long for onboard deployment for a
larger drone number.

(a)

(b)

Fig. 5. The optimal connection of 10 drones obtained by GAP simulation
at different velocity settings.

The experiments are conducted with four drones. Before
takeoff, each drone will compute the relative positions of



TABLE I
RELATIONSHIP BETWEEN COMPUTING TIME AND AGENT NUMBER

Agent number 4 6 8 10
Mean computing time (s) 0.0004 0.0010 0.0240 1.6553

STD of computing time (s) 0.0002 0.0009 0.0025 0.1295

the other drones in an egocentric manner, which means
they regard their position as the origin. Only horizontal x
and y axes are considered because all drones’ heights are
zero before takeoff. After initialization, each drone can fuse
VIO measurements and provide real-time relative positions
of the other drones. Then the aerial swarm will take off to
perform formation control tasks. In all experiments, relative
localization’s average onboard optimization time is under 3
ms, which could be regarded as real-time.

We compare the performance of the proposed active vision
with fixed vision in the circular formation. The radius of
the circle is 1 m. Each drone will accelerate to desired
speed from static and maintain the formation at that speed.
According to the simulation of GAP, the optimal observation
scheme in the formation control task is to detect the direction
of the next drone. Fig.6 shows an indoor circular formation
from the top view and side view and Fig.7 shows the first-
person view (FPV) of the four drones, respectively.

(a) Side view (b) Top view

Fig. 6. Four drones in the aerial swarm performing indoor formation control
task. Each drone observes the direction of the next drone according to the
optimal result of the graph-based attention planning.

(a) Drone 1 view (b) Drone 2 view (c) Drone 3 view (d) Drone 4 view

Fig. 7. The first person view (FPV) of four drones in the aerial swarm.
The ID number and marker position are emphasized in the figure.

Fig.8 shows relative localization accuracy of both active
vision and fixed vision at 2 m/s speed in one experiment. The
estimated trajectory is between drone N1 and N2. Compared
with fixed vision, the active vision system outperforms in
terms of estimation accuracy and duration of visual detection
(marked with green shade). The active vision system has less
invisible time interval, marked by more detection data. Also,
the RMSE of the active vision system of x and y is 0.096

m and 0.088 m, respectively, while the fixed camera system
has 0.121 m and 0.114 m RMSE.

(a) Relative position estimations and errors of active vision system.

(b) Relative position estimations and errors of fixed vision system.

Fig. 8. The comparison of the proposed active vision-based relative
localization and fixed camera system between drone N1 and N2 in the
formation flight with 4 drones. Green dots mark the visual detection result,
and the green shade represents the time interval of detection.

To demonstrate the accuracy of the relative position es-
timation of active vision, we further compared the perfor-
mance of active vision and fixed vision under four different
velocity conditions, and the results are shown in Fig.9. We
did 6 replicate trials for each parameter setting. The results
show that the estimation errors of active vision are smaller
than those of fixed vision under different velocity conditions.
As the velocity increases, the estimation error of fixed vision
increases, while the estimation accuracy of active vision is
not affected. The deterioration of fixed vision estimation
could be due to the drift of VIO with increasing velocity.
The active vision could compensate for this drift by the active
vision detection. For higher velocity, we also did experiments
at the velocity of 2.5 m/s and a radius of 1 m. The motion of
the UAV was so aggressive that the UAV’s inclination was
large (over 40◦) and the active vision system was not able
to observe other drones effectively. This led to formation
divergence with VIO’s drifting away.

In addition, we compared the formation accuracy of active
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Fig. 9. Position estimation error of active and fixed vision at different
velocities.

vision and fixed vision under four different velocity condi-
tions in Fig.10. Angles between each drone represent the
formation accuracy. In the circular formation of four drones,
the angle between neighbors is supposed to be 90◦. As the
velocity increases, the error of the active vision formation is
less affected, while the error of the fixed vision increases.
Due to feedback in the formation control law, the active
vision system has more observations during experiments and
is thus more accurate. In particular, we show the curves of
formation angles of active vision and fixed vision at the
velocity of 1.5 m/s in repeated experiments in Fig.11. Using
drone N1 as a reference, the formation angles of the other
three drones should be 90◦, 180◦, and 270◦, respectively.
In Fig.11, the formation of active vision is closer to target
values and has less fluctuation and lower variance.
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Fig. 10. Formation angle error of active and fixed vision at different
velocities.

We also provide a detailed error comparison between the
active vision, fixed vision and the ground truth in Tab.II.
The UWB data and the active vision detection data are
abandoned in different scenarios to verify the effectiveness
of the proposed sensor fusion method and the contribution
of different measurements. According to Tab.II, it is shown
that the RMSE of the active vision can reach 5 cm level at
different velocities. The absence of UWB slightly affects the
estimation accuracy, which may be due to the large variance
of the distance estimation of the UWB hardware used in
experiments. Meanwhile, the absence of active vision causes
an obvious deterioration of the estimation accuracy with an
error greater than 10 cm.

Fig. 11. Inter-agent angle range of active vision and fixed vision in 6 trials
of circular formation at 1.5 m/s. Agent 1 is the reference and the formation
angles of the other three drones should be 90◦, 180◦, and 270◦

TABLE II
COMPARISON OF RELATIVE POSITION ESTIMATION WITH

GROUNDTRUTH AT DIFFERENT VELOCITIES

Vel
(m/s)

Evaluation
Metrics

(m)

Proposed
Method

Without
UWB

Without
Active
Vision

Fixed
Vision

0.5
x RMSE 0.060 0.066 0.136 0.096

STD 0.017 0.017 0.020 0.028

y RMSE 0.066 0.083 0.132 0.097
STD 0.009 0.018 0.022 0.019

1
x RMSE 0.059 0.083 0.133 0.106

STD 0.016 0.013 0.019 0.022

y RMSE 0.077 0.091 0.146 0.095
STD 0.018 0.013 0.015 0.013

1.5
x RMSE 0.055 0.057 0.120 0.114

STD 0.017 0.016 0.019 0.021

y RMSE 0.055 0.060 0.115 0.115
STD 0.011 0.013 0.017 0.007

2
x RMSE 0.071 0.082 0.104 0.151

STD 0.012 0.018 0.020 0.045

y RMSE 0.056 0.070 0.092 0.127
STD 0.007 0.008 0.014 0.038

VI. CONCLUSION

This paper proposes a novel active vision-based relative
localization framework to tackle the restricted FOV of the
vision-based approaches. We devise GAP to obtain the
optimal active vision planning of the swarm. Measurements
from active vision, VIO and UWB are fused to obtain relative
positions, achieving 5 cm RMSE at different velocities. The
result of relative localization is integrated with the formation
control task to perform agile formation. Simulations and
experiments validate the effectiveness of the proposed active
vision system compared with the fixed vision system in terms
of detection duration, estimation and formation accuracy at
different velocities.

In the future, we plan to improve the computing efficiency
of the GAP further so that it is scalable to large-scale swarms.
Also, we would apply our active vision system to aggressive
motion with higher speed by addressing the vision loss in
this scenario.
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